
THE ORDER DIMENSION OF PLANAR MAPS∗

GRAHAM R. BRIGHTWELL† AND WILLIAM T. TROTTER‡

SIAM J. DISCRETE MATH. c© 1997 Society for Industrial and Applied Mathematics
Vol. 10, No. 4, pp. 515–528, November 1997 001

Abstract. This is a sequel to a previous paper entitled The Order Dimension of Convex
Polytopes, by the same authors [SIAM J. Discrete Math., 6 (1993), pp. 230–245]. In that paper, we
considered the poset PM formed by taking the vertices, edges, and faces of a 3-connected planar
map M, ordered by inclusion, and showed that the order dimension of PM is always equal to 4. In
this paper, we show that if M is any planar map, then the order dimension of PM is still at most 4.
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1. Introduction. In this paper, we are concerned with planar maps. We shall
allow loops and multiple edges, and we always consider a fixed representation of a
graph in the plane. More formally, given a multigraph G = (V,E), a plane drawing
D of G is a representation of G by points and arcs in R2 in which two edges meet
only at common vertices. A planar map M is a pair (G,D) consisting of a multigraph
and a plane drawing thereof. In what follows, we do not distinguish between a vertex
(edge) of G and the corresponding point (arc) of R2.

Deleting the vertices and edges of a planar map M from the plane leaves several
connected components whose closures are the faces of M. The unique unbounded
face is called the exterior face. For the purposes of this paper, it is not treated in any
special way.

Given a planar map M, the planar dual M∗ is defined in the usual way, taking a
vertex F ∗ for each face F of M, and, for each edge e of M, an edge e∗ in M∗ joining
the vertices of M∗ corresponding to the two faces separated by e in M. (In the special
case where the edge e is a bridge, the dual edge e∗ is a loop on the dual of the unique
face containing e.) Then each vertex v of M corresponds to a face v∗ in M∗. If M is
connected, then M∗∗ is isomorphic to M.

For a planar map M, we form a poset PM by taking the vertices, edges, and
faces of M (including the exterior face), ordered by inclusion. See Figure 1.1 for an
example of a planar map M and its associated poset PM. Let us note immediately
that, if M is connected, the poset PM∗ associated with the dual map is just the dual
poset (PM)∗ (i.e., the set of vertices, edges, and faces ordered by reverse inclusion).

The order dimension dim(P) of a partial order P is the smallest number t such
that P is the intersection of t linear orders on the same vertex set. The following
result was proved in [1], answering a question of Reuter [3].

Theorem 1.1. For every 3-connected planar map M, dim(PM) = 4.

This result is to be compared with one due to Schnyder [4]: if G is any graph
and P(G) is the poset formed from the vertices and edges of G, ordered by inclusion,
then dim(P(G)) ≤ 3 iff G is planar. If G is planar, and M is a map with underlying
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Fig. 1.1. A planar map M and the poset PM.

graph G, then P(G) is an induced subposet of our poset PM. Thus, although we do
not refer to it again explicitly, Schnyder’s work underpins much of what we do in this
paper.

One reason for restricting attention to 3-connected planar maps in [1] was the
connection with convex polytopes in R3: each convex polytope gives rise to a 3-
connected planar map M and the poset PM corresponds to the set of vertices, edges,
and faces of the polytope, ordered by inclusion.

The main purpose of this paper is to prove the following result, extending Theo-
rem 1.1 to general planar maps.

Theorem 1.2. Let M be a planar map, and let PM be the poset of all vertices,
edges, and faces of M ordered by inclusion. Then dim(PM) ≤ 4.

For more information as to the origin of the problem, see [1], Reuter [3], or
Schnyder [4].

In the course of proving Theorem 1.2, we shall use a result (Theorem 3.2) that is
slightly stronger than Theorem 1.2 itself as the base case for an induction argument.
However the machinery developed in [1] is used only in the proof of Theorem 3.2.

Before we begin, we need a few concepts from the theory of order dimension.
For a comprehensive treatment of dimension theory for finite posets, we refer the
reader to the monograph [6]. Other sources include the survey articles [2] and [5] and
our previous paper [1]. Given a partial order P, a set R = {L1, . . . , Lt} of linear
extensions of P is called a realizer of P if the intersection of the Li is exactly P. Thus
the order dimension of P is the minimum cardinality of a realizer.

