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Abstract. A partially ordered setX, <) is a geometric containment order of a particular type if
there is a mapping fronX into similarly shaped objects in a finite-dimensional Euclidean space
that preserves by proper inclusion. This survey describes most of what is presently known about
geometric containment orders. Highlighted shapes include angular regions, convex polygons and
circles in the plane, and spheres of all dimensions. Containment orders are also related to incidence
orders for vertices, edges and faces of graphs, hypergraphs, planar graphs and convex polytopes.
Three measures of poset complexity are featured: order dimension, crossing number, and degrees of
freedom.
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1. Introduction

In their seminal paper on dimensions of partial orders, Dushnik and Miller (1941)
observed that for every poset= (X, <) there is a family$ of subsets of a given
setS and a mapping’ from X into 8 such that

Vx,ye X, x=<y<s f(x)C f(@y). (1.2)
When this holds for som¢: X — &, we say thatP is §-representableDushnik
and Miller also proved for order dimension that dif) < 2 if and only if § can

be chosen as a family of intervals in a linearly ordered set. A restricted-cardinality
version of their result for order dimension at most 2 is

THEOREM 1. SupposeP = (X, <) is a poset for whichX is countable. Then
dim(P) < 2if and only if P is 8-representable whe# is the family of closed and
bounded intervals ifR.

Theorem 1 qualifies as the first significant result in the theory of geometric con-
tainment orders. Apart from questions of cardinality and end-point restrictions, it is

* The research of the second author was supported by the Office of Naval Research (U.S.) and the
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168 P. C. FISHBURN AND W. T. TROTTER

the preeminent geometric containment theorenioln R?, a host of interesting

new possibilities arise fos, including circular disks, convex polygons, regular
n-gons similarly oriented, and angular wedges. Attractive candidates for higher-
dimensional Euclidean spaces are spheres, polyhedra, boxes, and translations of
cones.

Our aim is to describe much of what is presently known about geometric con-
tainment orders. As a working definition that circumscribes our topic, we refer to
(8, C) as ageometric containment ordevhen § is a nonempty and countable
family of connected subsets of a finite-dimensional Euclidean Spéc&he sym-
bol ¢ denotegroperinclusion. For all specific cases of interest in the survey, the
members of§ have similar shapes (circles, spheres, convgons,...) and are
closed in the usual topology &™. With the exception of angle orders, the objects
in & for particular cases are convex and compact.

Interesting classes of geometric containment orders are often named by the
shape of the objects in their orders. For examp$e,C) is acircle orderif every
member of$ is a closed circular disk ilR?, (8, C) is ann-gon orderif every
member of§ is a convex polygon with vertices inR?, and(4$, C) is abox order
in m dimensionsf every object ing is a box[ay, b1] X [az, bo] X -+ X [a,, by]

(a; < b;) in R™ with edges parallel to the axes. An exception to this haming
convention is the notion of an interval order (Fishburn, 1985; Trotter, 1992), which
represents by ordered intervals rather than by containment.

We denote by 2the set of all subsets dfl, 2, ..., n} ordered by proper in-
clusion, and bys, the subposet of”2for which 4 is the set of all singletons and
their complementss,, is often referred to as theandard poseof order dimension
n. Figure 1 pictures the Hasse diagramSafat the top along with containment
representations for angular regions, squares, and circular disks.

Questions addressed in the survey for a oas§ geometric containment orders
include:

1. Are there interesting characterizations of the orde®iimterms of properties
of posetsP = (X, <) that do not refer directly to the geometry of its objects?

. Are all posets? = (X, <) of a specific type members 6f?

3. What minimal poset® = (X, <) are not inC?

4. Are all members of contained in another clag® of geometric containment
orders?

. What are the order dimensions of membere @f

. What are the crossing numbers of member8df

7. Is € closed under order composition, order duality, or the addition of a new

minimum element to each order?

