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We consider probability spaces which contain a family {EA : A ⊆ {1, 2, . . . , n}, |A| = k}
of events indexed by the k-element subsets of {1, 2, . . . , n}. A pair (A,B) of k-element

subsets of {1, 2, . . . , n} is called a shift pair if the largest k − 1 elements of A coincide with

the smallest k − 1 elements of B. For a shift pair (A,B), Pr[AB] is the probability that

event EA is true and EB is false. We investigate how large the minimum value of Pr[AB],

taken over all shift pairs, can be. As n → ∞, this value converges to a number λk , with
1
2 −

1
2k+2 6 λk 6

1
2 −

1
4k+2 . We show that λk is a strictly increasing function of k, with

λ1 = 1
4 and λ2 = 1

3 .

For k = 1, our results have the following natural interpretation. If a fair coin is tossed

repeatedly, and event Ei is true when the ith toss is heads, then for all i and j with i < j,

Pr[EiEj ] = 1
4 . Furthermore, as we show in this paper, for any ε > 0, there is an n such that

for any sequence E1, E2, . . . , En of events in an arbitrary probability space, there are indices

i < j with Pr[EiEj ] <
1
4 +ε. The results and techniques we develop in this research, together

with further applications of Ramsey theory, are then used to show that the supremum of

fractional dimensions of interval orders is exactly 4, answering a question of Brightwell

and Scheinerman.

Generalizing the 1
4 + ε result to random variables X1, X2, . . . , Xn with values in an m-

element set, we obtain a finite version of de Finetti’s theorem without the exchangeability

hypothesis: for any fixed m, k and ε, every sufficiently long sequence of such random

variables has a length-k subsequence at variation distance less than ε from an i.i.d. mix.

† Research supported in part by the Office of Naval Research.
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1. Introduction

The use of Ramsey theory in the study of sequences (especially infinite sequences) of

random variables is not new; see, for instance, [1], [3], [4], [7] and [13] for applications

related to the ‘subsequence principle’ of probability theory. Our application will be slightly

different in flavour and limited (on account of motivation) to finite sequences; however,

our results extend to infinite sequences in a straightforward manner.

We begin with an elementary example and a follow-up question which serve to motivate

much of the material to follow. First, the example. Suppose a fair coin is tossed n times.

Define event Ei to be true when the ith toss is ‘heads’. Then, for all i, j with 1 6 i < j 6 n,
Pr[EiEj] = 1

4
. If we condition on exactly n/2 heads (n even), we can increase Pr[EiEj]

slightly to 1
4
· n
n−1

. Now the question. Can we do asymptotically better? We can state this

more formally as follows.

Question 1.1. Does there exist a number λ > 1/4, so that for every n > 2 there exists a

probability space with events E1, E2, . . . , En such that Pr[EiEj] > λ, for all i < j?

We will show that the answer to Question 1.1 is ‘no’: any sufficiently long sequence

of events in any probability space contains a subsequence which does little better than

flipping a fair coin when it comes to keeping Pr[EiEj] large. The Ramsey-theoretic flavour

of this statement, together with its quantitative hedging, is characteristic of the theorems

to follow.

In order to discuss generalizations of this elementary example, we need some additional

notation and terminology. First, we must extend the notion of sequences of events to

families of events indexed by subsets of a finite set.

For a positive integer n, we let [n] denote the n-element set {1, 2, . . . , n}. When S is a

finite set and 0 6 k 6 |S |, we let
(
S
k

)
denote the family of all k-element subsets of S .

Given a probability space Ω, a finite set S of positive integers, and an integer k with

0 6 k 6 |S |, a (k, S)-scheme in Ω is just a family S = {EA : A ∈
(
S
k

)
} of events from

Ω indexed by the k-element subsets of S . When S is a (k, S) scheme and T ⊆ S , the

family T = {EA : A ∈
(
T
k

)
} is called a subscheme of S. We also say T is the subscheme

determined by T .

When S = {EA : A ∈
(
S
k

)
} is a (k, S)-scheme, we abuse notation slightly and blur the

distinction between the subset A and the event EA. So, we refer to a set A ∈
(
S
k

)
as an event

in Ω and write Pr[A] rather than Pr[EA]. Also, we write Pr[AB] rather than Pr[EAEB] and

Pr[AB] rather than Pr[EAEB]. When k = 1, we write Pr[i] rather than Pr[{i}], etc.

When listing the elements of a finite set of integers, we will always list them in increasing

order; for instance, the statement {i, j, k} ∈
(

[n]
3

)
also implies that i < j < k. When S is

a finite set and A,B ∈
(
S
k

)
, the ordered pair (A,B) is called a (k, S)-shift pair when there

is a subset {i1, i2, . . . , ik+1} ⊆ S so that A = {i1, i2, . . . , ik} and B = {i2, i3, . . . , ik+1}. For

emphasis, we point out that our notational conventions imply that i1 < i2 < · · · < ik+1 in

this definition.

Now fix an integer k > 1 and let S be a set with |S | > k. When S is a (k, S)-scheme,

we let λ(S) = min{Pr[AB] : (A,B) is a (k, S)-shift pair}. In turn, we set λ(k, n) to be
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the maximum value of λ(S), taken over all probability spaces and all (k, S)-schemes

with |S | = n. From its definition, λ(k, n) is a decreasing function of n, so we may define

λk = limn→∞ λ(k, n). In particular, the negative answer to Question 1.1 will follow from

the assertion of Theorem 3.1 that λ1 = 1/4.

We will show that λk is a strictly increasing function of k and satisfies the following

bounds:
1

2
− 1

2k + 2
6 λk 6

1

2
− 1

4k + 2
.

Originally, we guessed that the lower bound in this inequality was tight. If this conjecture

were true, it would imply that λ5 = 5/12, but we have been able to prove that λ5 >
27/64 > 5/12. So we are now hesitant to hazard a guess for the form of f(k) as a function

of k. On the other hand, we will prove that λ2 = 1/3, and we believe that λ3 = 3/8 and

λ4 = 2/5.