An ordered pair (a, b) of elements of a partial order P is called a critical pair if
the following three conditions hold:

(i) a and b are incomparable;
(ii) if c < a in P, then c < b; and
(iii) if b < d in P, then a < d.

An ordered pair (a, b) of elements of P is said to be reversed by a linear extension L
if b < a in L. It is fairly easy to see that a set {L1, . . . , Lt} of linear extensions of P
is a realizer if and only if every critical pair is reversed by some Li.

If F is a face of M and x is a vertex not on F , then the pair (x, F ) is a critical
pair. We call this a vertex-face critical pair and extend the terminology in the obvious
way. If all critical pairs of PM are of this vertex-face type, we say that M is well
formed . It is easy to see that every 3-connected planar map (with no loops or multiple
edges) is well formed.

For a planar map M, we define another partial order QM by taking just the
vertices and faces of M, ordered by inclusion. (Figure 1.2 shows the poset QM for
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the map M in Figure 1.1.) Evidently QM is an induced subposet of PM, and so
dim(QM) ≤ dim(PM). The reverse inequality is not true in general, but it does hold
whenever M is well formed.

F G H J

x y z w

Fig. 1.2. The poset QM.

Lemma 1.3. Suppose that M is well formed. Then dim(PM) = dim(QM).
Proof. We have seen that dim(PM) ≥ dim(QM). Conversely, given a realizer

{L1, . . . , Lt} of QM, we can insert the edges of M into each linear extension Li in a
way consistent with PM: this then gives a realizer of PM, since the critical pairs of
PM are all of vertex-face type and so are reversed by some Li.
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Fig. 1.3. Examples of critical pairs.

For a general planar map M, the poset PM may have vertex-vertex, edge-edge,
and face-face critical pairs, but only if M is not 2-connected: see Figure 1.3(i)–
(iii). However, QM can have vertex-vertex or face-face critical pairs even if M is
2-connected; for instance, if x is a vertex of degree 2 with distinct neighbors y and z,
then (x, y) and (x, z) are critical pairs in QM.

If (e, e′) is an edge-edge critical pair in PM, the two edges must share the same
endpoints and separate the same faces, as in Figure 1.3(ii). This makes edge-edge
critical pairs very easy to deal with: given a set {L1, L2, . . . , Lk} of linear extensions
reversing all other critical pairs, we move e′ to the place immediately above e in L1,
and to the place immediately below e in all the other Li. This yields a realizer. Thus
we may effectively ignore edge-edge critical pairs.
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Even if M is 2-connected, PM may have vertex-edge or edge-face critical pairs.
See Figure 1.3(iv) and (v) for examples. If e is an edge in such a critical pair, we call
e a critical edge. The following trivial observation will be useful later.

Lemma 1.4. Let e be an edge of a planar map M. Then e cannot be in both a
vertex-edge and an edge-face critical pair.

Before we begin the proof of Theorem 3.2, we must clarify what we mean by
k-connectivity for planar maps. The definition we use is not quite the usual one, since
it is appropriate for the concept to be invariant under duality. For instance, the map
in Figure 1.4 should not be 3-connected, since its dual isn’t 3-connected.

x

y

FG H
F*

x*

y*
G*

H*

Fig. 1.4. A map that is not 3-connected and its dual.

The approach we adopt here is to define the connectivity of a planar map M to
be the minimum of the connectivities of the underlying graphs of M and M∗. Note
that at least one of these graphs always contains a vertex of degree at most 3, so the
only 4-connected maps are those with underlying graph K4.

With the exception of a few graphs with at most three vertices, we have the
following alternative characterizations. A map has connectivity 0 iff it is disconnected,
connectivity 1 iff it is connected and has a cutvertex, and connectivity 2 iff either its
underlying graph has connectivity 2 or it has a double edge, as in Figure 1.4.

If a map M with at least four vertices has connectivity exactly 2, then it has
a pair {x, y} of vertices and a pair {F,G} of faces such that R2 − (F ∪ G ∪ {x, y})
falls into two components, neither of which is a single edge. We call {x, y, F,G} a
separating system. For instance, in Figure 1.4, {x, y, F,G} is a separating system.

