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Abstract 

A poset P = (X, 4 )  is a split semiorder if there are maps a , f  : X --* • with a(x)<~f(x)<~a(x) 
+ 1 for every x E X such that x -< y if and only if f ( x ) < a ( y )  and a(x) + 1 < f ( y ) .  A split 
interval order is defined similarly with a(x)+ 1 replaced by b(x), a(x)<~ f(x)<~ b(x), such that 
x -< y if and only if f ( x ) < a ( y )  and b(x) < f ( y ) .  We investigate these generalizations of 
semiorders and interval orders through aspects of their numerical representations, three notions 
of poset dimensionality, minimal forbidden posets, and inclusion relationships to other classes 
of posets, including several types of tolerance orders. (~) 1999 Elsevier Science B.V. All rights 
reserved 
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1. Introduction 

Let ~ denote the class o f  all finite posets o f  the form P = (X, -~) with nonempty 

finite ground set X partially ordered by --<. We assume that ~ is asymmetric and 

transitive and denote its symmetric complement by ~ so that x ~ y i f  neither x --< y 

nor y ~ x. We write xl[y and say that x and y are incomparable in P i f x  ~ y and 

x¢y.  
Our main purpose is to investigate subclasses of  ~ referred to as split semiorders 

and split interval orders. These subclasses will be considered on their own and in 

relation to other subclasses defined by real interval representations or by exclusion of  

forbidden posets. The others include the intensively studied linear orders, weak orders, 

semiorders and interval orders, plus versions o f  tolerance orders in Bogart [1,2], Bogart 

and Isaak [4], Bogart and Trenk [5], Fishbum [9] and Langley [12], among others. 

In the present formulation, P --- (X,-<) is a linear order or chain i f  x[ly for no 

x, y E X.  For  positive integers m and n let m ÷ n denote a poset on m + n points that 
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consists o f  two disjoint chains on m points and n points with x[Iy whenever x and 

y are in different chains. A linear order has no 1 + 1 as an induced subposet. Other 

minimal forbidden induced subposet definitions are: P is a weak order if it has no 

1 + 2; P is a semiorder if  it has no 1 + 3 and no 2 + 2; P is an interval order if it 

has no 2 + 2. 
We recall also that P = (X,-<) is a semiorder [8, 13,15] if  there is a function U 

that assigns a closed unit interval U(x) = [a(x),a(x) + 1] to each x E X such that 

x -< y if and only if a ( x ) +  1 < a(y), and an interval order [7,8,18] if  there is a 

function I that assigns a closed interval I (x)  = [a(x), b(x)] to each x E X such that 

x -< y if and only if  b(x) < a(y). Split semiorders and split interval orders generalize 

these representations with the addition o f  a splitting point in each interval. We define 

P = (X, -<) as a split semiorder if there a function U that assigns a closed unit interval 

U(x) = [a(x),a(x) + 1] to each x E X and a set F = { f ( x )  : x  E X}  of  real numbers 
such that: 

1. For all x E X ,  a(x)<~f(x)<~a(x)÷ 1, and 

2. For all x ,y  E X ,  x -< y if and only if  f ( x )  < a(y)  and a(x )+  1 < f ( y ) .  
Similarly, P = (X, -<) is a split interval order if there is a function I that assigns a 

closed interval I(x)  = [a(x), b(x)] to each x E X and a set F = { f ( x )  : x E X}  o f  real 

numbers such that: 

1. For all x E X,  a(x)<~f(x)<.b(x), and 

2. For all x, y E X, x -< y if and only if  f ( x )  < a(y) and b(x) < f ( y ) .  
We refer to (U,F)  as a split semiorder representation of  P and to (I ,F) as a split 
interval order representation of  P. When the type o f  order is clear, we may simply 

refer to (U,F)  or (LF)  as a representation. 

Langley [12] and Bogart and Isaak [4] prove that P is a split interval order if  and 

only if  it is a proper bitolerance order. The latter order has a different representational 

definition that we present in the next section, but its representation can be mapped 

into a split interval order representation, and conversely, without disturbing -<. Split 

semiorders as well as split interval orders are central to [9, 10]. Their results are inte- 

grated into the present study. We rely also on Bogart and Trenk [5] as well as results 
included in Trotter [18] when we discuss bipartite orders later in the paper. 