N

o Ol

Definitions of terms used in the questions appear in the next few paragraphs. We
then comment briefly on the history of our topic and conclude the introduction with
an outline of ensuing sections. It should be remarked that a poisetegarded as

a geometric containment order of a specific type if it is representable as that type
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Figure 1. Standard poset of order dimension 4.
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170 P. C. FISHBURN AND W. T. TROTTER

by (1.1). Although the mapping used there need not be a bijection because order-
equivalent members o might be mapped into the same objectdinbijective
mappings can be presumed either by removing order-equivalent duplicates from
X or by expanding$ by adding perturbed copies of objects that are inclusion-
equivalent to original objects.

We useP or (X, <) throughout to denote posetor order for which < is an
irreflexive and transitive binary relation gmound setX. Itis assumed thaf| > 3
and thatX is countable. The poset fiite if X is finite. Thedual of (X, <) is
(X, <%, wherex <? yif y < x, and thezero-augmentationof (X, <) is (X U
{0}, <) where 0¢ X, 0 <’ x for all x € X, and the restriction ok’ to X equals
<. A classC of posets is closed under duality, iowertible if the dual of every
orderinC isin G, and it is closed under the addition of 0,zmro-augmentab]ef
the zero-augmentation of every ordeidris in €. Theorder compositiorof posets
P = (X,<)andQ = (Y, <) is the poset with ground sét x Y and order relation
<o defined by(x, y) <o (x*, y*) if x < x* andy <’ y*. ClassC is closed under
order compositiorif the order composition of and Q is in € wheneverP, Q €
C. The Cartesian productP x Q of P and Q is defined like order composition
except that(x, y) <o (x*, y*) if x < x* andy <’ y* with = for at most one

component. Th€artesian product of order®; = (X1, <1), ..., Px = Xk, <k)

is the posetx P, with ground setX; x --- x Xk and order relationcg defined by
(x1,...,xk) <0 Y1, -+, YK) if xp < Vi fork =1,..., K andx;, <; Vi for at
least onek.

We say that(X, <) is aninterval orderif {a < x,b < y} = {a < yorb < x}
foralla, b, x, y € X, which is true (Fishburn, 1970, 1985) if and only if there is a
mapping! from X onto a set of closed and bounded real intervals such that

Vx,y € X, x<y<supl(x)<infl(y). 1.2)

Tanenbaum (1996) characterizes gars of finite posets{(X, <1), (X, <)} for
which the samd mapping satisfies (1.1) fofX, <1) by interval inclusion and
satisfies (1.2) fornX, <,) by interval precedence. Related results for so-called
codominance pairs of posets are in Tanenbaum and Whitesides (1996).

Poset(X, <) is alinear order (or chain) ifx < y or y < x for all distinctx
andy in X. A linear order(X, <’) is alinear extensiorof (X, <) if <C <. The
order dimensiordim(P) of P = (X, <) is the minimum cardinality of a set of
linear extensions of the intersection of whose order relations equal8ecause
every(x, y) € X x X whose components anecomparable{x # y, not(x < y),
not(y < x)} has a linear extension in which <’ y (Szpilrajn, 1930), dinoP) is
well defined.

Order dimension is explored in depth in Trotter (1992). It is known that 8ljin
= dim(2") = n (Dushnik and Miller, 1941; Komm, 1948), tha}, = (X, <)
for n > 4 is the only order withX| < 2n that has diniX, <) > n (Bogart
and Trotter, 1973), that di(®) can be arbitrarily large for a finite interval order
(Bogart, Rabinovitch and Trotter, 1976), and that all posets of dinm for
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m = 1,2, ... are characterized by the following natural extension of Theorem 1
(Golumbic, 1984; Golumbic and Scheinerman, 1989).

THEOREM 2. dim(P) < 2m if and only if P is 8-representable whe# is the set
of boxes inR™ with edges parallel to the axes.

This is conveniently abbreviated by saying that éith < 2m if and only if P is a
box order inm dimensions. Similar abbreviations are used later.

The order dimension of a poset is a measure of its nonlinearity. Our final two de-
finitions introduce other complexity measures used in studies of geometric contain-
ment orders. The first, from Golumbic, Rotem and Urrutia (1983), is the crossing
number créP) of a poset.

