MATH 3012 Quiz 1, September 27, 2011, WTT

1. Consider the 16 -element set consisting of the ten digits $\{0,1,2, \ldots, 9\}$ and the six capital letters $\{A, B, C, D, E, F\}$.
a. How many strings of length 9 can be formed if repetition of symbols is not permitted?
b. How many strings of length 9 can be formed if repetition of symbols is permitted?
c. How many strings of length 9 can be formed using exactly two 6 's, three B 's and four D 's?
d. How many strings of length 9 can be formed using exactly two 6 's, three B 's and four D 's if the four $D^{\prime} s$ are required to occur consecutively in the string?
2. How many lattice paths from $(2,8)$ to $(27,39)$ do not pass through $(18,23)$?
3. How many integer valued solutions to the following equations and inequalities:
a. $x_{1}+x_{2}+x_{3}+x_{4}=32$, all $x_{i}>0$.
b. $\quad x_{1}+x_{2}+x_{3}+x_{4}=32$, all $x_{i} \geq 0$.
c. $x_{1}+x_{2}+x_{3}+x_{4}<32$, all $x_{i}>0$.
d. $x_{1}+x_{2}+x_{3}+x_{4} \leq 32$, all $x_{i} \geq 0$.
e. $x_{1}+x_{2}+x_{3}+x_{4}=32$, all $x_{i}>0, x_{2} \geq 8$.
f. $x_{1}+x_{2}+x_{3}+x_{4}=32$, all $x_{i}>0, x_{2} \leq 13$.
4. Use the Euclidean algorithm to find $d=\operatorname{gcd}(630,495)$.
5. Use your work in the preceding problem to find integers a and b so that $d=630 a+495 b$.
6. For a positive integer n, let s_{n} count the number of ternary strings of length n that do not contain 00 or 01 as a substring. Note that $s_{1}=3$ and $s_{2}=7$. Develop a recurrence relation for s_{n} and use it to compute s_{3}, s_{4} and s_{5}.
7. Use the algorithm developed in class, with vertex 1 as root, to find an Euler circuit in the following graph:

8. Consider the following graph:

a. Explain why this graph does not have an Euler circuit.
b. Provide a listing of the vertices that constitutes a Hamiltonian cycle starting with vertices 1, 2 and 3 in that order.
c. Find a set of vertices that forms a maximal clique but not a maximum clique.
d. What is $\omega(G)$ for this graph?
e. Find a set of vertices which forms a maximum clique in this graph.
f. Show that $\chi(G)=\omega(G)$ for this graph by providing an optimum coloring. You may write directly on the figure.
9. Draw a graph G on six vertices with $\omega(G)=3$ and $\chi(G)=4$.
10. Draw all unlabelled trees on five vertices. Then for each of them, count the number of ways the labels from $\{1,2,3,4,5\}$ can be applied. Hint: The total number of labeled trees on 5 vertices is $125=5^{3}$.
11. Prove the following identity by Mathematical Induction:

$$
2+8+14+\ldots 6 n-2=3 n^{2}-n \quad \text { when } n \geq 1
$$