We shall approach Theorem 3.2 via the following intermediate result.
Lemma 1.5. Let M be a 2-connected planar map. Then dim(QM) ≤ 4.
The next section is devoted to the deduction of Theorem 3.2 from Lemma 1.5.

Then in section 3 we prove Lemma 1.5. The basic idea involves modifying and com-
bining families of linear extensions given to us from Theorem 1.1. However, the
following observation gives some indication of the fundamental difference between the
3-connected case and the general case we are considering here.

For a 3-connected map M, the poset QM is 4-irreducible, as shown in section 6
of [1]. Indeed, the proof of Theorem 1.1 was very much geared to proving that QM is
“almost 3-dimensional”: producing three linear extensions that are almost a realizer.
But the poset QM for the map M in Figure 1.5 is not 4-irreducible; each critical pair
(xi, Fi) must be reversed by a different linear extension, so QM minus the outside
face still has dimension 4. Thus, to prove Lemma 1.5 we shall have to make full use
of the fact that we have four linear extentions to work with.

2. Reduction to the 2-connected case. We shall prove the following result,
which clearly combines with Lemma 1.5 to give Theorem 3.2.

Lemma 2.1. If M is a planar map, then there exists a 2-connected planar map
M0 such that dim(PM) ≤ dim(QM0

).
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Fig. 1.5. A map M for which QMis not 4-irreducible.

Proof. If the map M is well formed and 2-connected, the result is immediate by
Lemma 1.3. Thus, we shall consider in turn each of the ways in which M may fail to
be 2-connected and well formed.

Our approach will be to construct a sequence of intermediate maps Mi from M
such that a realizer of PMi

or of QMi
can be converted into a realizer of PM.

We illustrate the process by showing in Figure 2.1 the sequence Mi of maps
generated by starting from the map M with two vertices and one loop.
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Fig. 2.1. The proof of Lemma 2.1.

(1) Making M connected. Given a planar map M, we construct a connected
map M1 from M by adding bridges between components as necessary. Clearly PM

is an induced subposet of PM1
, so dim(PM) ≤ dim(PM1

).
(2) Destroying loops and vertices of degree 1. Suppose that, as in Fig-

ure 2.1, there is a loop e on a vertex x in M1. In this case, we form M′
1 by subdi-

viding e; i.e., we replace e by a vertex z and a pair of edges e1 and e2 joining x to
z. Identifying e with e1, we see that PM1

is an induced subposet of PM′
1
, and thus

dim(PM1) ≤ dim(PM′
1
).
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By duality, we can also deal with the case where M1 has a vertex of degree 1.
Note that the dual operation to subdividing an edge is that of duplicating an edge:
replacing an edge f from x to y by two such edges surrounding a new face.

By repeating the process as often as necessary, we obtain a connected map M2

with no loops or vertices of degree 1 such that dim(PM1
) ≤ dim(PM2

).

(3) Destroying vertex-vertex and face-face critical pairs. Suppose that,
again as in Figure 2.1, there is a vertex-vertex critical pair (y, x) in M2. Then all
the edges including y have x as their other endpoint. Choose one such edge e′ and
subdivide it with a vertex v, introducing new edges a, between x and v, and b, between
v and y, in place of e′. This operation decreases the number of vertex-vertex critical
pairs without introducing any extra face-face critical pairs. Let F and G be the two
faces separated by e′. Call the new map M′

2.

Suppose {L1, . . . , Lt} is a realizer of PM′
2
. For each i = 1, . . . , t, we construct a

linear extension L′i of PM2 from Li as follows. We insert e′ immediately above the
highest of a, b, v in Li; then we delete a, b, and v from the ordering. This is certainly
a linear extension, since e′ is placed above x, y and below F,G.

We claim that {L′1, . . . , L′t} is a realizer of PM2
. When restricted to PM2

−e′, the
intersection of the L′i is the same as the intersection of the Li, so it remains to check
that all critical pairs involving e′ are reversed. Clearly e′ is not in any vertex-edge
critical pairs and, as mentioned in section 1, edge-edge critical pairs can be ignored.
If (e,H) is an edge-face critical pair, then (v,H) is reversed in some Lk, and hence
(e,H) is reversed in L′k.