Let P = (X, <) be a poset witle pointsxy, xp, ..., x, in its ground set. Let
Fp be the set of all f1, f>, ..., f,) in which eachf; is a continuous real-valued
function on[0, 1] with all f;(0) distinct and all f;(1) distinct such that, for all
distincti and:

[{x €10,1]: fi(x) = f;(0)}] s finite;
fi and f; cross if they touch
Xi < Xj <& f,()\) < f]()n) forall A [0, 1].

The curves forf; and f; cross if and only ifx; andx; are incomparable. The
crossing numbeof P is the number of crossings for a worst-case pair with a best-
case sequence ifp:

Crs(P) i eFp (19) 010,112 /i®) = £ 00N

Lin (1994) gives a general treatment of the crossing number. Known proper-
ties include: créP) = 1 < dim(P) = 2 (Sidney, Sidney and Urrutia, 1988);
crs(S,) = 2 forn > 3 (Golumbic, Rotem and Urrutia, 1983); ¢/ < dim(P)—1
(Golumbic, Rotem and Urrutia, 1983); for evety> 1 there is aP for which
dim(P) = n and cr§P) = n — 1 (Sidney, Sidney and Urrutia, 1988); and, in fact,
crs(2") = n — 1 (Brightwell and Winkler, 1989).

The other complexity measure, due to Alon and Scheinerman (1988), is the
degrees of freedom d@F") of a family & of sets. We say that” hask degrees of
freedomif k is the smallest positive integer for which there is an injectiol¥ —

RF, g(A) = (g1(A), ..., g(A)), and a finite listps, po, ..., p, of polynomials

in 2k real variables such that, for all, B € ¥, A C B can be determined by

the signs of thep;(g1(A4), ..., gi(A), g1(B),...,g(B)) fori = 1,...,t. For
example, the set of all closed and bounded real intervals has @dfecause, with

g([la, b]) = (a, b), the signs ofp1(a, b, c,d) = a — candpy(a,b,c,d) =b —d
completely determine wheth@t, b] C [c, d]. The following theorem in Alon and
Scheinerman (1988) suggests the power of their notion to identify posets that are
not certain types of containment orders.

THEOREM 3. If dof(¥#) < k then there is a finite® with dim(P) = k + 1 such
that P is not £ -representable.
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172 P. C. FISHBURN AND W. T. TROTTER

Although Dushnik and Miller (1941) foreshadowed our subject by (1.1) and
Theorem 1, geometric containment orders did not become an active area for re-
search until the early 1980s. The earliest publications of that era were Golumbic,
Rotem and Urrutia (1983), Fishburn and Trotter (1985), Santoro and Urrutia (1987),
and Santoro, Sidney, Sidney and Urrutia (1987). These were followed by half a
dozen articles in 1988, a similar number in 1989, and the first and thus far only
survey (Urrutia, 1989). Many of the people involved at that time exchanged ideas
during a two-week NATO Advanced Study Institute on Graphs and Order, orga-
nized by Ivan Rival and held in Banff, Canada in May of 1984. A principal legacy
of the Banff conference was the question

Is every finiteP with dim(P) = 3 a circle order?

This question, which first appeared in print in Santoro and Urrutia (1987) and was

recently settled in the negative (Felsner, Fishburn and Trotter, 1999), was a prime
motivator for research on containment orders in the decade following Banff. De-

spite its resolution, very little is known about the smallest poset of order dimension

3 that is not a circle order.

The next section reviews what is known about angle orders, the only intensively
studied class of geometric containment orders whose objects are not compact and
not necessarily convex. Section 3 presents results for four classegouf orders,
Section 4 surveys a progression of results for circle orders, and Section 5 focuses
on classes of sphere ordersl®f for m > 3. Section 6 discusses containment
orders for vertices, edges and faces of graphs, planar graphs, and convex polytopes.
Section 7 summarizes results associated with the notions of comparability graph
invariants and dynamic isometric inclusion. We conclude in Section 8 with some
open problems.