The remainder of the paper is organized as follows. In Section 2, we use Ramsey theory

to develop concepts of regularity and uniformity for schemes. These concepts are then

used in Section 3 to show that λ1 = 1
4

and λ2 = 1
3
. In Sections 4 and 5, we provide bounds

for λk . In Sections 6 and 7, we discuss the chromatic number of shift graphs and the

motivating problem from fractional dimension theory for partially ordered sets. Using the

techniques developed in this paper, we then solve this problem.

Finally, in Section 8, we return to Question 1.1 and generalize to random variables,

obtaining a new finite form of de Finetti’s theorem.

2. Regularity and uniformity

Let S be a (k, S)-scheme in a probability space Ω. There is no reason why any two

events in S should have exactly the same probability. However, if |S | is sufficiently large

in comparison to k, it seems reasonable that there should be a large subset U ⊆ S so

that any two events in the subscheme determined by U have approximately the same

probability. To formalize this notion, let ε > 0. Given an event E in Ω, there is a unique

integer i so that

iε 6 Pr[E] < (i+ 1)ε.

We may then use the value iε as an approximation for the probability of E. Note that

the number of distinct values used in approximating the probabilities of events in Ω is

1 + b 1
ε
c, which depends only on ε. The following result is then an immediate consequence

of Ramsey’s theorem.

Proposition 2.1. For positive integers k and n, with k < n, and a real number ε > 0, there

is an integer n0 so that if S is a (k, S)-scheme in a probability space Ω with |S | > n0,

then there exists a subset U ⊆ S with |U| = n so that |Pr[A] − Pr[A′]| < ε, for every

A,A′ ∈
(
U
k

)
.

However, we will find it useful to work with much stronger notions of regularity. Let

k and n be positive integers, with k < n, and let S be a (k, S)-scheme with |S | = n.
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Now let s be a positive integer with k 6 s 6 n. To a subset R = {i1, . . . , is} ∈
(
S
s

)
, we

can associate a random variable XR whose values are subsets of
(

[s]
k

)
; namely, XR =

{{j(1), . . . , j(k)}: the event {ij(1), . . . , ij(k)} is true}. Any particular subset P of
(

[s]
k

)
will be

called a (k, s)-pattern. Given ε > 0, we say that S is ε-regular when, for every s with

k 6 s 6 n and every pair R, R′ ∈
(
S
s

)
,

|Pr[XR = P ]− Pr[XR′ = P ]| < ε,

for every (k, s)-pattern P . The following theorem is an immediate consequence of Ramsey’s

theorem.

Proposition 2.2. For positive integers k and n, with k < n, and a real number ε > 0, there

is an integer n0 such that if S is any (k, S)-scheme with |S | > n0, then there is a subset

U ⊆ S with |U| = n which determines a (k,U)-subscheme U which is ε-regular.

A 0-regular scheme is said to be regular. Using Ramsey theory alone, it does not appear

possible to deduce the existence of regular subschemes from parent schemes which are

merely ε-regular for some ε > 0. However, with a little more analysis, we find that we can

construct regular schemes by passing to the limit.

Theorem 2.3. For positive integers k and n, with k < n, there exists a probability space Ω

and a (k, [n])-scheme S in Ω so that

(1) S is regular, and

(2) λ(S) > λk .

Proof. Let k and n be positive integers with k < n. For each positive integer i, set

εi = 1
i
. Apply Proposition 2.2 and the definition of λk to select a sequence of probability

spaces {Ωi : i > 1} so that Ωi contains a (k, [n])-scheme Si which is εi-regular and satisfies

λ(Si) > λk .
For each i > 1, each s with k 6 s 6 n, and each (k, s)-pattern P , let p(i, P ) = Pr[X[s] = P ]

in Ωi. For each i > 1, the number of patterns is
∑n

s=k 2(sk), which is of course bounded

as a function of k and n. It follows that we may choose a subsequence {Ωij : j > 1} for

which each of the sequences {p(ij , P ) : j > 1} converges, say to a value p(P ).

Finally, we define the probability space Ω in the obvious way. The elementary events

in Ω correspond to the (k, [n]) patterns of [n], that is, the elementary events are just the

subsets of
(

[n]
k

)
. In Ω, we take the probability of the pattern P to be p(P ). This definition

determines a regular (k, [n])-scheme S with λ(S) > λk .

The preceding result allows us to make several additional assumptions about the

probability spaces we consider in determining λk . For starters, note that, if S is a regular

(k, S)-scheme, and (A,B) is a (k, S)-shift pair, then Pr[AB] = λ(S). Moreover, since

Pr[A] = Pr[B], Pr[A] = Pr[AB] + Pr[AB], and Pr[B] = Pr[AB] + Pr[AB], it follows that

Pr[AB] = Pr[AB]. As a consequence, the meanings of ‘true’ and ‘false’ may be reversed. To

see this, note that we define a new probability space Ω′ containing a regular (k, S)-scheme

S′ as follows. Flip a fair coin. If the toss is heads, set A to be true in Ω′ if and only if A
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is true in Ω. If the toss is tails, set A to be true in Ω′ if and only if A is false in Ω. In the

new space Ω′, Pr[A] = 1
2
, for all A ∈

(
S
k

)
. Furthermore, λ(S) = λ(S′).

We can extend these concepts to larger sets as follows. Denote by P ∗ the reverse of the

pattern P , so that {j(1), j(2), . . . , j(k)} ∈ P ∗ just when {s+1−j(k), s+1−j(k−1), . . . , s+1−j(1)} ∈
P . Also, let P =

(
[s]
k

)
\ P denote the complement of P . We say that a (k, S)-scheme S is

uniform when for every s with k 6 s 6 |S | every pair R, R′ ∈
(
S
s

)
, and every (k, s)-pattern

P ,

Pr[XR = P ] = Pr[XR′ = P ],

Pr[XR = P ] = Pr[XR′ = P ∗], and

Pr[XR = P ] = Pr[XR′ = P ].