Thus dim(PM2) ≤ dim(PM′
2
). Proceeding in this manner we can remove all the

vertex-vertex critical pairs. Thus we construct a map M3 with no critical pairs of
this type such that dim(PM2

) ≤ dim(PM3
).

Using the dual case of the above argument, we can next find a map M4 with
no critical pairs of either vertex-vertex or face-face type such that dim(PM3) ≤
dim(PM4). For instance, in the map M3 of Figure 2.1, (G,F ) is a critical pair,
which is destroyed by duplicating the edge b.

(4) Destroying vertex-edge and edge-face critical pairs. Our approach
to critical pairs of these types will be slightly different. We shall deal with all the
vertex-edge and edge-face critical pairs in one step, forming an auxiliary map M5

such that dim(PM4) ≤ dim(QM5
).

Recall from Lemma 1.4 that no edge is in both a vertex-edge and an edge-face
critical pair. We form M5 as follows. For every edge e, say between x and y, of M4

which is in a vertex-edge critical pair, replace e by a double edge from x to y, and call
the face between the two edges Fe. For every edge e of M4 in an edge-face critical
pair, subdivide e with a vertex ve. (The idea is that the new element Fe or ve will
represent the critical edge e in M5.) For instance, in the map M4 of Figure 2.1, (v, c)
and (d, F ) are critical pairs of PM4

, so c is duplicated to produce a face Fc, and d is
subdivided by a vertex vd.

Let {L1, . . . , Lt} be a realizer of QM5
. From each Li, we construct a linear

extension L′i of PM4 as follows. We start from Li, which includes all vertices and
faces of PM4

, and insert the edges according to the following rules. First, noncritical
edges of M4 are inserted anywhere consistent with the order PM4

. Next, if e is a
critical edge in a vertex-edge critical pair, with e separating faces F and G in M4,
say, then e is inserted just below the lowest of F , G, and Fe in Li. Similarly, if e is
an edge in an edge-face critical pair, with e joining x and y, then e is inserted into Li
just above the highest of x, y, and ve. Finally the auxiliary vertices and faces ve and
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Fe are deleted from the linear extension.
The Li thus constructed are clearly linear extensions of PM4 . It may be that some

edge-edge critical pairs are not reversed: if this is the case, we alter the Li so that
they are, as in section 1. Certainly all vertex-face critical pairs in PM4

are reversed
by some Li. It remains to be shown that all vertex-edge and edge-face critical pairs
are reversed. The two cases are dual, so we need only consider a vertex-edge critical
pair (v, e) of PM4 . For such a pair, we have an auxiliary face Fe, and the pair (v, Fe)
is reversed in some Lk. Hence (v, e) is reversed in L′k.

Thus all critical pairs of PM4
are reversed by some L′i, and so {L′1, . . . , L′t} is a

realizer of PM4 , as required.
(5) Making the map 2-connected. We proceed by reducing the number of

blocks of the underlying graph of M5 to 1, noting that no endblock is a single edge
or a loop. If M5 is not 2-connected, let x be any cutvertex of the underlying graph,
and let F be a face with x occurring at least twice on its boundary, as in Figure 2.1.
The sequence of vertices encountered by travelling around the boundary of F thus
includes x (indeed, more than once): let u and v be the vertices just before and after
x in one such encounter. Form M′

5 by joining y and z by an edge, thus decreasing
the number of blocks. Clearly QM′

5
= QM5

. Repeating as necessary, we end with a
2-connected map M0 such that QM0

= QM5
.

Combining all the steps, we see that dim(PM) ≤ dim(QM0
), as desired.

3. Proof of Lemma 1.5. Throughout this section, e will be a distinguished
edge in a 2-connected planar map M. The endpoints of e will always be denoted x
and y, and the faces separated by e by F and G.

For a planar map M with distinguished edge e, we say that a realizer R of QM

is an e-realizer if it has order 4, and the four linear extensions in R can be labelled
L1, L2, L3, L4 so as to satisfy the following conditions:

(a) x is the highest vertex in L1,
(b) y is the highest vertex in L2,
(c) F is the lowest face in L3, and
(d) G is the lowest face in L4.
We shall prove the following result, which is stronger than Lemma 1.5.
Theorem 3.1. Let M be a 2-connected planar map, and let e be an edge of M.