2. Angle Orders

An angular regionA C R? is a closed region bounded by a péir, r») of distinct
rays from a vertex e R? that contains all points swept out by rays frenn the
clockwise direction fromr, to r,. Vertexv of A is unique unless the angle fram
to rp is 7, in which cased is a closed half plane. We say thats little if its angle
from r; to r, is less thant, andbig if its angle exceeds. HenceA is convex if
and only if it is little or a half plane.

A containment orde($, C) is anangle orderif § is a set of angular regions in
R2. Because the proofs of theorems in this section presumed finiteness, we assume
that all posets referred to below are finite. The following theorem summarizes key
results in Fishburn and Trotter (1985, 1990) and Fishburn (1989a).

THEOREM 4. dim(P) < 4 = P is an angle order. All standard posets,) and

interval orders are angle orders, and some circle orders are not angle orders. The
class of all angle orders is invertible but not zero-augmentable.
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Fishburn and Trotter (1985) also gave examples of angle orders that must use a big
angular region, and angle orders that must use a little angular region. A construc-
tion based on 2was noted to yield a 198-poirft with dim(P) = 7 that is not

an angle order. Santoro and Urrutia (1987) subsequently proved that angle orders
with only little angular regions have @B) < 4, and similarly for angle orders

with only big angular regions, then used this to give a 64-pBimtith dim(P) = 6

that is not an angle order. Trotter (1987) used a similar procedure with two disjoint
copies of 2 to obtain a 64-point? with dim(P) = 5 that is not an angle order,

and Alon and Scheinerman (1988) observed that Theorem 3 for degrees of freedom
also implies that some posets of order dimension 5 are not angle orders.

THEOREM 5. SomeP with dim(P) = 5 are not angle orders.

Because the standard posets are angle orders, there are angle orders of arbitrarily
large order dimension.

3. Convex Polygon Orders

Let », denote the set of all convex polygons in the plane withertices and:
sides,n > 3. We refer to members of, asn-gonsand consider four types of
n-gon orders for each. Given$ C £,, (8, Q) is:

1. A regular n-gon orderif every member of§ is a regularz-gon with a side
between two lowest vertices parallel to the abscissa;

2. A weak regulam-gon orderif every member of§ is a regulan-gon;

3. A6 n-gon orderif @ = (61,05,...,6,) with 0 < 6; < = for eachi and
> 6, = (n — 2)x, and every member of has a lowest side parallel to the
abscissa with interior corner angles, beginning at the right vertex of the lowest
side and proceeding counterclockwisepqfé,, ..., 6, radians;

4. Ann-gon orderif every member o is ann-gon.

Forn = 3, objects for type 1 are equilateral triangles (including interiors) with
horizontal bases, objects of type 2 are equilateral triangles oriented arbitrarily,
objects for type 3 are triangles with horizontal lowest sides and equal interior-angle
sequences, and those for type 4 are all triangles. G#yeand going counter-
clockwise from the horizontal base side 1, #@ sides of alln-gons for type 3

are mutually parallelk = 1,2, ..., n. For containment orders, it turns out that
the only thing that matters for type 3 is the parallel-sides feature, not the parti-
cularé.

As in the preceding section, the results of the present section were proved under
finiteness, so we assume that all posets referred to below are finite. We begin with
R, the class of all (finite) regular-gon orders for > 3. The following composite
theorem summarizes regulasgon results in Santoro and Urrutia (1987), plus a few
observations in Urrutia (1989).
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174 P. C. FISHBURN AND W. T. TROTTER

THEOREMG6. P € R3 <& dim(P) < 3, anddim(P) < 3 = P € R, for all
n > 4. For everyn > 3.

(i) R, isinvertible, zero-augmentable, and closed under order composition;
(i) Pe R, = cry(P) <2
(i) P € R, = dim(P) <n;
(iv) S, € R,.

In addition, noR,, contains thel4-point 4-dimensional pose?* \ {7, {1, 2, 3, 4}}.

Thus, whereas all order dimension 3 posets arerin not all order dimension

4 posets are R4, whose objects are squares with sides parallel to the axes.
The following theorem (Fishburn, 1989b) gives a different picture when we admit
rectangles with sides parallel to the axes, which obtaing #gon orders when
0=(%.%%.5).

