## MATH 3012, Quiz 3, November 22, 2011, WTT

- 1. Find the general solution to the advancement operator equation:  $A^{2}(A-4)^{3}(A+6)^{4}(A-5)f(n) = 0$
- **2.** Find the solution to the advancement operator equation:  $(A^2 8A + 12)f(n) = 0$ , f(0) = 1 and f(1) = 34.

- **3.** Find a particular solution to the advancement operator equation:  $(A+3)g(n) = 7 \cdot 3^n$ .
- 4. Find the form of a particular solution to (Express your answer with constants to be determined. Do not attempt to carry out the solution):

 $(A-4)^3(A+6)^4(A-5)f(n) = 7 \cdot 5^n + 3n.$ 

**5.** How many permutations of  $\{1, 2, 3, \ldots, 23\}$  satisfy the four requirements:  $\sigma(3) = 3$ ,  $\sigma(4) = 4$ ,  $\sigma(11) = 11$  and  $\sigma(19) = 19$ ?

**6.** How many functions from  $\{1, 2, 3, ..., 18\}$  to  $\{1, 2, 3, ..., 11\}$  satisfy the three requirements: 2 is not in the range, 6 is not in the range, and 8 is not in the range.

7. The integer 65,000 can be factored as  $2^3 \cdot 5^4 \cdot 13$ . Use the inclusion-exclusion formula to find  $\phi(65,000)$ .

8. Interpret the coefficients of the function  $(1 + x)(1 + x^3)(1 + x^7)/(1 - x^2)$  in terms of partitions of an integer. Then write all the partitions of the integer 11 that correspond to this interpretation.

**9.** Consider the data file (shown on the left below) for the weights on the edges of a graph with vertex set  $\{a, b, c, d, e, f, g, h\}$ . In the space to the right, list in order the edges that would be selected in carrying out Kruskal's algorithm (avoid cycles) and Prim's algorithm to find a minimum weight spanning tree. For Prim, use vertex a as the root.

| graphdata.txt |   |    | Kruskal | Prim |
|---------------|---|----|---------|------|
|               |   |    |         |      |
| е             | h | 10 |         |      |
| с             | е | 12 |         |      |
| b             | с | 13 |         |      |
| с             | d | 14 |         |      |
| b             | h | 15 |         |      |
| f             | g | 16 |         |      |
| a             | d | 17 |         |      |
| a             | b | 18 |         |      |
| b             | g | 20 |         |      |
| е             | d | 21 |         |      |

a h 32

10. Consider the following network



**a.** What is the current value of the flow?

**b.** What is the capacity of the cut  $\{S, A, D, G, H\} \cup \{B, C, E, F, T\}$ ?

c. Write below the labels that are applied by carrying out the Ford-Fulkerson labeling algorithm.

**d.** Write the sequence of vertices that forms an augmenting path, as determined by the labeling done in the previous step.

**e.** Use the information gleaned from the previous two parts to update the flow. You may provide your answer by writing directly on the figure.

**f.** What is the new value value of the flow?

**g.** Write below the labels that are applied by carrying out the Ford-Fulkerson labeling algorithm on the updated network. It should terminate without the sink being labeled.

h. Find a cut whose capacity is the value of the current flow.