
Solutions

Student Name and ID Number

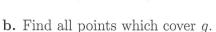
MATH 3012 Quiz 2, October 19, 2017 WTT

Two copies of the same planar graph G are shown below.

a. Verify Euler's formula for the graph G. You may mark on the left copy of G if you find it convenient to do so.

$$V - E + F = 2$$

Find three vertices of G which form a clique of size 3.


Show that $\chi(G) = \omega(G) = 3$ by indicating a 3-coloring of G on the right copy. A correct

Explain why G is not perfect by listing a sequence of vertices showing that G contains an induced cycle of size 9.

(a,c,g,e,d,i,h,j,k)

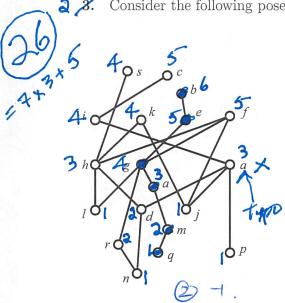
2 %. Consider the following poset.

a. Find all points comparable to g.

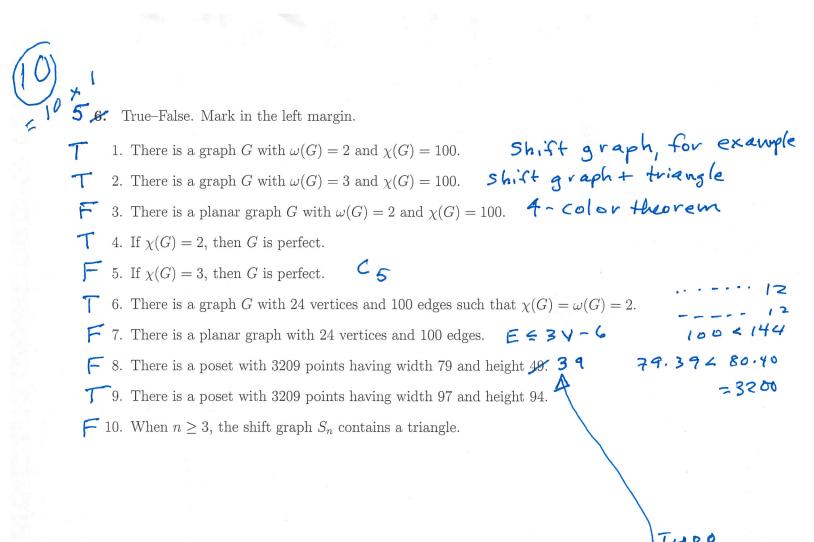
c. Find all points which are covered by q.

d. Find a maximal chain of size 2. {fg,1}on > A, h, e} e. Find a maximal chain of size 3.

f. Find the set of all maximal elements.

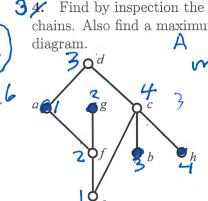

g. Find the set of all minimal elements.

{D, C, k, b, 5 11, n, 8, j. p3


{a, m,q,r,n,l,b,e,f}

h. Using the algorithm taught in class (recursively removing the set of minimal elements), find the height h of the poset and a partition of P into h antichains. Also find a maximum chain. You may indicate the partition by writing directly on the diagam.

The height h is 6 and $\{b, e, f, a, m, g\}$ is a maximum chain.

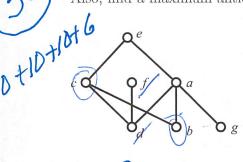


Page Total 46

Page total 10

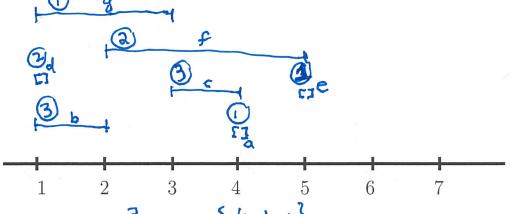
All pages: 46+4+10 = 100

34. Find by inspection the width w of the following poset and find a partition of the poset into w chains. Also find a maximum antichain. You may indicate the partition by writing directly on the diagram.


A correct solution is shown. There are 30^d many others.

a. The width w is $\frac{4}{}$ and $\frac{4}{}$ and $\frac{4}{}$ is a maximum antichain.

b. This poset is not an interval order. Find by inspection four points which form a copy of 2+2.


§ 4, f, h, c} or § 4, f, b, c} or § 9, f, h, c}

As. Shown below is the diagram of an interval order. Use the algorithm taught in class to find an interval representation by computing the down-sets and up-sets in the space provided. Then use the First Fit coloring algorithm to find the width w and a partition of the poset into w chains. Also, find a maximum antichain.

$$f D(a) = b dg$$
 $I D(b) = \emptyset$
 $g D(c) = b dg$
 $g D(d) = b dg$
 $g D(d) = g g$
 $g D(f) = g g$
 $g D(g) = g g$

U(a) =	e	4
U(b) =	ace	2
U(c) =	e	5
U(d) =	acef	1
U(e) =	Ø	5
U(f) =	Ø	5
U(g) =	ae	3

The width w is 3 and $\{b,a,g\}$ is a maximum antichain.

also $\{c, f, g\}$, $\{a, c, f^2\}$, $\{b, f, g\}$

Page Total 44