Theorem 2.4. For positive integers k and n, with k < n, there exists a probability space Ω

and a (k, [n])-scheme S in Ω so that

(1) S is uniform, and

(2) λ(S) > λk .

Proof. Start with a regular (k, [n])-scheme. Flip one coin to decide whether or not to

reverse the meanings of ‘true’ and ‘false’. Then flip a second coin to decide whether to

reverse the order of the ground set and consider it in the order {n, n− 1, . . . , 1}.

3. Uniform schemes and exact results

We are now ready to tackle the cases k = 1 and k = 2. The notion of a uniform scheme

will enable us to present very simple arguments.

Theorem 3.1. λ1 = 1
4
.

Proof. The coin-flip example discussed in Section 1 shows that λ1 >
1
4
. We now show

that λ1 6
1
4
. In view of Theorem 2.4, it suffices to prove that, for every ε > 0, there exists

an integer n0 so that if n > n0 and S is any uniform (1, [n])-scheme, then λ(S) < 1
4

+ ε.

Let ε > 0. Then set n0 as the least positive integer so that n0 > 2 and 1
4(n0+1)

< ε. Now

let n be any integer with n > n0 and let S be a uniform (1, [n])-scheme in an arbitrary

probability space Ω.

Put X :=
∑n

i=1 Xi where Xi = 1 if i is true and −1 otherwise. Then

0 6 E[X2] =

n∑
i=1

E[X2
i ] +

∑
16i,j6n,i6=j

E[XiXj]. (3.1)

Now
n∑
i=1

E[X2
i ] =

n∑
i=1

1 = n.
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Furthermore, for each i, j = 1, 2, . . . , n with i 6= j,

E[XiXj] = Pr[ij]− Pr[ij]− Pr[ij] + Pr[ij].

Since S is uniform,

Pr[ij] = Pr[ij] = λ(S).

Noting that

Pr[ij] + Pr[ij] + Pr[ij] + Pr[ij] = 1,

so that

Pr[ij] + Pr[ij] = 1− 2λ(S),

and

E[XiXj] = 1− 4λ(S),

we can rewrite inequality (3.1) as

0 6 n+ n(n− 1)(1− 4λ(S)).

Thus,

4n(n− 1)λ(S) 6 n2

and

λ(S) 6
1

4
+

1

4(n− 1)
<

1

4
+ ε.

Theorem 3.2. λ2 = 1
3
.

Proof. We first show that λ2 >
1
3
. Let F consist of all linear orders ‘≺’ on [n]. Choose

one of these orders, say L, uniformly at random. Then define {i, j} ∈
(

[n]
2

)
to be true

when i ≺ j in L, that is, when the L-order and the natural order agree for i and j. We

then have that for all (2, n)-shift pairs (A,B), Pr[AB] = 1
3
. To see this, observe that if

1 6 i < j < k 6 n, A = {i, j} and B = {j, k}, Pr[AB] is just the probability that i ≺ j and

k ≺ j in L, which is clearly 1
3
.

We now prove that λ2 6
1
3
. Let ε > 0. In view of Theorem 2.4, it is enough to show

that if n is sufficiently large, and S is any uniform (2, [n])-scheme, then λ(S) < 1
3

+ ε.

So suppose that S is a uniform (2, [n]) scheme in a probability space Ω.

Set q = Pr[{1, 2}{2, 3}] = Pr[{1, 2}{2, 3}]. Our goal is then to show that q < 1
3

+ ε.

Suppose to the contrary that q > 1
3

+ ε. We argue to a contradiction, provided of course

that n is sufficiently large.

There are 8 (2, 3) patterns in this scheme. Since S is uniform, we conclude that

q

2
= Pr[{1, 2}{1, 3}{2, 3}]

= Pr[{1, 2}{1, 3}{2, 3}]
= Pr[{1, 2}{1, 3}{2, 3}]
= Pr[{1, 2}{1, 3}{2, 3}].
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Let q1 and q2 satisfy

q1 = Pr[{1, 2}{1, 3}{2, 3}]
= Pr[{1, 2}{1, 3}{2, 3}],

q2 = Pr[{1, 2}{1, 3}{2, 3}]
= Pr[{1, 2}{1, 3}{2, 3}].

Let m = b(n−1)/2c and, for each i ∈ [m], define random variables Xi and Yi as follows.

Set Xi = 1 when {i, m+ 1} is true, and 0 otherwise; set Yi = 1 when {m+ 1, m+ 1 + i} is

false, and 0 otherwise. Then put X = X1 + X2 + · · · + Xm and Y = Y1 + Y2 + · · · + Ym.

Since the expectation of (X − Y)2 is nonnegative, we have E[X2] + E[Y2] > 2E[XY]. It

follows that

m+ m(m− 1)(Pr[{1, 3}{2, 3}] + Pr[{1, 2}{1, 3}]) > 2m2q. (3.2)

Now

Pr[{1, 3}{2, 3}] = Pr[{1, 2}{1, 3}{2, 3}] + Pr[{1, 2}{1, 3}{2, 3}] =
q

2
+ q1.

Similarly,

Pr[{1, 2}{1, 3}] = Pr[{1, 2}{1, 3}{2, 3}] + Pr[{1, 2}{1, 3}{2, 3}] =
q

2
+ q1.

Thus inequality (3.2) becomes

m+ m(m− 1)(q + 2q1) > 2m2q. (3.3)

We also know 4 q
2

+ 2q1 + 2q2 = 1. Solving for q1 and substituting into inequality (3.3),

we obtain

m2 > m+ m(m− 1)(1− 2q2) > (3m2 − m)q. (3.4)

This implies that q 6 1
3

+ 1
9m−3

, which completes the proof.

The reader may have noticed that we have only proved that λ(2, n) > 1
3
, but in fact

λ(2, n) > 1
3
. To see this, condition on the linear order L not being the natural order.