Several definitions relevant throughout are noted before we outline the rest o f  the 
paper. The dual o f P  = (X,-<) is pd = (X,_<d) with x _<a y if  y -< x. The height 
H(P)  of  P is the number o f  points in a cardinally maximum chain in P. An antichain 
is a height-I poset. We say that P is bipartite if H(P)~<2 and denote by ~2 the 

class o f  bipartite posets in ~ .  Crown Cn for n>~2 is the 2n-point bipartite poset 

({Xl . . . . .  Xn} U {Yl . . . . .  y,} , -<)  with --< completely specified by {X i "~ y i , x i  -~ Yi+I},  

i = 1 . . . . .  n -  1, and {x, -< yn,xn -< Yl}- 
The dimension dim(P) o f  P = (X,-<) is the minimum k for which there are lin- 

ear orders (X, -<l ) . . . . .  (X, -<k) with --< = fq~=l -<J. The interval dimension Idim(P) 
o f  P is the minimum k for which there are interval orders (X,-<l) . . . . .  (X,-~k) with 

k --< = Nj= 1 -<j. The semiorder dimension Sdim(P) o f  P is the minimum k for which 
there are semiorders (X ,~ l )  . . . .  (X,-<k) with -< = fqk , i=~ -<J" The definitions imply 
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Idim(P)<~Sdim(P)~< dim(P) for all P E ~ .  We have Idim(C3) = dim(C3) = 3 and 
Idim(P) = Sdim(P) = 2 but dim(P) = 3 for the chevron. 

and its dual 

Up to duality, the chevron is the uniquely smallest 3-dimensional poset that is a split 

semiorder, with (U,F) representation 

i 

I 3 
• I I • I 

4 
! • I 

1 • I 
5 

6 
i _ I i w 

in which the solid dot in the interval for i denotes f(i). Important dimensionality 
results used later are Rabinovitch's theorem [14] that every semiorder has dim ~<3, 
and the main theorem in [10] which says that every split semiorder has dim ~<6. 

The next section of the paper defines an array of special classes in ~ and presents 
their inclusion diagram from [9] along with maximum values or bounds on Idim, Sdim 
and dim within each class. 

Sections 3 and 4 discuss basic aspects of split semiorders and split interval orders. 
Section 3 proves that their representations need never use the same real number more 
than once for an end point or splitting point. Section 4 focuses on minimal forbidden 
posets. It is motivated by the fact that there is no finite set ~* of posets such that 
P E ~ is a split semiorder (or split interval order) if and only if no induced subposet of 

is in ~*.  For example, no crown Cn for n ~> 3 is a split interval order, but this class 
of minimal forbidden posets is a very small segment of the minimal forbidden posers 
for either split semiorders or split interval orders. Other notable minimal forbidden 
posets for split semiorders are 2 + 3 and 1 + 4, but neither is forbidden for split 
interval orders. 

Section 5 focuses on ~2. It shows the reconfiguration of the poset classes of Sec- 
tion 2 in the bipartite domain. Nonidentical bipartite classes from Section 2 are linearly 
ordered by proper inclusion and, with one exception, there is a uniquely smallest poset 
between adjacent classes that is in the upper class but not in the lower class. 

In the bipartite context, split semiorders are equivalent to split interval orders and 
other classes, including the class of all bipartite posets with Idim ~<2. It follows that 
the family of 3-interval irreducible posets of height two described in Trotter and Moore 
[20, pp. 375-377] (see also [17,18, pp. 81-85]) characterizes the family of minimal 
forbidden bipartite posets for split semiorders as well as for the other classes in the 
next section whose bipartite restrictions are also characterized by Idim ~< 2. 
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The paper concludes with a brief summary and open problems. 

2. Poset classes 

We arrange further definitions of  classes in ~ into three groups based on exclusions, 

dimensionality, and enhanced interval representations. The exclusionary mode defines 

P as a semitransitive order if it has no induced 1 + 3, and as a subsemiorder if  it 
has no induced 2 + 3 and no induced 1 + 4. Subsemiorders appear in Trenk [16] as 

part of  a more extensive system of  classes in ~ .  Unlike interval orders (no 2 + 2) and 

semiorders (no 2 + 2, no 1 + 3), the semitransitive order class and the subsemiorder 

class include ~2. 
The second group defines P as a bilinear order if  dim(P)~<2, a bisemiorder if 

Sdim(P)~<2, and a bi-interval order if  Idim(P)~<2. Dushnik and Miller [6] describe 

alternative characterizations of  bilinear orders: see also [8]. Clearly, P = (X,-~) is a 

bisemiorder if there are a, c : X ~ • such that x -~ y if and only if a(x) + 1 < a(y) 
and c(x) + 1 < c(y), and is a bi-interval order if  there are a,b,c ,d : X ~ ~ such 

that a<~b,c<~d, and x -< y if and only if b(x) < a(y) and d(x) < c(y). The interval 

configurations in the latter representation have given rise to the name trapezoid order 
as an alternative to bi-interval order. 