Then there is an e-realizer of QM.
One technical problem we have to deal with is that QM will in general have

vertex-vertex and face-face critical pairs. In fact, a glance at the proof of Lemma 2.1
shows that we can ignore these: to prove Theorem 1.2 it is enough to show that, for
every 2-connected map M, there is a set of four linear extensions of QM reversing
every vertex-face critical pair of QM. However, it involves essentially no extra work to
prove Theorem 3.1 as it stands, since the constructions we shall give do yield realizers
of QM.

Let us first see that Theorem 3.1 holds if M is 3-connected. We use the notation
and techniques of [1]. The reader who does not have that paper at hand may rest
assured that the proof is a straightforward application of the methods developed there.

Theorem 3.2. Let M be a 3-connected planar map, and let e be an edge of M.
Then there is an e-realizer of QM.

Proof. Arrange for G to be the outside face, with x and y two vertices of a triad
(v1 = x, v2 = y, v3), and apply the construction of [1] with this triad to obtain a
realizer consisting of four linear extensions L1, L2, L3, and L4, as in [1]. Certainly
G is the lowest face in the fourth linear extension L4. Also, x is the highest vertex
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in L1, since it is the only vertex w with S(w, 1) equal to the whole of R2 − int(G).
Similarly, y is the highest vertex in L2.

The face F is contained in S(w, 3) for every vertex w except for x and y. Thus
if z is any vertex on F and u is any vertex not on F , we have S(z, 3) ⊆ S(u, 3). If
S(z, 3) = S(u, 3), then either (F, y) witnesses (z, u) ∈ R′

3 or (F, x) witnesses (z, u) ∈
L′3. In any case, (z, u) in Q′

3. Thus in fact F lies below all vertices not on F in L3

and is certainly the lowest face in that order. Therefore the set {L1, L2, L3, L4} is an
e-realizer.

We make one more observation before the proof of Theorem 3.1. Let R be an
e-realizer of a planar map M. We call R a strong e-realizer if its four linear extensions
can be labelled L1, L2, L3, L4 so that, in addition to properties (a) to (d) above, we
have that

(e) y is the lowest element of L1, and F and G the two highest elements;
(f) x is the lowest element of L2, and F and G the two highest elements;
(g) x and y are the two lowest elements of L3, and G the highest element; and
(h) x and y are the two lowest elements of L4, and F the highest element.

Lemma 3.3. Let e be a distinguished edge in a 2-connected planar map M. If
QM has an e-realizer, then it has a strong e-realizer.

Proof. Let (L1, L2, L3, L4) be a realizer satisfying (a) through (d). If there are
any faces above x in L1 which do not contain x, they can be moved to a position in
L1 below x but above all other vertices. The altered set of linear extensions is clearly
still an e-realizer of QM. Thus we may assume that all critical pairs involving x are
reversed in L1.

Having made this assumption, we may then also suppose that x is the lowest
element in all of the other three linear extensions: if not, it can be moved to the
bottom, since the only critical pairs this affects are those involving x.

Proceeding in a similar way, we can alter the linear extensions so as to move y,
F , and G to the positions required by (e) through (h).

Proof of Theorem 3.1. We proceed by induction on the number of edges of M. It
is easily checked that the result is true for all 2-connected planar maps with at most,
say, 4 edges.

Let M be a 2-connected planar map with m ≥ 5 edges, and suppose that the
result is true for all 2-connected maps with fewer than m edges. Let e be an edge of
M.

If M is 3-connected, then dim(QM) ≤ 4 by Theorem 3.2. Suppose then that M
is not 3-connected.

The dual map M∗ of M is also 2-connected. Let e∗ be the edge of M∗ corre-
sponding to e, and suppose that there is an e∗-realizer {L1, . . . , L4} of QM∗ . Then
the set {L∗1, . . . , L∗4} of reverse linear orders provides an e-realizer of QM. In other
words it would suffice to prove the result for M∗ and e∗ instead of for M and e.

We split the argument into two cases, according to whether or not e is a critical
edge in M. In both cases, our task is to construct either an e-realizer of QM or an
e∗-realizer of QM∗ .