4. Uniform schemes and lower bounds

In this section, we generalize the constructions for λ1 and λ2 to show that λk >
1
2
− 1

2k+2
,

for all k > 1. Thus λ3 >
3
8

and λ4 >
2
5
, and we believe these two inequalities are tight.

However, we also show that λ5 >
27
64
> 5

12
, so the obvious conjecture fails.

Theorem 4.1. λk >
1
2
− 1

2k+2
, for all k > 1.

Proof. The proposed lower bound holds when k = 1 and k = 2 by our previous remarks,

so we may assume k > 3. For each n > k + 1, we construct a uniform (k, [n])-scheme

S with λ(S) = 1
2
− 1

2k+2
as follows. To each i ∈ [n], we assign independently a random

bit bi and a random real ri, drawn (say) from the uniform distribution on [0, 1]. Let

A = {i1, . . . , ik} be an event in the scheme, and define j = j(A) as the index for which rij
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is maximized. We then say that A is true if either bij = 1 and j is odd, or bij = 0 and j is

even.

Now let (A,B) be a (k, [n])-shift pair, and let A ∪ B = {i1, i2, . . . , ik+1}. Then the

probability that the largest real in {rij : 1 6 j 6 k + 1} belongs to {ri : 2 6 j 6 k} is
k−1
k+1

, and when this occurs, the probability that A is true and B is false is 1
2
. On the other

hand, the probability that the largest real in {rij : 1 6 j 6 k + 1} belongs to {ri1 , rik+1
}

is 2
k+1

and in this case, the probability that A is true and B is false is 1
4
. It follows that

λ(S) = k−1
k+1
· 1

2
+ 2

k+1
· 1

4
= 1

2
− 1

2k+2
.

Again, we note that we can improve the argument given in the preceding theorem to

show that λ(k, n) > 1
2
− 1

2k+2
, although the difference goes to zero as n increases. However,

we were somewhat surprised to find that for k = 5 we could beat 1
2
− 1

2k+2
by a constant.

Theorem 4.2. λ5 >
27
64

.

Proof. For this result, we need only a random bit bi for each i ∈ [n], thus a vector

v(A) ∈ {0, 1}5 for each event A. Suppose we take A to be true just when h(v(A), (10101)) 6 2,

where

h(u, v) := |{i : ui 6= vi}|

is the Hamming distance for binary sequences. Then it is easily checked that Pr[AB] = 13
32

,

slightly below the 5
12

lower bound of Theorem 4.1. However, we can improve the calculation

slightly by interchanging the roles of two of the vectors, namely 10011 and 00110. In other

words, A is now false when v(A) = 10011 and true when v(A) = 00110, but otherwise the

Hamming rule still applies.

The result is that the number of 6-bit vectors which give AB for a shift pair (A,B) goes

up from 26 to 27, giving λ5 >
27
64
> 5

12
.

We now show that λk is a strictly increasing function of k.

Proposition 4.3. For every k > 1, λk+1 > λk .

Proof. Let n and k be integers, with n > k + 2, let Ω be a probability space and let

S be a uniform (k, [n])-scheme. We construct a probability space Ω′ and a uniform

(k + 1, [n])-scheme S′ in Ω′ with

λ(S′) > λ(S) + f(k),

where f(k) is a positive quantity depending only on k.

Choose independent samples X1,X2, . . . from Ω. For any (k, [n])-shift pair (A,B) in Ω,

the probability space Ω′ is to contain an event A′ = A∪B. In Ω′, we define the probability

of A′ as follows. Let t = t(A ∪ B) be least integer such that the events A and B differ in

truth value in Xt, and let A′ be true in Ω′ just when A is true in Xt. Evidently, the resulting

(k + 1, [n])-scheme S′ is regular.

Now let (A′, B′) be a (k + 1, [n])-shift pair. Note that (A′, B′) corresponds to a two

(k, [n])-shift pairs, which we denote (A,B) and (B,C), so that A′ = A∪B and B′ = B ∪C .
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Since S is regular, we may choose numbers q1, q2 and q3, with q1 + q2 + q3 = 1 so that

in the probability space Ω:

q1 = Pr[ABC] = Pr[ABC],

q2 = Pr[ABC] = Pr[ABC], and

q3 = Pr[ABC] = Pr[ABC] = Pr[ABC] = Pr[ABC].

Therefore, in Ω,

λ(S) = Pr[AB] = Pr[ABC] + Pr[ABC] = q2 + q3.

On the other hand, in Ω′,

λ(S′) = Pr[A′B′]

=

(
1
2
· Pr[ABC] + 1

2
· Pr[ABC] + Pr[ABC]

)
1− 2q1

=
q2 + q3

1− 2q1
.

To complete the proof, we analyse the quantity 2q1 and show that it is positive by an

amount depending only on k and not on n.

Let m be the least positive integer (guaranteed by Ramsey’s theorem) so that, if the

k-element subsets of an m-element set S are coloured with two colours, say T and F , then

there is a k + 2 element subset H ⊆ S so that all k-element subsets of H receive the same

colour.

Now a sampling from Ω produces a colouring of the k-element subsets of [n]. Given

a sampling, say that a subset H ⊂ [n] is homogeneous if either (1) all of the k-element

subsets of H are true, or (2) all of the k-element subsets of H are false. Note that

2q1 = Pr[ABC] + Pr[ABC], so our requirement that all k-element subsets of H have the

same truth value is stronger than what is required.

There are
(
n
m

)
subsets of size m, and each of these subsets in turn contains a k-element

homogeneous subset H . Any k + 2-element subset of [n] is a subset of exactly
(
n−k+2
m−k−2

)
different m-element subsets of [n]. Since(

n

k + 2

)(
n− k − 2

m− k − 2

)
=

(
n

m

)(
m

k − 2

)
,

it follows that, for every k + 2-element subset T ⊂ [n], the probability that T is homo-

geneous in a sampling from Ω is at least
(
m
k−2

)−1
, which is independent of n as required.