The most general poset considered for the third group is known as a bitolerance 

order. We say that P = (X,-<) is a bitolerance order if there exist a,b, f l , f 2  : X  ~ 
such that: 

1. For all x E X ,  a(x)<~fi(x)<<.b(x) for i = 1,2, and 
2. For all x ,y  c X ,  x -~ y if  and only if f l ( x )  < a(y) and b(x) < f2(y) .  

Bogart and Trenk [5] prove that P is a bitolerance order if and only if it is a trapezoid 

order. Hence the bitolerance, trapezoid, and bi-interval designations denote the same 
thing. 

We note five subclasses of  bitolerance orders defined by restrictions on the preceding 

bitolerance representation. A functional equality such as f l  + f 2  = a+b in the following 
list means that the equality holds for all x E X, e.g. f l ( x )  + f2(x)  = a(x) + b(x) for 

all x E X. The five restricted classes are: 

proper bitolerance order: a(x) < a(y) ¢:~ b(x) < b(y), 

unit bitolerance order: b = a + 1, 

tolerance order: f l  + f2  = a + b, 
unit tolerance order: b = a + 1 and f l  + f2  = a + b, 

50% tolerance order: f l  = f2  and f l  + f2  = a + b. 

As mentioned earlier, the classes of proper bitoleranee orders and split interval orders 
are identical [4, 12]. Both are also identical to the class of  unit bitoleranee orders [4], 
so the split interval, proper bitoleranee and unit bitolerance designations are equivalent. 
In addition, Bogart et al. [3] prove equivalence between unit tolerance orders and 50% 
tolerance orders. 
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bitolerance orders J 
hi-interval orders I (I,S,D) = (2,=o,0o) 
trapezoid orders I 

split interval orders I 
J tolerance orders I (2,oo,=*) unit bitolerance orders I (2,,,~,=o) 

I ~  proper bitolerance orders I 

l unit tolerance orders I 
50% tolerance orders I I subsemiorders I (=°,*°,°o) 

(2,.0,=.) J 
I bisami°rders I ~ =--2- I split semi°rders,,,. 3_S_D_61<2< < 

i l terval orders semitransitive orders I (o0,0%oo) 

I (1,oo, 

l s e m i 0 r d e r s i '  - r  
I (1,1,3) 

I bilinear orders I I 
(2,2,2) 

Iweako ers111,1,2) 
I 

linear orders (1,1,1) 

Fig. 1. Proper inclusion diagram for poset classes with equivalences and maximum dimensionalities. 

Fig. 1 arranges our ~ classes by equivalences and proper inclusions. We note also 

by (LS, D) the maximum values of  Idim, Sdim and dim for each class. Thus, for class 
cg, I = max{Id im(P)  : P  E ~},  S = max{Sdim(P)  : P  E cg}, and D = max{dim(P)  : 

P E ~} ,  with c~ denoting no upper bound. The only cases in which D is not precisely 
known occur for bisemiorders and split semiorders. 

Theorem 2.1. The subclasses of  ~ defined by each row of  Fig. 1 are identical within 
each box. The boxed classes are partially ordered by proper inclusion from bottom to 
top accordin9 to the lines in the diaoram. Maximum dimensionalities are shown by 
the (LS, D) triple next to each box, with I = S = 2 and 3~<D~<6 for bisemiorders, 

and I -- 2 and 3 <<.S <<.D<~ 6 for split semiorders. 

Proof .  All aspects of  the theorem except for dimensionalities are established in [9] 
and in supporting references cited above. Verifications for (LS, D) follow: 

Linear orders." (1, 1, 1). D -- 1 by definition. I = S = 1 by 1 <<.I<~S<<.D. 
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Weak orders: ( I ,  1,2). S = 1 because every weak order is a semiorder. D = 2 by 
duality in ~ classes [8, p. 77]. 