THEOREM 7. For everyn > 3 and all § that adhere to our earlier definition,
dim(P) < n < P is a# n-gon order, and the class of a#l n-gon orders is
invertible and zero-augmentable.

The other main result in Fishburn (1989b) says that as soon as we allow arbi-
trary orientations, even when allgons are regular, we lose invertibility and zero-
augmentability.

THEOREM 8. For everyn > 3, neither the class of all weak regulargon orders
nor the class of alk-gon orders is invertible or zero-augmentable.

For our finaln-gon theorem, we denote Iy, the class of alk-gon ordersp > 3.

THEOREM 9. For everyn > 3:

(i) Pe§,=cr(P) <2
(i) dm(P) <2n = P € G,;
(i) P & G, for someP withdim(P) = 2n + 1.

Parts (i) and (ii) are proved in Sidney, Sidney and Urrutia (1988), where it was also
noted thatP ¢ G, for someP with dim(P) = 2n + 2. The sharper (iii) is proved

by an application of Theorem 3 in Alon and Scheinerman (1988) in view of the
fact thatn-gon orders haver2degrees of freedom.

4. Circle Orders

Let @, denote the set of all finite circle orders a@d the set of all circle orders
with countable ground sets. Whéi,, <), ..., (Xg, <) are linearly ordered sets
of real numbers ordered naturally; x --- x X denotes their Cartesian product
order: if X; = X for all k, we write the product order asX.
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We begin with a list of results fo®,: see also Theorem 4 and Sections 6 and 7.
One new definition is neede@s, C) is anup-parabola ordefScheinerman, 1992)
ifAed8=A={(x,y):y>ax?+ bx + )} for somea, b, c € R. All posets in
the following theorem are assumed to be finite.

THEOREM 10. @G, equals the set of up-parabola orders and contains every inter-
val order. It is invertible, zero-augmentable, closed under order composition, and
contains a poset which has no circle-containment representation in which every
minimal element is assigned a circle of radius zero. In addition:

(i) PeCr=crsP) <2
(i) dim(P) <2= P € Cy;
(i) {1,2,3)3 e Cy;
(iv) P ¢ C,for someP withdim(P) = 3;
(V) 2\ {4, {1,2,3,4}} € C2;
(vi) S, € Gy forall n.

Many people have contributed here. The up-parabola equivalence from Schein-
erman (1992) notes one of several equivalent representations of the usual circle
inclusion that has

(X1, y1,71) C (X2, ¥2,72) & v/ (x1 —x2)2 + (y1 — y2)2 < ra —r1 and
rL#r

when (x, y, r) denotes the circular disk with centér, y) and radius. Interval
order inclusion is proved in Fishburn (1988), invertibility in Urrutia (1989) and
Scheinerman (1991), zero-augmentability in Sidney, Sidney and Urrutia (1988),
closure under order composition in Urrutia (1989), and the inability to always
shrink minimal-element circles to points in Scheinerman and Tanenbaum (1997).
Sources for the others are:

(i) Sidney, Sidney and Urrutia (1988);
(ii) obvious from Theorem 1;
(iii) Fon-Der-Flaass (1993);
(iv) Felsner, Fishburn and Trotter (1999);
(v) Sidney, Sidney and Urrutia (1988) and Brightwell and Winkler (1989);
(vi) Brightwell and Winkler (1989).

Knight (1995) discusses a honstandard-analysis approach to (iv). Attempts to prove
(iv) led to many other results, including those for di) = 3 noted below. The
proof of (iv) uses Ramsey theory and is uninformative about the smalegth
dim(P) = 3 that is not a circle order. In view of (iii), we note that Brightwell and
Scheinerman (1993) say that it is not known whetfie®, 3, 4)3 is a circle order.

This was resolved affirmatively by El-Zahar and Fateen (1998), but the question of
whether{1, 2, 3, 4, 5)2 is a circle order remains open.
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Theorem 1 implies that every countabfewith dim(P) = 2 is in ¢, . While
(iv) remained open, the question of whether every countBbdéth dim(P) = 3is
in G5 was resolved negatively by Scheinerman and Wierman (1988). The tightest
results were obtained by Lin (1991). Li§tdenote the set of positive integers.