5. Shift graphs and upper bounds

When 1 6 k < n, we define the (k, n)-shift graph S(k, n) as the graph whose vertex set is(
[n]
k

)
with a k-element set A adjacent to a k-element set B in S(k, n) exactly when (A,B)

is a (k, [n])-shift pair. Note that S(1, n) is a complete graph on n vertices, but for k > 2,

S(k, n) is triangle-free. Historically, the graphs S(2, n) have been called shift graphs, and

S(3, n) double shift graphs.
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We now provide an upper bound for λk which, together with our lower bound of

Theorem 4.1, shows that 1
2
− λk = Θ( 1

k
).

Theorem 5.1. λk 6
1
2
− 1

4k+2
, for all k > 1.

Proof. Let us note first that the shift graph S(k, 2k+1) contains a cycle of length 2k + 1.

To see this, note the obvious path of length k+1,

{1, . . . , k}, {2, . . . , k+1}, . . . , {k+2, . . . , 2k+1},

in the k-shift graph G on vertex set {1, . . . , 2k+1}. The subgraph of G induced on vertices

{1, . . . , k} ∪ {k+2, . . . , 2k+1} is of course isomorphic to S(k, 2k) and contains a path of

length k with the same endpoints. Linking these two paths produces the desired cycle.

Suppose now that Ω is a probability space and that S is a uniform (k, [n])-scheme in

Ω, with n > 2k + 1. Assuming n > 2k+1, we can concentrate on events corresponding to

k-element subsets which form a cycle of length 2k + 1 in the shift graph S(k, n). Observe

that in a sampling from Ω, only 2k of the 2k + 1 consecutive sets (vertices) on this cycle

can have differing truth values. It follows that 2λ(S) 6 2k
2k+1

, so that λ(S) 6 1
2
− 1

4k+2
, as

required.

Using the technique employed in the proof of Theorem 3.2, it is straightforward to

improve the upper bound on λk to 1
2
− 1

4k−2
when k > 2. We leave this as an exercise.

6. Shift graphs and dimension theory

In the next two sections of this paper, we present a brief discussion of the combinatorial

problems that motivated this line of research. We begin with a review of the chromatic

number of shift graphs. Historically, the shift graphs S(2, n) were an important instance

of triangle-free graphs with large chromatic number.

Note that it follows immediately from Ramsey’s theorem that, for every k > 1 and

every r, there exists n0 so that the chromatic number of S(k, n) > r, when n > n0. For

k = 1, this statement is trivial, since the shift graph S(1, n) is a complete graph, but for

k > 2, it is a bit more surprising.

The formula for the chromatic number of S(2, n) is now considered to be folklore,

although it has frequently been attributed to Andras Hajnal. (We use the notation ‘lg n’

as shorthand for log2 n.)

Proposition 6.1. The chromatic number χ(S(2, n)) of the shift graph S(2, n) is exactly dlg ne.

For double shift graphs, we have the following estimate.

Proposition 6.2. The chromatic number χ(S(3, n)) of the double shift graph satisfies

χ(S(3, n)) = lg lg n+

(
1

2
+ o(1)

)
lg lg lg n. (6.1)
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When P = (X, P ) is a poset, a linear order L on X is called a linear extension of P

when x < y in L for all x, y ∈ X with x < y in P . A set R of linear extensions of P is

called a realizer of P when P = ∩R, that is, for all x, y in X, x < y in P if and only

if x < y in L for every L ∈ R. The minimum cardinality of a realizer of P is called the

dimension of P and is denoted dim(P). We refer the reader to the monograph [15] for

additional background material on dimension theory,

A poset P = (X, P ) is called an interval order if there exists a family {[ax, bx] : x ∈ X}
of nonempty closed intervals of R so that x < y in P if and only if bx < ay in R. The

interval order In consisting of all intervals with integer endpoints from [n] is called the

canonical interval order.

Although general posets of height 2 can have arbitrarily large dimension, for interval

orders, large height is required for large dimension. The following result is due to Füredi,

Hajnal, Rödl and Trotter [10].

Theorem 6.3. If P = (X, P ) is an interval order of height n, then

dim(P) 6 lg lg n+ (1/2 + o(1)) lg lg lg n. (6.2)

As noted in [10], the family of canonical interval orders witnesses that the inequality

in the preceding theorem is best possible.

7. Fractional dimension and Ramsey theory for probability spaces

In many instances, it is useful to consider a fractional version of an integer valued

combinatorial parameter, as in many cases, the resulting LP relaxation sheds light on the

original problem. In [2], Brightwell and Scheinerman proposed to investigate fractional

dimension for posets.

Let P = (X, P ) be a poset and letF = {M1, . . . ,Mt} be a multiset of linear extensions of

P . Brightwell and Scheinerman [2] call F a k-fold realizer of P if, for each incomparable

pair (x, y), there are at least k linear extensions in F which reverse the pair (x, y), that

is, |{i : 1 6 i 6 t, x > y in Mi}| > k. The fractional dimension of P, denoted by fdim(P),

is then defined as the least real number q > 1 for which there exists a k-fold realizer

F = {M1, . . . ,Mt} of P so that k/t > 1/q (it is easily verified that the least upper bound

of such real numbers q is indeed attained and is therefore a rational number). Using this

terminology, the dimension of P is just the least t for which there exists a 1-fold realizer

of P . It follows immediately that fdim(P) 6 dim(P), for every poset P.

The dimension or fractional dimension of a class of posets is defined to be the least

upper bound of dim(P) (respectively, fdim(P)) over all posets P in the class. We have

seen that dim(I) = ∞ for the class I of interval orders, but Brightwell and Scheinerman

showed that fdim(I) 6 4. To see this, observe that if P = (X, P ) is an interval order and

A ⊂ X, there is a linear extension L of P with x > y in L for any incomparable pair (x, y)

with x ∈ A and y 6∈ A. Building a realizer from one such L for each subset A of X of size

b|X|/2c gives fdim(P) < 4.
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Brightwell and Scheinerman conjectured in [2] that fdim(I) = 4, even though no

example of an interval order of fractional dimension even as high as 3 was then known.