Bilinear orders: (2,2,2) .  D = 2 by definition. Idim(2 + 2 ) =  2. 

Semiorders: (1, 1,3). S = 1 by definition. D = 3 by [14]. 

Bisemiorders: I = S = 2, 3~<D~<6. S = 2 by definition. I = 2 because I<~S and 
I = 2 for bilinear orders. 3 ~<D~<6 because D = 3 for semiorders. 

Split semiorders: •=2 ,  3<~S<~D<~6. 3<~S because some split semiorders are not 

bisemiorders [9]. D~<6 by [10]. Given representation (U,F)  for split semiorder P = 

(X,-<), define -'<i and -<2 on X by x-<l y if  f ( x ) <  ma(y),  and x-<2y if  a ( x ) +  

1 < f ( y ) ,  so -< = (-<l n -<2). It is easily seen that -<l and -<2 are interval orders, 
so Idim(P)~<2. Hence I = 2. 

Interval orders: (1,o c, oo). I = 1 by definition. Unboundedness of  Sdim for interval 

orders is noted in Trotter and Bogart [19, p. 75]. 
Unit tolerance orders, tolerance orders, split interval orders, bitolerance orders: 

(2, cx~,~).  I = 2 because some unit tolerance orders such as 2 + 2 are not interval 
orders and all bitolerance orders are bi-interval orders with Idim ~<2. S = cc by the 

preceding paragraph. 

Semitransitive orders, subsemiorders: (oo, oo, cx~). The standard bipartite 2n-point 
example of  Dushnik and Miller [6, 8,18] has Idim = Sdim = dim = n. [] 

3. Distinguishing representations 

In this section we prove that representations of  split semiorders and split interval 
orders need never use the same real number for more than one end point or splitting 
point. We use this fact in our proof  [10] that dim ~< 6 for every split semiorder. 

Let a(X)  = {a(x) : x C X},  and similarly for other functions. A representation ( L F )  

for a split interval order is distinguishin9 if  [a (X)Ub(X)Uf (X) ]  = 31xl. A representa- 
tion (U,F)  for a split semiorder is distinguishin9 if  [ a ( X ) U  { a ( x ) +  1: 

x ~ X}  U f ( X ) l  = 31XI. Our proof  for distinguishing representations uses the rela- 
tion ~ on X defined for poset P = (X, -<) by 

x ~ y if, for a l l z C X ,  x -< z cc, y -< z and z -< x c* z -< y . 

It is easily seen that ~ is an equivalence relation. We denote by X~ ~ the family o f  
equivalence classes in X determined by ~ .  

Theorem 3.1. Every split semiorder and split interval order has a distinguishin 9 rep- 

resentation. 

Proof.  We begin with the split semiorder case. Let (Y, -<) be a split semiorder. Define 
on Y as above, choose a representative from each class of  Y~ ~,  and denote by 

X the system of  representatives. It suffices to prove for the split semiorder part o f  
Theorem 3.1 that (X, -<) has a distinguishing split semiorder representation, for we can 
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I : ] lef t  E l - s h i f t  

] lef t  ~1 - s h i f t  

lef t  (E1/2) - sh i f t  

• 't n o  sh i f t  
I 

r =  
t i 

I 

I 
t 

fl ~- 
ra in  f(x) with f(x) = b (y) 

for some y ~ x 

] n o  sh i f t  

] le f t  e l  - sh i f t  

] le f t  ~ l - s h i f t  

] lef t  e 1 - sh i f t  

Fig. 2. Part of (U,F) prior to left shifts. 

then define e :  Y \ X  ~ ~ and take (a ( y ) , f ( y ) ,  a ( y )+  1) = (a(x)+ e ( y ) , f ( x ) +  e(y), 
a(x) + 1 + e(y))  when y E Y\X ,  x E X and y ~ x, in such a way that (Y,-<) has 

a distinguishing representation. If  IXI -- 1, the desired result is obvious, so assume 

henceforth that IX l > 1. 
Let (U,F) be a split semiorder representation for (X,-<), and for convenience denote 

a(x) + 1 by b(x). Also let N = IX I and assume that la(X) U b(X) U f ( X )  t < 3N, else 

there is nothing to prove. We need to undo equalities like f ( x )  = b(y) and f ( x )  = 
a(y) between splitting points and interval end points, and will translate intervals for this 

purpose. We refer to the translation o f  (a(x), f (x), b(x) ) to (a(x) - e, f (x ) - e, b(x) - e) 
as a left e-shift of  x, and to the translation of  (a(x) , f (x) ,b(x))  to (a(x) + e , f ( x )  + 
e,b(x) + e) as a right e-shift o f x .  

