Student Name and ID Number

MATH 3012 Quiz 1, September 17, 2015, WTT

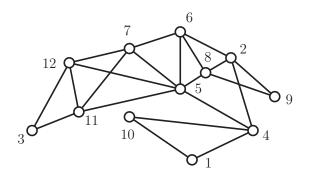
- **1.** Consider the 15-element set consisting of the ten digits $\{0, 1, 2, ..., 9\}$ and the five capital letters $\{A, B, C, D, E\}$.
- a. How many strings of length 10 can be formed if repetition of symbols is permitted?
- **b.** How many strings of length 10 can be formed if repetition of symbols is *not* permitted?
- c. How many strings of length 10 can be formed using exactly two A's, five B's and three C's?
- **2.** How many lattice paths from (0,0) to (7,7) do travel through any point above the diagonal?
- 3. How many integer valued solutions to the following equations and inequalities:
- **a.** $x_1 + x_2 + x_3 + x_4 = 52$, all $x_i > 0$.
- **b.** $x_1 + x_2 + x_3 + x_4 = 52$, all $x_i \ge 0$.
- c. $x_1 + x_2 + x_3 + x_4 < 52$, all $x_i > 0$.
- **d.** $x_1 + x_2 + x_3 + x_4 \le 52$, all $x_i \ge 0$.
- e. $x_1 + x_2 + x_3 + x_4 = 52, x_1, x_3, x_4 > 0, x_2 \ge 8.$
- **f.** $x_1 + x_2 + x_3 + x_4 = 52, x_1, x_3, x_4 > 0, 0 < x_2 \le 7.$
- 4. Find the coefficient of $a^5b^{12}c^{21}$ in $(6a 3b^2 4c^3)^{18}$

5. Use the Euclidean algorithm to find $d = \gcd(3960, 840)$.

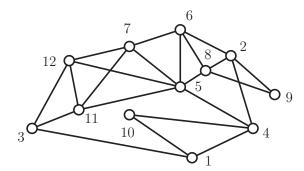
6. Use your work in the preceding problem to find integers a and b so that d = 3960a + 840b.

7. For a positive integer n, let t_n count the number of ternary strings of length n that do not contain 200 as a substring. Note that $t_1 = 3$, $t_2 = 9$ and $t_3 = 26$. Develop a recurrence relation for t_n and use it to compute t_4 , t_5 and t_6 .

8. Use the greedy algorithm developed in class (always proceed to the lowest legal vertex) to find an Euler circuit in the graph G shown below (use node 1 as root):



9. For the graph below,

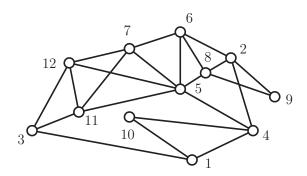


- (a) Find a clique of size 4.
- (b) Find an induced cycle of size 5.

(c) Show that $\chi(G) \leq 4$ by producing a proper coloring using the elements of $\{1, 2, 3, 4\}$ as colors. You may write directly on the figure.

10. Draw a diagram of a tree on 12 vertices with exactly five leaves and exactly one vertex of degree 5.

11. Show that the following graph has a hamiltonian cycle. You may either darken the appropriate edges or provide a suitable permutation of the vertex set.



- 12. True–False. Mark in the left margin.
 - 1. P(8,3) = 330.
 - 2. C(8,3) = 65.
 - 3. If 67 pigeons are placed in 5 holes, then there is some hole with at least 13 pigeons.
 - 4. If $f(n) = 624n^2 + 90n + 48n \log n$, and $g(n) = 3n^2 + 7n$, then f(n) = O(g(n)).
 - 5. If $f(n) = 624n^2 + 90n + 48n \log n$, and $g(n) = 3n^2 + 7n$, then g(n) = o(f(n)).
 - 6. $\log n = o(\sqrt{n}), \sqrt{n} = o(n), n = o(n \log n), n \log n = o(n^2), n^2 = o(n^3)$ and $n^3 = o(2^n)$.
 - 7. Any graph with 16 vertices and 153 edges has a hamiltonian cycle.