Using the techniques developed in the preceding sections, we can now settle this conjecture

in the affirmative.

Theorem 7.1. fdim(I) = 4.

Proof. Let 0 < ε < 1
2
. We show that, for large n, the fractional dimension of the canonical

interval order In consisting of all intervals with integer end points from [n] satisfies

4− ε < fdim(In). To the contrary, suppose that fdim(In) 6 4− ε, regardless of the size of

n. We argue to a contradiction, provided n is sufficiently large.

We begin by using Theorem 3.1 (λ1 = 1
4
) to obtain an m0 such that, whenever {Ui :

1 6 i 6 m0} is a sequence of events, there exist integers i, j with 1 6 i < j 6 m0 with

Pr[UiUj] <
1
4

+ ε
32

.

Let F be a multiset of linear extensions of In which witnesses that fdim(In) 6 4 − ε.
Let Ψ be the probability space given by the uniform distribution on F, so that the

probability of an event E ⊂ F is just |E|/|F|. For intervals A = [a1, a2] and B = [b1, b2],

we then let A > B denote the event consisting of those linear extensions L ∈ F for which

A > B in L. When a2 < b1, note that Pr[A > B] = 0; similarly, when b2 < a1, then

Pr[A > B] = 1. Otherwise, 1
4

+ ε
16
< 1

4−ε <
1
4
Pr[A > B] < 1− 1

4−ε . In what follows, we will

concentrate on the implications that follow from the inequality Pr[A > B] > 1
4

+ ε
16

when

a1 < b1 < a2 < b2.

Next, let δ = ε
128

, and let m1 = 1 + b 1
δ
c. We use the (by now) standard trick of

approximating probabilities in Ψ with one of the m1 discrete values from Q = {iδ :

0 6 i < m1}. For an event E, we let P[E] = iδ, where i is the largest integer for which

iδ 6 Pr[E]. Of course, P[E] 6 Pr[E] < P[E] + δ, for every event E ∈ Ψ.

Now let r be a positive integer, and let W = {w1, w2, . . . , w4r+2} ∈
(

[n]
4r+2

)
. Then define an

interval A(W ) = [a1, a2] with a1 = wr+1 and a2 = w3r+2. Also define subsets S(W ), T (W ),

U(W ), V (W ) from
(

[n]
r

)
by setting

S(W ) = {w1, w2, . . . , wr},
T (W ) = {wr+2, wr+3, . . . , w2r+1},
U(W ) = {w2r+2, w2r+3, . . . , w3r+1}, and

V (W ) = {w3r+3, w3r+4, . . . , w4r+2}.

Then let Down(W ) denote the event consisting of all linear extensions L ∈ F for which

there exist integers s ∈ S(W ), t ∈ T (W ) with [s, t] > [a1, a2] in L. Also, let Up(W ) denote

the event consisting of all L ∈ F for which there exist integers u ∈ U(W ), v ∈ V (W ) with

[a1, a2] > [u, v] in L. Evidently, Down(W ) ∩Up(W ) = ∅.
For a fixed value of r, our Ramsey-theoretic techniques would enable us to say that

we may assume that there exist integers i and j so that for every set W ∈
(

[n]
4r+2

)
,

P[Down(W )] = iδ and P[Up(W )] = jδ. In fact, we can make this assumption for a

large (but bounded) set of distinct values of r. However, we can make much stronger

assumptions; in particular, we will argue that (up to a small error) the events Down(W )
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and Up(W ) depend only on A(W ), that is, the events Down(W ) and Up(W ) are (almost

entirely) independent of the integer r and the elements of W − A(W ). To make this last

statement more precise, we require some additional notation.

Set m2 = 2m1 and m3 = (2m0 + 1)(m2 + 1)− 1. It follows from Ramsey’s theorem that

if n is sufficiently large, there exist values d1, . . . , dm2
, u1, u2, . . . , um2

from the m1-element

set Q and a subset H ∈
(

[n]
m3

)
so that for every r = 1, 2, . . . , m2 and every set W ∈

(
H

4r+2

)
,

P[Down(W )] = dr and P[Up(W )] = ur .

Claim 1. dr−1 6 dr , for r = 2, 3, . . . , m2.

To verify this claim, consider sets W1 ∈
(
H

4r+2

)
and W2 ∈

(
H

4r−2

)
where W1 is the subset

of W2 obtained by deleting the largest elements in the four r + 1-element subsets S(W2),

T (W2), U(W2), and V (W2) of W2. In this case, we observe that Down(W1) ⊆ Down(W2).

Dually, we can also verify the following claim.

Claim 2. ur−1 6 ur , for r = 2, 3, . . . , m2.

The next result follows easily from the fact that the sequences {di} and {ui} can increase

at most m1 − 1 times.

Claim 3. There is an integer r with 1 < r 6 m2 and elements d, u ∈ Q so that dr−1 = dr = d

and ur−1 = ur = u.

Next, we relabel our homogeneous set H as {1, 2, . . . , m3} and consider the subset

K = {j(m2 + 1) : 1 6 j 6 2m0} = {k1 < k2 < · · · < k2m0
}. The important fact about the

subset K is that, between any two elements of K , there are m2 elements of H − K . In

addition, there are m2 elements of H −K occurring before the least element of K , and m2

elements of H −K after the largest element of K .

Now let i be any integer with 1 6 i 6 m0. Define a subset Wi ∈
(
H

4r−2

)
by first taking

A(Wi) = [ki, km0+i]. Then define S(Wi) = {i(m2 + 1) − j : 1 6 j 6 r − 1}, T (Wi) =

{i(m2 + 1) + j : 1 6 j 6 r − 1}, U(Wi) = {(m0 + i)(m2 + 1) − j : 1 6 j 6 r − 1}, and

V (Wi) = {(m0 + i)(m2 + 1) + j : 1 6 j 6 r − 1}. Note that the end points of A(Wi) belong

to K , but Wi − A(Wi) ⊂ H −K .