Suppose there are distinct x, y E X with f ( x )  = b(y). Let Xi = {x E X : f ( x )  = b(y) 
for some y ¢ x in X}  with 

f ( X l )  = { f l  < f2  < "'" < fK}- 

Let Ai be the minimum distance between distinct points in a(X)U b(X)U f ( X ) ,  and 

fix el so that 0 < el < A1/N. Let Z = {z E X : f l  ~<f(z)}. We modify (U,F) by a 

left el-shift of  z for every z E Z, with one exception: if  f l  = f ( z )  = b(z), this unique 

z undergoes a left (el/2)-shift. Fig. 2 illustrates the procedure. 

Because the shift magnitudes are much smaller than A1, the left shifts for Z preserve 

all strict inequalities among the original points in a(X) U b(X) U f ( X ) .  Hence every -< 

instance is preserved by the shifts. I f  p E X \ Z ,  q E Z and p ~ q, then the left shift 

o f  q will not induce q --< p for the modified representation because a(p)<~f(p)  < 
f t  <~f(q) and hence a(p) < f ( q )  - el. Likewise, when the exceptional f l  = f ( z )  = 
b(z) occurs, the left (el/2)-shift of  z coupled with the left el-shift of  w E Z\{z}  
for which w ~ z will not induce w --< z because a(z) - el~2 < f ( w )  - el. Hence 
the modified (U,F) after the shifts produces the same --< on X as the original (U,F) 
according to the split semiorder representational definition. In the process, we undo all 

cases of  f ( x )  = b(y) = f l ,  shift f 2  through f x  leftward by el, and have f 2  - -  el as 
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the new minimum for f ( x )  = b(y) = f 2  - el in the modified representation unless 

no b(y) in this case was shifted due to f ( y )  < f l .  In any event, if there remain 

distinct x and y in the modified (U,F)  such that f ( x )  = b(y), their common value 

must be in {f2 - e l  . . . . .  fK  - e l } .  I f  so, we take the smallest applicable value in this 

set and repeat the shift process with f t  replaced by f k  - el. The process continues in 

the obvious way, but fewer than N times, until all cases o f  f ( x )  = b(y) have been 

changed into f ( x )  < b(y) in the final modification. Points in X whose intervals are 

near the right end of  the original representation can be left el-shifted many times, but 

never more than K < N times. 

At this juncture we have a modified (U,F)  in which there are no distinct x and 

y with f ( x )  = b(y). Given the new (U,F), suppose there are distinct x , y  E X with 

f ( x )  = a(y). Let X2 = {x E X : f ( x )  = a(y) for some y ~ x in X}  with 

f (X2)  = {gl > 02 > ... > gs} • 

Let A2 be the minimum distance between distinct points in the new a ( X ) U b ( X ) U f ( X ) ,  

and fix e2 so that 0 < e2 < A2/N. Let Z = {z E X  : f(z)<~91} and modify the 

new (U,F)  by a right e2-shift o f  z for every z C Z, with one exception: if 91 = 

f ( z )  = a(z), this unique z undergoes a right (e2/2)-shift. The process continues in a 

symmetric manner to that for X1 : once 91 has been resolved, we look for the largest o f  

{92 + e2 . . . . .  9J + e2} at which f ( x )  = a(y), resolve that case, and repeat the process 

until all instances o f  f ( x )  -- a(y) have been converted to a(y) < f (x ) .  The definition 

o f  e2 ensures that an instance o f  f ( x )  = b(y) will not reappear. 

We now have a split semiorder representation (U,F)  in which neither f ( x )  = a(y) 
nor f ( x )  = b(y) occurs for distinct x and y. It could still happen that some x have 

f ( x )  = a(x) or f ( x )  = b(x), but in every such case there is no a ( y ) , f ( y )  or b(y) 
with the same value for y ¢ x. Hence we can increase f ( x )  slightly for each f ( x )  -- 
a(x) ease, decrease f ( x )  slightly for each f ( x )  = b(x) case, and not disturb -< while 

ensuring that there are no x, y E X for which f ( x )  = a(y) or f ( x )  = b(y). In the 

process, a(x) < f ( x )  < b(x) for all x. 