THEOREM 11. LetP = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 3)} xN. Thendim(P) =
3, P¢CS,andif) C A C R?with |A|] < 4thenA x N e CJ.

LetZ denote the set of all integers. Historically, Scheinerman and Wierman (1988)
proved thafZ® ¢ G;. They noted also thdtl, 2,...,n} x {1,2,...,n} x Nis not

in ¢ for largen. Hurlbert (1988) then gave a shorter prooff ¢ ¢, . This was
followed by Lin’s results in Theorem 11. Independently, Fon-Der-Flaass (1993)
also proved thatl, 2} x {1,2} x Ne € and{1,2} x {1,2,3} x N¢ C;.

5. Sphere Orders

A poset(4, C) is ann-sphere ordeiif § is a set of spheres iR”. Let ¢, denote
the set of all finite:-sphere orders an@ the set of all countable-sphere orders.
This section summarizes results that extend te 3 some results in the preceding
section.

Initial research on sphere orders was motivated by consideration of causality in
space-time manifolds (Bombelli, Lee, Meyer and Sorkin, 1976). A natural affinity
between causality and sphere orders is described in Brightwell and Winkler (1989),
Scheinerman (1992) and Meyer (1993). We focus here on sphere orders in their
own right.

The foundational paper on sphere orders, Brightwell and Winkler (1989), proved
that for each: there is a poset i, ; that is not inG,,. For eactn > 1 let T, be
the posel(X, <) withgroundselX ={A C{1,2,...,.n+2}:1<|A| <n+1}
and

A<B if AcB andeither |[A|=1 or |B|=n+1 (orboth)

ThusTz = Sz and T, = 2*\ {#, {1, 2, 3, 4}}. The following theorem combines

the Brightwell and Winkler results with the non-shrinkability theorems#£or 3

of Scheinerman and Tanenbaum (1997) and the theorem of Felsner, Fishburn and
Trotter (1999) which says that some finite 3-dimensional posets are not sphere
orders.

THEOREM 12. Foreachn > 1,dim(7,.2) = n+2,crT,.2) =n+1, T, € C,
and7,,, € G,,1. Foreachn > 3thereisaP € G, which has na®, representation
in which every minimal element has radius zero. There is a fihigth dim(P) =
3thatisin noG,.

Meyer (1993) independently proved a result similar to an implication of the Bright-
well-Winkler theorem. Lef, , = (X, <) with X ={A: A C{1,2,...,n+ 2}}
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andA < Bif |[A] = 1andA C B. ThenT, , € C,;1 and, as1 — oo, minfk :
Tn/ € Gy} — oo.

Brightwell and Winkler (1989) mention thaP 2 ¢4 and conjecture that some
finite posetis in na,. Felsner, Fishburn and Trotter (1999) verifies this conjecture.
Fon-Der-Flaass (1993) decided the corresponding question for countable sphere
orders.

THEOREM 13. {1,2} x {1,2,3} x Nisin noC;}.

Additional results for sphere orders are discussed in the next section.

6. Incidence Orders

A simple graphG = (V, E) is a setV of vertices and a set of edges, each of
which is a pair{u, v} of distinct vertices. We assume tHa&t| > 3. A hypergraph
H = (V, E) is a vertex seV and an edge sdf of subsets ofV. If |e|] = 2 for
everye € E, thenH is a simple graph. Thancidence orderPy of hypergraph
H = (V, E) has ground se¥ U E with

x<y if xeV,yeE and xey.

We denotePy by P; whenH is a simple graph.
The following results are due to Scheinerman (1993) Pgr and Schrijver
(1993) for Py.

THEOREM 14. There are finite simple graphG with arbitrarily large dim(Pg),
but P; € @3 for all such graphs. For every finite hypergragh,

k=maXle| :e € E} = Py € Cy_1.