Now let j be any integer with i < j 6 m0, and consider the event E1 consisting of all

linear extensions L ∈ F for which A(Wi) > A(Wj) in L but L /∈ Up(Wi).

Claim 4. Pr[E1] < 2δ.

To verify this claim, we consider a second set W ′
i formed from Wi by adding kj to

U(Wi) and km0+j to V (Wi). Also, choose the largest element s0 of H−Wi satisfying s0 < S

and add s0 to S(Wi). Dually, let t0 be the least element of H −Wi satisfying t0 > T and

add t0 to T . We know that P[Up(Wi)] = P[Up(W ′
i )]. Also, we know that both Up(Wi)

and A > B are subsets of Up(W ′
i ). So the claim follows.



234 W. T. Trotter and P. Winkler

Dually, let E2 be the event consisting of all linear extensions in F for which A(Wi) >

A(Wj) in L and L /∈ Down(Wj). Then the argument given above also establishes the

following claim.

Claim 5. Pr[E2] < 2δ.

Combining the previous claims, we obtain the following inequality.

Claim 6. For all integers i, j with 1 6 i < j 6 m0, Pr[A(Wi) > A(Wj)] <

Pr[Up(Wi)Up(Wj)] + 4δ.

We are now ready to obtain the final contradiction. We know that there is some pair i,

j with 1 6 i < j 6 m0 for which Pr[Up(Wi)Up(Wj)] <
1
4

+ ε
32

. However, 4δ < ε
32

, which

then implies that Pr[A(Wi) > A(Wj)] <
1
4

+ ε
16

. The contradiction completes the proof.

In a certain sense, the preceding theorem signals an interesting departure from the

analogy between interval orders and double shift graphs. In retrospect, the dimension

problem for interval orders is more or less the same as the chromatic number problem

for double shift graphs. It took some 15 years to see clearly how to make the translation,

but this is by now completely understood.

In contrast, we have now seen that while the fractional chromatic number of the double

shift graph is at most 8
3
, the fractional dimension of an interval order can be arbitrarily

close to 4.

8. Random variables

We now return to the k = 1 case, where events are labelled by numbers 1, . . . , n, with

the idea of weakening the hypothesis and strengthening the conclusion of Theorem 3.1.

Suppose that the coin-flip example is modified as follows: first a coin is chosen at random

from a box of coins, some of which are badly bent and thus biased. Then the chosen

coin is flipped n times as before. It is then immediate that Pr[ij] 6 1
4

for each i < j since

whatever coin is chosen, the conditional probability of ij is p(1 − p) 6 1
4

where p is the

probability of heads.

If we set Xi = 1 when the ith toss is ‘heads’ and 0 otherwise, the sequence X1, . . . , Xn

forms what is called an ‘i.i.d. mix’ – the result of an experiment in which independent

samples are drawn from a distribution chosen once from some distribution on distribu-

tions. Theorem 3.1 would then follow, for example, from the statement that any long list

of Bernoulli random variables contains a pair which are nearly an i.i.d. mix; in fact, we

can prove more.

Any i.i.d. mix X1, . . . , Xn is also exchangeable, meaning that Xπ(1), . . . , Xπ(n) has the same

joint distribution as X1, . . . , Xn for any permutation π ∈ Sn. Exchangeability does not

imply i.i.d. mix; for example, in the case where we flip a fair coin and condition on exactly

n/2 heads, we retain exchangeability but force an event (‘
∑
Xi = n/2’) which has low

probability in any i.i.d. mix.
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However, any reasonably well-behaved infinite sequence of random variables, every

initial segment of which is exchangeable, is equivalent to an infinite i.i.d. mix; this is the

celebrated theorem of de Finetti [8]. Finite versions do exist but are necessarily weakened;

the following is found in Diaconis and Freeman [5].

Theorem 8.1. Let X1, . . . , Xk, . . . , Xr be an exchangeable sequence of random variables with

values in the set [m] = {1, 2, . . . , m }. Then there is an i.i.d. mix of length k at variation

distance at most 2mk/r from X1, . . . , Xk .

The bound 2mk/r is in fact best possible and represents the variation distance between

sampling with and without replacement; in our example, with and without conditioning

on exactly r/2 heads out of r coin-flips. Theorem 8.1 applies of course to any length-k

subsequence of X1, . . . , Xr , whereas we seek only assertions about some subsequence, but

we must get rid of the exchangeability assumption.

An infinite sequence {Xi} of random variables is said to have the selection property

(see, for instance, [11]) if, for any k and any 1 6 j1 < · · · < jk , the joint distribution

of Xj1 , . . . , Xjk is the same as for X1, . . . , Xk . For infinite sequences, selection implies

exchangeability and thus serves as an alternate hypothesis for de Finetti’s theorem.

Ramsey’s theorem provides a finite, approximate version of selection.

Theorem 8.2. Fix integers m and k 6 r, and let ε > 0. Then for n sufficiently large,

every sequence X1, . . . , Xn of random variables with values in [m] contains a subsequence

X∗1 , . . . , X
∗
r such that any two subsequences of X∗i of length k have the same distribution, up

to variation distance ε.

We now need to convert the selection property to exchangeability. Two Bernoulli

random variables with the same distribution are exchangeable, but things get more

complex already with 3-valued r.v.s: if (X,Y ) takes on values (0,1), (1,2) and (2,0) with

equal probability, then X and Y have the same (uniform) distribution but are not even

approximately exchangeable.

Nonetheless, approximate exchangeability is achievable for us because, for any fixed k

and m, if every k-subsequence of a large number of [m]-valued random variables has (or

nearly has) the same distribution, then that distribution must be approximately symmetric;

that is, for any sequence a1, . . . , ak of range values and permutation π of the range,

Pr[
∧
i(Xi = ai)] ∼ Pr[

∧
i(Xi = aπ(i))].