(A) e is a critical edge. Suppose that (e,H) is an edge-face critical pair: if
instead e is in a vertex-edge critical pair, then we work instead in the dual.

Removal of x, y, e, and H from the plane leaves two components, one containing
F and the other G. Let M1 be the submap of M specified by the edges in the F -
component together with e; and let M2 be the submap specified by e and the edges
in the G-component. In both cases, let H stand for the exterior face. See Figure 3.1.
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Thus the elements in common between QM1
and QM2

are just x, y, and H; and there
are no relations in QM between an element of QM1

and an element of QM2
except

those involving x, y, or H. Also, if (α, β) is a vertex-vertex or face-face critical pair,
then α and β must either both be in QM1

or both be in QM2
, except that (F,G) or

(G,F ) could be a critical pair.

x

y

M

e

F G

H x

e

F

H

y

M1

and

x

e

F G

H

y

M2

Fig. 3.1. Splitting M into M1 and M2.

Now M1 and M2 both have fewer edges than M, so we can find an e-realizer for
each map. To be more specific, we can find a realizer (L1

1, L
1
2, L

1
3, L

1
4) of QM1

and a
realizer (L2

1, L
2
2, L

2
3, L

2
4) of QM2

satisfying the following:
(i) x is the highest vertex in both L1

1 and L2
1,

(ii) y is the highest vertex in both L1
2 and L2

2,
(iii) F is the lowest face in L1

3,
(iv) G is the lowest face in L2

4, and
(v) H is the lowest face in both L2

3 and L1
4.

By Lemma 3.3, we may also take these two realizers to be strong e-realizers, so
in particular we may assume that H is the highest element in both L1

3 and L2
4 and

that x and y are the lowest elements in L2
3 and L1

4.
Now, for j = 1, . . . , 4, we combine the linear extensions L1

j and L2
j to form a linear

extension Lj of QM as follows. For j = 1, 2, we form Lj in any way such that the
restriction of Lj to the elements of QMi

is Lij , for i = 1, 2. Hence x is the highest
vertex in L1, and y the highest in L2.

For L3, we essentially put L2
3 above L1

3. To be more precise, we put every element
of QM2

other than x and y at the top, in the order given by L2
3, then below them the

elements of QM1
other than H, in the order given by L1

3. Again, the restriction of L3

to the elements of QMi
is Li3, for i = 1, 2. Clearly F is the lowest face in L3.

The fourth extension L4 is constructed in an analogous manner, putting L1
4 on

top of L2
4. We claim that the four orders Lj , shown in Figure 3.2, constitute a realizer

of QM. Clearly they are linear extensions of QM: it remains to be shown that every
critical pair is reversed.

If (α, β) is a critical pair with α and β both in QMi
, for i = 1 or 2, then (α, β) is

reversed in some Lij and so also in Lj .
If v is a vertex in M1 other than x or y, and J is a face in M2 other than H, then

(v, J) is reversed in L4. Similarly every critical pair (w,E), where w is a vertex of
M2 and E is a face of M1, is reversed in L3.

The only other possible critical pairs are (F,G) and (G,F ), and these are reversed
in L4 and L3, respectively. Therefore L1, . . . , L4 is an e-realizer of QM.
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Fig. 3.2. The new linear extensions Lj .

(B) e is not a critical edge. Let {u, v,D,E} be a separating system such that
the component C(e) of R2 − {u, v} − int(D) − int(E) containing e is minimal. Let
M1 be the submap determined by the edges in this component together with an edge
between u and v separating D and E.

We also form another map M2 by removing all the edges of M1 from M and
replacing them with a single edge f between u and v separating D and E. Both M1

and M2 have fewer edges than M. See Figure 3.3.

u

v

M

E

D

M1 M2

c

u

v

E

D

c

u

v

E

D

Fig. 3.3. The maps M1 and M2.

Suppose that there is a face H of M1 other than D and E containing both u
and v. Then {u, v,D,H} and {u, v, E,H} are separating systems in M, and for one
of them, say {u, v,D,H}, the component of e in the complement is a strict subset
of C(e). Therefore uDvH is not separating, and so the component of e is the single
edge e itself, between u and v. In that case, (e, E) is a critical pair, contradicting the
assumption that e is not critical.

