Student Name and ID Number

MATH 3012 Quiz 1, September 27, 2011, WTT

1. Consider the 16-element set consisting of the ten digits $\{0, 1, 2, ..., 9\}$ and the six capital letters $\{A, B, C, D, E, F\}$.

a. How many strings of length 9 can be formed if repetition of symbols is *not* permitted?

b. How many strings of length 9 can be formed if repetition of symbols is permitted?

c. How many strings of length 9 can be formed using exactly two 6's, three B's and four D's?

d. How many strings of length 9 can be formed using exactly two 6's, three B's and four D's if the four D's are required to occur consecutively in the string?

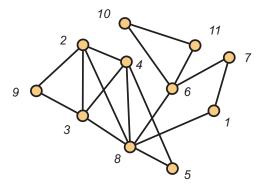
2. How many lattice paths from (2, 8) to (27, 39) do not pass through (18, 23)?

- 3. How many integer valued solutions to the following equations and inequalities:
- **a.** $x_1 + x_2 + x_3 + x_4 = 32$, all $x_i > 0$.
- **b.** $x_1 + x_2 + x_3 + x_4 = 32$, all $x_i \ge 0$.

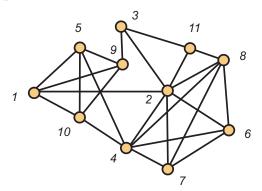
c. $x_1 + x_2 + x_3 + x_4 < 32$, all $x_i > 0$.

d. $x_1 + x_2 + x_3 + x_4 \le 32$, all $x_i \ge 0$.

e. $x_1 + x_2 + x_3 + x_4 = 32$, all $x_i > 0, x_2 \ge 8$.


f. $x_1 + x_2 + x_3 + x_4 = 32$, all $x_i > 0, x_2 \le 13$.

4. Use the Euclidean algorithm to find $d = \gcd(630, 495)$.


5. Use your work in the preceding problem to find integers a and b so that d = 630a + 495b.

6. For a positive integer n, let s_n count the number of ternary strings of length n that do not contain 00 or 01 as a substring. Note that $s_1 = 3$ and $s_2 = 7$. Develop a recurrence relation for s_n and use it to compute s_3 , s_4 and s_5 .

7. Use the algorithm developed in class, with vertex 1 as root, to find an Euler circuit in the following graph:

8. Consider the following graph:

a. Explain why this graph does not have an Euler circuit.

b. Provide a listing of the vertices that constitutes a Hamiltonian cycle *starting* with vertices 1, 2 and 3 in that order.

- c. Find a set of vertices that forms a maximal clique but not a maximum clique.
- **d.** What is $\omega(G)$ for this graph?
- e. Find a set of vertices which forms a maximum clique in this graph.

f. Show that $\chi(G) = \omega(G)$ for this graph by providing an optimum coloring. You may write directly on the figure.

9. Draw a graph G on six vertices with $\omega(G) = 3$ and $\chi(G) = 4$.

10. Draw all unlabelled trees on five vertices. Then for each of them, count the number of ways the labels from $\{1, 2, 3, 4, 5\}$ can be applied. Hint: The total number of labeled trees on 5 vertices is $125 = 5^3$.

11. Prove the following identity by Mathematical Induction:

 $2 + 8 + 14 + \dots 6n - 2 = 3n^2 - n$ when $n \ge 1$.