MATH 3012 Quiz 1, February 8, 2013, WTT

1. Consider the 62-element alphabet consisting of the ten digits $\{0, 1, 2, \dots, 9\}$ and the letters $\{a,A,b,B,c,C,\ldots,z,Z\}$ of the English language, including both lower-case and upper case letters, i.e., the letters are case sensitive.

How many strings of length 39 can be formed if repetition of symbols is not permitted?

How many strings of length 39 can be formed if repetition of symbols is permitted?

How many strings of length 39 can be formed using exactly twenty 5's, eight B's and eleven

$$(39)$$
 or $\frac{39!}{20!8!11!}$

d. How many strings of length 39 can be formed using exactly twenty 5's, eight B's and eleven

b's if the eight
$$B's$$
 are required to occur consecutively in the 32

How many integer value $x_1 + x_2 + x_3 = 42$, all $x_i > 0$. How many integer valued solutions to the following equations and inequalities:

41 gaps, choose 2

b. $x_1 + x_2 + x_3 = 42$, all $x_i \ge 0$.

c. $x_1 + x_2 + x_3 < 42$, all $x_i > 0$ (43) Add new variable x470 and solve X, + X2+ x3+ x4 = 42

d. $x_1 + x_2 + x_3 \le 42$, all $x_i \ge 0$.

weaten to xy 20. Now
4 autoficials

e. $x_1 + x_2 + x_3 = 42$, all $x_i > 0$, $x_3 \ge 10$.

$$\binom{32}{2}$$

4. Use the Euclidean algorithm to find
$$d = \gcd(231, 504)$$
.

231 504 42 5231 21 5

5. Use your work in the preceding problem to find integers a and b so that d = 231a + 504b.

$$\frac{231 = 5.42 + 21}{1.504 - 2.231 = 42}$$

$$= 1.231 - 5 \left[1.504 - 2.231 \right]$$
$$= 11.231 - 5.504$$

$$a = 11 \quad b = -5$$

6. For a positive integer n, let t_n count the number of ternary strings of length n that do not

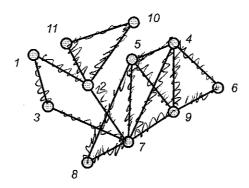
contain 001 as a substring. Note that $t_1 = 3$, $t_2 = 9$ and $t_3 = 26$. Develop a recurrence relation for t_n and use it to compute t_4 , t_5 and t_6 .

Consider last digit. If its a o'' or z'', then in from the it is a good sequence. On the other hand, if its a the it connects then in from the other hand, if it is a first it connects then in first then in first then in first then in first the leads to lead oo.

$$t_{n+1} = 2 \dot{t}_n + (t_n - t_{n-2})$$

$$= 3t_n - t_{n-2}$$

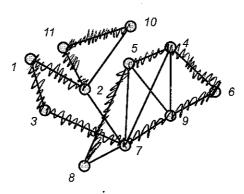
50


 $t_4 = 3t_3 - t$, = 3.26 - 3 = 78-3 = 75 $t_5 = 3t_4 - t_2 = 3.75 - 9 = 225 - 9 = 216$

$$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{3}{1} = \frac{75}{1} = \frac{225}{1} = \frac{1}{1}$$

$$t_5 = 3t_4 - t_2 = 3 \cdot 75 - 9 = 225 - 7$$

 $t_6 = 3t_5 - t_3 = 3 \cdot 216 - 26 = 648 - 26 = 622$


7. Use the algorithm developed in class, with vertex 1 as root, to find an Euler circuit in the graph G shown below:

$$(1,2,7,3,1)$$

 $(2,10,11,2)$
 $(1,2,10,11,2,7,3,1)$
 $(7,4,5,7,8,5,9,4,6,9,7)$
 $(1,2,10,11,2,7,4,5,7,8,5,9,4,6,9,7,3,1)$

8. Consider again the graph G from the preceding problem.

a. Show that there is a path starting at 10 and ending at 8 which visits each of the vertices, exactly once, along the way. You may answer this question either by listing the eleven vertices in a suitable order, or by darkening edges directly on the figure.

b. What is $\omega(G)$?

c. What is the chromatic number of the complete bipartite graph $K_{11,96}$?

9.	True-False. Mark in the left margin.
F 1.	$\binom{10}{3} = 160.$ $\binom{10}{3} = \binom{10}{3} = $
F 2.	True-raise. Wark in the left margin. 34 $\binom{10}{3} = 160.$ $\binom{10}{3} = 160.$ $P(10,7) = 10 \cdot 9 \cdot 8 \cdot 7.$ $P(10,7) = 10 \cdot 9 \cdot 8 \cdot 7.$ $P(10,7) = 10 \cdot 9 \cdot 8 \cdot 7.$
F 3.	The answer to question 1, part a, on this test is less than 1,000,000,000,000,000,000,000,000. = 12 An swer is product of 37 numbers, each bisser than 30
F 4.	There is a graph G on 238 vertices with $\chi(G) = 17$ and $\omega(G) = 35$. $\chi(G) \geq \omega(G)$ for
T 5.	All graphs with 1286 vertices and 5973 edges are non-planar. $5973 > 3.1286 - 6$
\mathcal{T} 6.	There is a hamiltonian graph on 684 vertices in which every vertex has degree 10.
T 7.	Every connected graph on 684 vertices in which every vertex has degree 10 has an Euler circuit.
F 8.	Every graph with 21 vertices and 231 edges is hamiltonian.
T 9.	Every graph with 21 vertices in which every vertex has degree at least 11 is hamiltonian.
T10.	If G is an interval graph, then $\chi(G) = \omega(G)$.
T 11.	There is a planar graph on 458 vertices which is a homeomorph of the complete bipartite graph $K_{2,3}$.
	When $n \geq 3$, the shift graph S_n has $\binom{n}{2}$ edges and $\binom{n}{3}$ vertices. (backward)
T 13.	When $n \geq 3$, the maximum clique size of the shift graph S_n is given by $\omega(S_n) = 2$.
F 14.	When $n \geq 3$, the chromatic number of the shift graph S_n is given by $\chi(S_n) = 3n - 6$.
F 15.	Euler's formula asserts that if V , E and F count the number of vertices, edges and faces in a drawing (without crossings) of a connected planar graph, then $V - F + E = 2$.
T 16.	The number of lattice paths from $(0,0)$ to (n,n) which do not pass through a point above the diagonal is the Catalan number $\binom{2n}{n}/(n+1)$.
T 17.	Any modern computer can quickly add two 300 digit numbers.
\int 18.	Any modern computer can quickly multiply two 300 digit numbers.
F 19.	Any modern computer can quickly test whether a 300 digit number is prime. I wish!
T 20.	Any modern computer can accept a file of 1000 positive integers, each at most 2000, and quickly determine whether 947 is one of the integers in the file.
T 21.	Any modern computer can accept a file of 1000 positive integers, each at most 2000 and quickly determine whether there are two integers m and n in the file so that $m + n = 947$.
F 22.	Merge Sort proceeds by: (1) splitting a sequence of length n into a planar shift graph and a connected multinomial coefficient; (2) extracting an Euler circuit; (3) forming the sum $\sum_{i=1}^{n} 3i - 6$; (4) producing a combinatorial proof of $2 = 1 + 1$; (5) repeating the previous part by induction; and finally (6) showing that interval graphs are homeomorphs of Catalan numbers. Inst testing your sense of humor! Of Course, this last guestim isnt graph.
	Ot Course, this last question isn't graded.