Thus D and E are the only faces of M1 containing both u and v. By duality, we
also have that u and v are the only vertices of M1 on both D and E. In particular, v
has a neighbor z on D distinct from u, and there is a face C of M1 distinct from D
and E containing the edge vz. See Figure 3.4.

By a similar argument, we see that neither u nor v is involved in a vertex-vertex
critical pair in QM1

, and neither D nor E is in a face-face critical pair in QM1
.
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Fig. 3.4. The vertex z and face C.

The map M1 has fewer edges than M, so there is an e-realizer of QM1
. In fact,

we would like this realizer to have certain extra properties as specified below.

We call a linear extension L of QM1
u-good if u is above v and also some face in

L. Similarly we call L v-good if v is above u and some face in L. The extension L is
D-good if D is below E and some vertex in L, and L is E-good if E is below D and a
vertex in L. Note that if {L1, . . . , L4} is a realizer of QM1

and α ∈ {u, v,D,E}, then
one of the Li is α-good. The next lemma states that rather more is true.

Lemma 3.4. There is an e-realizer (Ku,Kv,KD,KE) of QM1
such that, for

α = u, v,D,E, the linear extension Kα is α-good.

Note that some of u, v,D,E might coincide with some of x, y, F,G, so the condi-
tions above might preclude (Ku,Kv,KD,KE) from being a strong e-realizer.

Proof. Take R to be an e-realizer of QM1
maximizing the number N of α in the

set {u, v,D,E} such that there are two α-good linear extensions amongst the linear
extensions in R. If N = 4, then it is a simple matter to label these linear extensions
as Ku,Kv,KD,KE in an appropriate manner.

Thus we may assume without loss of generality that only one of the linear ex-
tensions is u-good: say L1 is the only linear extension in R with u above v and also
above some face. In particular, u is above the face C in L1. Thus the critical pair
(z, E) is reversed in some other linear extension, say L2, of R. Thus L2 is E-good.
A symmetrical argument shows that another linear extension L3 in R is D-good. If
the last linear extension L4 of R is v-good, then we can immediately label the Li’s as
(Ku,KE ,KD,Kv) in that order.

If this is not the case, then L4 is neither u-good nor v-good, so u and v are both
below the lowest face H in L4. If H does not contain u, then u can be moved to
the position immediately above H in L4: the new set of linear extensions is still an
e-realizer, but now both L1 and L4 are u-good, and so the value of N is higher for
this new set, a contradiction. Similarly if H does not contain v, then v can be moved
to the position just above H: this makes L4 v-good, and so we can label the Li’s as
before. Hence we may assume that H contains both u and v and therefore is either
D or E—without loss of generality D.

This certainly implies that L4 is D-good. Now we can apply the same argument
as above to L3 and conclude that D is the lowest face in that order as well. Note that
L2 is necessarily v-good.

It may well be that D is one of F or G, so is forced to be the lowest face in, say,
L3 by the condition that the Li’s form an e-realizer. However, this cannot also be the
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case in L4. Also, as in Lemma 3.3, we may assume that all critical pairs involving D
are reversed in L3. Thus D can be moved upward in L4, and the system is still an
e-realizer.

If E is below some vertex in L4, then putting D at the top of L4 makes the linear
extension E-good, enabling us to label the linear extensions as (Ku,Kv,KD,KE). So
suppose that E is above all vertices in L4.

Now put D directly above the second lowest face J in L4: this keeps L4 D-good.
One of u or v is not on J : place this vertex between D and J . As before, this either
increases N or allows a labelling as desired.

We take an e-realizer (Ku,Kv,KD,KE) of QM1
satisfying the conclusions of

Lemma 3.4, and a strong f -realizer S of QM2
, and combine them to make an e-

realizer of QM as follows.

Consider first the linear extension Ku of QM1
, in which u is above v and some

face of M1. We take also that linear extension Lu of QM2
in S, in which u is the top

vertex, v the bottom element, and D and E are the top two elements. We combine
these to make a linear extension Lu of QM by replacing u in Ku by all of QM2

except
for v,D,E, in the order given by Lu. This does indeed give a linear extension of QM,
and we note also that the top vertex and bottom face in Lu are the same as in Ku.
See Figure 3.5.
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Fig. 3.5. The new linear extensions.

