MATH 3012 Quiz 1, September 17, 2015, WTT

1. Consider the 15 -element set consisting of the ten digits $\{0,1,2, \ldots, 9\}$ and the five capital letters $\{A, B, C, D, E\}$.
a. How many strings of length 10 can be formed if repetition of symbols is permitted?
b. How many strings of length 10 can be formed if repetition of symbols is not permitted?
c. How many strings of length 10 can be formed using exactly two A 's, five B 's and three C 's?
2. How many lattice paths from $(0,0)$ to $(7,7)$ do travel through any point above the diagonal?
3. How many integer valued solutions to the following equations and inequalities:
a. $x_{1}+x_{2}+x_{3}+x_{4}=52$, all $x_{i}>0$.
b. $x_{1}+x_{2}+x_{3}+x_{4}=52$, all $x_{i} \geq 0$.
c. $x_{1}+x_{2}+x_{3}+x_{4}<52$, all $x_{i}>0$.
d. $x_{1}+x_{2}+x_{3}+x_{4} \leq 52$, all $x_{i} \geq 0$.
e. $x_{1}+x_{2}+x_{3}+x_{4}=52, x_{1}, x_{3}, x_{4}>0, x_{2} \geq 8$.
f. $\quad x_{1}+x_{2}+x_{3}+x_{4}=52, x_{1}, x_{3}, x_{4}>0,0<x_{2} \leq 7$.
4. Find the coefficient of $a^{5} b^{12} c^{21}$ in $\left(6 a-3 b^{2}-4 c^{3}\right)^{18}$
5. Use the Euclidean algorithm to find $d=\operatorname{gcd}(3960,840)$.
6. Use your work in the preceding problem to find integers a and b so that $d=3960 a+840 b$.
7. For a positive integer n, let t_{n} count the number of ternary strings of length n that do not contain 200 as a substring. Note that $t_{1}=3, t_{2}=9$ and $t_{3}=26$. Develop a recurrence relation for t_{n} and use it to compute t_{4}, t_{5} and t_{6}.
8. Use the greedy algorithm developed in class (always proceed to the lowest legal vertex) to find an Euler circuit in the graph G shown below (use node 1 as root):

9. For the graph below,

(a) Find a clique of size 4.
(b) Find an induced cycle of size 5 .
(c) Show that $\chi(G) \leq 4$ by producing a proper coloring using the elements of $\{1,2,3,4\}$ as colors. You may write directly on the figure.
10. Draw a diagram of a tree on 12 vertices with exactly five leaves and exactly one vertex of degree 5.
11. Show that the following graph has a hamiltonian cycle. You may either darken the appropriate edges or provide a suitable permutation of the vertex set.

12. True-False. Mark in the left margin.
13. $P(8,3)=330$.
14. $C(8,3)=65$.
15. If 67 pigeons are placed in 5 holes, then there is some hole with at least 13 pigeons.
16. If $f(n)=624 n^{2}+90 n+48 n \log n$, and $g(n)=3 n^{2}+7 n$, then $f(n)=O(g(n))$.
17. If $f(n)=624 n^{2}+90 n+48 n \log n$, and $g(n)=3 n^{2}+7 n$, then $g(n)=o(f(n))$.
18. $\log n=o(\sqrt{n}), \sqrt{n}=o(n), n=o(n \log n), n \log n=o\left(n^{2}\right), n^{2}=o\left(n^{3}\right)$ and $n^{3}=o\left(2^{n}\right)$.
19. Any graph with 16 vertices and 153 edges has a hamiltonian cycle.