A graph G is planar if it can be drawn in the plane so that each vertex is a
point, each edge is a continuous noncrossing, hontouching curve between its points,
and no edges cross or touch between vertices. Scheinerman (1991) proved a nice
strengthening of Theorem 14 for planar graphs. This is joined in the following
theorem by Schnyder’'s (1989) remarkable and surprising discovery that the class
of finite planar graphs equals the class of finite graphs whose incidence orders have
order dimension at most 3. The last sentence of the theorem is from Scheinerman
and Tanenbaum (1997).

THEOREM 15. The following are mutually equivalent for every finite simple
graphG:

() Gisplanar;

(i) dim(Pg) < 3;

(i) Pg € Ca.
There is a finite simple planar grapti whoseP; has no circle order representa-
tion in which all circles for vertices have radius zero.
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We conclude this section by noting relationships between and facts about certain
planar graphs and vertex-edge-face incidence orders of convex polytdpéthiat
are developed in Brightwell and Scheinerman (1993) and Brightwell and Trotter
(1993). A few definitions are needed.

A convex polytopén R3 is the convex hull of a finite number of points IR?.
We consider the set( of convex polytopes ifR? that do not lie in planes. face
of M € M is the intersection of a plane and that contains noncollinear points of
M and does not intersect the interior &f. Each two faces that intersect in a line
segment define that intersection asageof M, and each two edges that intersect
in a point define that point as\eertexof M. We treat vertices as singleton subsets
of R3. Thefull incidence orderof M e M with vertex setV, edge sef and face
setF is the posetP,, with ground setV U E U F and

x<y if xCy.

The following theorem, from Brightwell and Trotter (1993), was motivated by
Schnyder’s (1989) striking equivalence between (i) and (ii) of Theorem 15 but is
substantially stronger than his equivalence.

THEOREM 16. diniP,) = 4 for all M € M. If any vertex or face is removed
from Py, the remainder has order dimensi8n

To connect this to planar graphs, we definfaee of a planar drawing of a finite
simple planar graplG as the closure of a maximal open regionRA after the
points in the vertices and edges of the drawing have been removed. There is one
outer, unbounded face; the others are compact subsets of the plane Adelatte
the set of faces for a particular drawing.

A graph is connectedif there is an overlapping sequence of eddesvi},
{vy, va}, ..., {v, v} between any two distinct verticesandv. A graph is 3eon-
nectedif the removal of any two vertices of the graph and their incident edges
leaves a connected graph.

Let » denote the set of all finite simple 3-connected planar graphs. It is easily
seen that theV, E, F) inclusion structure of a particular drawing 6f ¢ # does
not depend on the drawing, in particular on which face is chosen as the outer face,
so we refer ta'V, E, F) as the vertex-edge-face structure €oiitself. A theorem
of Steinitz (1934) says that a tripl&’, E, F) is the vertex-edge-face structure for
aG ¢ & if and only if it is inclusion isomorphic to &V, E, F) structure for a
convex polytopeV € M.

Thefull incidence orderfor G € & with structure(V, E, F) is the posetDg
with ground setV U E U F andx < y if x C y. By Steinitz's theorem and
Theorem 16, diiQ;) = 4, and if a face inF is deleted then the remainder
has order dimension 3. Brightwell and Trotter (1997) prove that dimensionality no
greater than 4 continues to hold when 3-connectedness is not presumed. Given 3-
connectedness, |€; denote the remainder when the outer face of a planar draw-
ing of G is deleted fromF. The incidence structure @ ; depends on which face
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is deleted, but any such deletion produces a circle order as proved in Brightwell
and Scheinerman (1993).

THEOREM 17. Q; € Cyforall O forall G € #.

Brightwell and Scheinerman (1993) derive this from a beautiful generalization of a
theorem of Koebe (1935) [see also Sachs (1994)] which says that a planar graph can
be represented by nonoverlapping circles, one for each vertex, so that two vertices
form an edge of the graph if and only if their circles are tangent.

7. Dynamic Inclusion and Invariants

We conclude our survey of results with two other topics covered by Urrutia (1989)
that bear on geometric containment orders. The first, from Santoro, Sidney, Sid-
ney and Urrutia (1987, 1989), considers containment under isometric movements
that preserve objects’ shapes. The second, from Urrutia (1988), concerns invariant
properties of orders that arise from the same comparability graph.