The ‘k= 2’ version of this fact is proved by Komlós [14] and employed to prove the

following theorem.

Theorem 8.3. For every positive integer m and ε > 0 there is an n such that if X1, . . . , Xn

are random variables with values in [m], then there are indices i, j with 1 6 i < j 6 n such

that, for any a, b ∈M,

|Pr[(Xi = a) ∧ (Xj = b)]− Pr[(Xi = b) ∧ (Xj = a)]| < ε.
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Our theorem is the result of putting together Theorem 8.2 with an approximate version

of Theorem 8.1 and a generalization of Theorem 8.3.

Theorem 8.4. For every m and k and every ε > 0 there is an n such that if X1, . . . , Xn are

random variables with values in [m], then there is a subsequence X∗1 , . . . , X
∗
k of the Xis at

variation distance at most ε from some i.i.d. mix.

Proof. The general strategy of the proof is as follows. We first apply Theorem 8.1 to choose

r so that any k-subsequence of a nearly exchangeable list of r [m]-valued random variables

will satisfy the conclusion of the theorem. We then apply Ramsey’s theorem to get a very

long subsequence of the Xis with an approximately common r-wise joint distribution.

Finally we show that this distribution is approximately symmetric, therefore any length r

sub-subsequence will be nearly exchangeable. We make no attempt to optimize the value

of n = n(m, k, ε).

Accordingly, using Theorem 8.1, we begin by choosing r large enough so that in

any exchangeable sequence Y1, . . . , Yk, . . . , Yr of [m]-valued r.v.s the initial subsequence

Y1, . . . , Yk lies within variation distance ε/2 of some i.i.d. mix. Choose

δ =
( ε

22rmr

)2

and let s = d1/δe. Being generous, we then have 1
δ
6 s 6 3

δ
. Employing Ramsey’s theorem,

let n be large enough so that, for every sequence X1, . . . , Xn of [m]-valued r.v.s, there is a

k-ary distribution p = {pâ : â ∈ [m]r} and a subsequence X∗1 , . . . , X
∗
rs such that, for every

1 6 j1 6 · · · 6 jr 6 rs and every sequence â = (a1, . . . , ar) ∈ [m]r ,∣∣∣∣∣Pr

[ ∧
16i6r

(X∗ji = ai)

]
− pâ

∣∣∣∣∣ < δ.

To show that p is almost symmetric, we need to break the X∗i s into r blocks of length

s and to introduce some new random variables. Set Ii(a) = 1 if X∗i = a and 0 otherwise,

and for each j with 1 6 j 6 r let

Nj(a) =

(j+1)s∑
i=js+1

Ii(a)

so that Nj(a) counts the number of occurrences of the value a in the jth block.

Fixing a ∈ [m] and 1 6 j 6 r, we have

E
(
(Nj(a))

2
)

= E


 (j+1)s∑
i=js+1

Ii(a)

2


=

(j+1)s∑
i=js+1

E ((Ii(a)))
2 + 2

∑
js+16i<i′6(s+1)j

E (Ii(a)Ii′(a))

6 s+ 2

(
s

2

)
(paa + δ).
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Thus, when 1 6 j 6 j ′ 6 r,

E
(
(Nj(a)−Nj ′ (a))

2
)

= E
(
(Nj(a))

2 + (Nj ′(a))
2 − 2Nj(a)Nj ′(a)

)
6 2

(
s+ 2

(
s

2

)
(paa + δ)

)
− 2E

 (j+1)s∑
i=js+1

(j ′+1)s∑
i′=j ′s+1

Ii(a)Ii′(a)


6 2s+ 2s(s− 1)(paa + δ)− 2s2((paa − δ)

= 2s− 2spaa + 4s2δ − 2sδ

6 2s+ 4s2δ

6 8s.

Now we fix an arbitrary sequence â = (a1, . . . , ar) ∈ [m]r and let b̂ differ from â by a

single transposition; to save subscripts we assume the transposition involves the first two

coordinates, setting c = a1 = b2 and d = a2 = b1 with aj = bj for j > 2. We would like to

show that

|pâ − pb̂| 6 9
√
δ + 2δ;

let us therefore assume otherwise, letting pâ be the larger value.

Let W (â) =
∏r

j=1 Nj(aj) and similarly for b̂; and let W ′ =
∏r

j=3 Nj(aj) =
∏r

j=3 Nj(bj).

From our assumption we have

E(W (â)−W (b̂)) > sr(pâ − δ)− sr(pb̂ + δ) > sr(pâ − pb̂ − 2δ) > 9sr
√
δ.

On the other hand,

E(W (â)−W (b̂)) = E
[
(N1(c) (N2(d)−N1(d)) +N1(d) (N1(c)−N2(c)))W ′]

6
[
E
(
(N1(c)W ′)2

)]1/2 [
E
(
(N2(d)−N1(d))2

)]1/2
+
[
E
(
(N1(d)W ′)2

)]1/2 [
E
(
(N1(c)−N2(c))2

)]1/2
6 2

(
(s · sr−2)2

)1/2 · (8s)1/2

=
(
32s2r−1

)1/2
.

Comparing, we then have

32s2r−1 > 81s2rδ,

contradicting the choice of s > 1/δ.

Since we can express any permutation π ∈ Sr as a product of at most r−1 transpositions,

we now have

|pa1 ,a2 ,...,ar − paπ(1) ,...,aπ(r)
| < (r − 1)

(
9
√
δ + 2δ

)
< 11r

√
δ

= ε/(2mr)

so that any r-subsequence of the X∗i s, in particular X∗1 , . . . , X
∗
r , lies within variation distance

mr · ε/(2mr) = ε/2

of a precisely exchangeable sequence Y1, . . . , Yr .
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Since this means also that the variation distance between X∗1 , . . . , X
∗
k and Y1, . . . , Yk is at

most ε/2, we conclude that X∗1 , . . . , X
∗
k is within variation distance at most ε/2 + ε/2 = ε

of an i.i.d. mix as required.
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