MATH 3012 Quiz 2, March 15, 2013, WTT

1. Consider the poset shown below. The ground set is $X=\{a, b, c, d, e, f, g, h\}$. In the space to the right of the figure, write the reflexive, antisymmetric and transitive relation on X which defines this poset.

$$
P=
$$

2. Consider the following poset.

a. Find all points comparable to k.
b. Find all points which cover k.
c. Find a maximal chain of size 2 .
d. Using the algorithm taught in class (recursively removing the set of minimal elements), find the height h of the poset and a partition of P into h antichains. Also find a maximum chain. You may indicate the partition by writing directly on the diagam.
The height h is \qquad and \qquad is a maximum chain.
3. Find by inspection the width w of the following poset and find a partition of the poset into w chains. Also find a maximum antichain. You may indicate the partition by writing directly on the diagram.

a. The width w is \qquad and \qquad is a maximum antichain.
b. This poset is not an interval order. Find four points which form a copy of $\mathbf{2}+\mathbf{2}$. \qquad
4. Shown below is the diagram of an interval order. Use the algorithm taught in class to find an interval representation by computing the down-sets and up-sets in the space provided. Then use the First Fit coloring algorithm to find the width w and a partition of the poset into w chains. Also, find a maximum antichain.

$D(a)=$	$U(a)=$
$D(b)=$	$U(b)=$
$D(c)=$	$U(c)=$
$D(d)=$	$U(d)=$
$D(e)=$	$U(e)=$
$D(f)=$	$U(f)=$
$D(g)=$	$U(g)=$
$D(h)=$	$U(h)=$

The width w is \qquad and \qquad is a maximum antichain.
5. Let $\mathbf{2}^{15}$ be the poset consisting of all subsets of $\{1,2,3, \ldots, 15\}$, ordered by inclusion.
a. What is the height of this poset? \qquad
b. What is the width of this poset? \qquad
c. How many maximal chains does the poset have? \qquad
d. How many maximal chains in this poset pass through the set $\{2,3,8,13\}$? \qquad
6. Write the general solution to the homogeneous advancement operator equation: $[A-(7-2 i)]^{3}(A-1)^{4} f=0$.
7. Find a particular solution to the advancement operator equation: $\left(A^{2}-3 A+5\right) f=4 \cdot 3^{n}$.
8. Write the inclusion-exclusion formula for $S(n, m)$, the number of surjections from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, m\}$. Then use this formula to calculate $S(6,4)$.
9. Write the inclusion formula for the number d_{n} of derangements of $\{1,2, \ldots, n\}$. Then use this formula to calculate d_{6}.
10. Note that $1800=25 \cdot 9 \cdot 8$. Use this information and the inclusion-exclusion formula to determine $\phi(1800)$, where ϕ is the Euler ϕ-function studied in class.
11. True-False. Mark in the left margin.

1. There is a graph on 928 vertices in which no two vertices have the same degree.
2. There is a poset with 7403 points having width 65 and height 98 .
3. There is a poset with 7403 points having width 85 and height 98 .
4. The permutation $(8,1,4,9,3,6,2,7,5)$ is a derangement.
5. The number of partitions of an integer n into even parts is the same as the number of partitions of n into parts that are all the same.
6. The partitions of a deranged surjection can be effectively computed using inclusion-exclusion and the process will consistently result in a maximum antichain of prime factors.