GivenA, B C R™, we say thad isisometrically includedn B and writeA C;
B if some isometric copy ofi, obtained by the operations of rotation, translation,
and reflection, is included iB. The main question addressed in Santoro, Sidney,
Sidney and Urrutia (1987, 1989), is whethgr can be characterized for a family
T of objects inR™ by a finite number of real-valued functioifg, f>, ..., f, onJ
in the dominance-order sense that, forallB € 7,

AC;B<% fi(A) < fi(B) fori=1,...,n. (7.2)

For example, the family of all spheres Ri" can be characterized by (7.1) with
n = 1 and f1(A) = Volume(A), and the family of all regular conveikgons for
eachk > 3is characterized by, (A) = Area(A). However, as soon as we consider
slightly less regular shapes, (7.1) can fail regardless of the value of

THEOREM 18. Supposéd™ is one of the following: all rectangles iR?; all isoce-
les triangles inR?; all convexk-gons inR?, k > 4; all right circular cylinders
in R3. Then, for every:, there do not existfi, ..., f, that satisfy(7.1) for all
A, BeT.

The result for rectangles is proved in Santoro, Sidney, Sidney and Urrutia (1987)
where it is also noted that a denumerable numbef; @haracterize rectangles in
the manner of (7.1). The other results in Theorem 18 are from Santoro, Sidney,
Sidney and Urrutia (1989) which has other relevant information on the topic.

We now consider comparability graph invariants. A finite simple gré&phk=
(V, E) is acomparability graph(Gilmore and Hoffman, 1964; Fishburn, 1985) if
there is a posetV, <) such that

Yu,veV, @=<vorv=<u)<{uv}ekE. (7.2)
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Let P(G) be the set of all posetd/, <) that satisfy (7.2) for a giver. Roughly
speaking, a comparability graph invariant is a poset parameter that has the same
value for all orders inP (G), for every comparability grapty. A precise statement

of results follows.

THEOREM 19. For every finite simple comparability grap:

() dim(P) is the same for alP € P(G);
(i) crs(P) is the same for alP € P(G);
(iii) either no orders or all orders irP (G) are interval orders;
(iv) either no orders or all orders irP (G) are circle orders;
(v) for eachn > 3, either no orders or all orders inP(G) are regular n-gon
orders.

Trotter (1992, p. 62) notes that several sets of authors have been credited for (i), but
attributes primary credit to Gallai (1967). Results (ii), (iv) and (v) are from Urrutia
(1988), and (iii) is noted in Méhring (1985, p. 64).

8. Open Problems

Although many questions for geometric containment orders have been answered,
interesting questions remain open for the shapes highlighted in our survey as well
as others that have not been intensively studied. Some specific questions raised by
prior work are:

1. What are the smallest posets that are not angle orders?

What is the smallest for which {1, 2, ..., n}2is not a circle order?

Is 2\ {7, {1, 2, 3, 4}} the smallest poset that is not a circle order?

Is 2 a sphere order in any dimension?

What are the smallest posets that are not sphere orders?

Is 2\ {7, {1, 2, 3, 4}} the smallest poset in nR,,?

Which results noted only for finite posets also hold for countable posets?

No gk wd

We have seen that Theorem 3 for degrees of freedom often identifies the minimum-
dimensional poset that is not a containment order of a particular type, but it does
not do this for circle orders. Is there a condition whose addition to Theorem 3 will
distinguish between min dime dof + 1 and min dim< dof + 1 for a minimum-
dimensional poset that is not a containment order of a particular type? Are there
other complexity measures besides order dimension, crossing number, and degrees
of freedom that reveal interesting facets of geometric containment orders?

An example of a simple shape that has not been intensively studied for contain-
ment orders is the ellipse. Urrutia (1989) noted that isometric inclusion of ellipses
can be characterized by two functions but not one for (7.1). Varieties of ellipses for
containment orders include those with principal axis parallel to the abscissa, those
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with either axis parallel to the abscissa, and ellipses in general position. Are there
significant differences among the corresponding ellipse orders, and how do they
relate to containment orders for other simple planar shapes?
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