We repeat with the other linear extensions to obtain four linear extensions Lu, Lv,
LD, LE of QM. It remains to be shown that these form a realizer. Notice that if, for
instance, u is above a face H in Kα, then every vertex in M2, other than perhaps v,
comes above H in Lα.

We consider each possible type of critical pair in turn, checking it is reversed by
one of the four linear extensions.

We start with critical pairs involving u. For H a face in M1 not including u,
(u,H) is reversed in Lα whenever it is reversed in Kα. For β an element of M2 with
(u, β) a critical pair, (u, β) is reversed in Lu, and hence also in Lu. Similarly all
critical pairs involving v, D, or E are catered to.

Let z be a vertex of M1 other than u and v. Without loss of generality z is not
on the face E, so the pair (z, E) is reversed in some Kα. Hence all the faces of M2

come below z in Lα, so all critical pairs of the form (z,H) for H a face of M2 are
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reversed in Lα. By duality, all pairs of the form (w, J) for w a vertex of M2 and J a
face in M1 are also reversed.

Finally, if β and γ are elements of the same Mi, then if (β, γ) is a critical pair
then it is reversed in some Kα or Lα, and hence is reversed in the corresponding Lα.

Thus every critical pair is reversed by some Lα, and so the family (Lu, Lv, LD,
LE) constitutes a realizer. Since the top and bottom elements are the same in Lα as
in Kα, this is an e-realizer.

In both cases, we have constructed an e-realizer for our poset QM. Thus, by
induction, QM has an e-realizer for every 2-connected map M and edge e.

4. Concluding remarks. It is proved in Reuter [3], and in [1], that, for every
3-connected map M, dim(QM) ≥ 4, and therefore dim(PM) = dim(QM) = 4. Ob-
viously this is not true if the 3-connectedness condition is removed, and we are left
with the questions of characterizing the planar maps M with dim(PM) or dim(QM)
equal to 3 (or 2). We offer a few remarks on some of these problems.

Let us first ask which maps M have dim(PM) equal to 2. Note that, if M
contains any cycle with at least 3 vertices, then dim(PM) ≥ 3, since the subposet of
PM induced by the vertices and edges of the cycle is a crown. If M contains any edges
with multiplicity at least 3, they give rise to a cycle in the dual, so again PM has
dimension at least 3. Similarly, if any vertex (face) of M has three distinct neighbors,
then dim(PM) ≥ 3. Hence, if dim(PM) = 2, then each component of the underlying
graph of M is a path, possibly with loops and/or double edges. Similar considerations
lead to the conclusions that only the final edges of paths can be double edges, that
all loops separate one endvertex of the path from the other, and that, if X and Y
are two components of the graph, then an endvertex of X must share a face with an
endvertex of Y . These restrictions give us a complete characterization of maps M
with dim(PM) = 2: a typical such map is shown in Figure 4.1.

Fig. 4.1. A map M with PM= 2.

As far as we can tell, none of the other three problems suggested at the beginning
of this section has as neat a solution. Maybe the right question is, are there polynomial
algorithms to determine whether dim(PM) or dim(QM) is equal to 3? It is known
that this problem for a general partial order is NP-complete, but there is a polynomial
algorithm to determine whether a partial order has dimension 2.

Another related line of inquiry is to ask which maps M have QM 4-irreducible.
We know from [1] that all 3-connected maps have this property, and it is tempting to
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conjecture the converse: if QM is 4-irreducible, then M is 3-connected. However, the
example in Figure 4.2 shows that this is false.

Fig. 4.2. A non-3-connected map M with QM4-irreducible.

Again, we suspect that there is no particularly neat characterization, and the
complexity version of the problem may be more fruitful.

Finally, it is natural to ask how the results of [1] and this paper extend to other
surfaces. If M is a map drawn on a surface of genus k, then there are some bounds
f(k), g(k) for dim(PM) and dim(QM). What are the best possible bounds? Are they
the same in both cases? We tentatively venture the suggestion that dim(PM) and
dim(QM) are still bounded above by 4 when M is a map drawn on the torus.
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