Next, if f ( x )  = f ( y )  for distinct x and y, slight changes in f will undo these 
equalities without disturbing -< or the properties just noted. Finally, it could still be 

true that a(x) = a(y), hence also b(x) = b(y), for distinct x and y. Then slight changes 

in endpoints that preserve the unit-interval feature will yield a (U,F)  representation 

with [a(X) U b(X) U f(X)l -- 3N. 

This completes our proof for split semiorders. The proof for split interval orders 
has a few differences. Assume that (Y,-~) is a split interval order with system of  

representatives X for Y~ ~. It suffices to show that (X,-<) has a distinguishing split 

interval order representation. 
Let (LF)  be a representation for (X, -~) with N = IXl > l, and assume that ]a(X) U 

b(X)  U f ( X ) l  < 3N. Let )to = {x E X :  a(x) = b(x)} for degenerate intervals. I f  X0 is 
not empty, let A0 be the minimum distance between distinct points in a(X)U b (X)U 
f ( X ) ,  fix e0 so that 0 < e0 < Ao/2, and replace (a(x) , f (x ) ,b(x) )  for each x E X0 by 
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( f ( x ) -  eo, f ( x ) , f ( x ) +  Co). The representation thus modified is easily seen to a split 
interval order representation for (X,-~). 

Assume henceforth that (LF)  has a ( x ) <  b(x) for all x c X. Suppose there are 
distinct x ,y  E X with f ( x )  = b(y). Define X i , f ( X l ) ,  Al,el and Z as before. In 
modifying (LF)  on Z, we left el-shift all z E Z except those for which f l  = f ( z )  = 
b(z). There can be many such z with different a(z) values. Each is left e-shifted with 
a different e value between 0 and el. The resultant shifts fully preserve < and give 
the next case for f ( x )  = b(y), x # y, at f2  - el or to its right. The process continues 
until all instances in which a right endpoint of one interval equals the splitting point 
of another have been changed to inequalities. 

We then continue as in the X2 part of the split semiorder proof with the obvious 
change for multiple instances of f ( z )  = a(z). The rest of the split semiorder proof 
applies without change except for the unit-interval aspect. If desired, the lengths of all 
intervals in the first (LF)  representation for which a(x) < b(x) for all x E X can be 
preserved throughout the process. [] 

4. Forbidden posets 

A poset Q is minimally forbidden for the class of split semiorders if Q is not a 
split semiorder and every proper induced subposet of Q is a split semiorder. A similar 
definition applies to the class of split interval orders. Our purpose in this section is 
to verify some of  the simpler minimal forbidden posets for split semiorders and split 
interval orders. We consider crowns and m + n posets, then conclude with a minimal 
forbidden poset for split semiorders that has eight points and height 3. 

The following theorem is a consequence of Theorem 5.5 and the classification of 
3-interval irreducible posets in [20]. We include a proof here that may be instructive. 

Theorem 4.1. Every Cn for n >>. 3 is mNimally forbidden for split semiorders and split 
interval orders. 

Proof. Let Cn -- ({Xl . . . . .  x,} U {yl . . . .  ,yn} ,~)  with {xi -~ yi, xi -.< yi+l} for 
i = 1 . . . . .  n -  1 and {x, ~ yn,Xn -.< Yl}, n~>3. When Yl is removed, what remains 
is a split semiorder: see Fig. 3, where all intervals have unit length. It follows from 
symmetry and duality that every proper induced subposet of (7, is a split semiorder, 
hence also a split interval order. 

To show that C, is not a split interval order, hence also not a split semiorder, assume 

to the contrary that (I ,F) is a distinguishing split interval order representation of C,,. 
For definiteness let a(y2) = min{a(yl ), a(y2) . . . . .  a(y~)}. We have 

f ( x 2 ) < a ( y 2 ) < a ( y ! )  byx2 ~y2 ,  
f (Y t )  < b(x2) by x2 "~ Yl and f(x2)  < a(yl ), 
b(x2) < f(Y3) by x2 -< Y3, 
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Y2 Y3 Y4 Yn 

X 1 X2 X3 X4 Xn.1 Xn 

x1 

X2 
I 

X3 
I 

X4 
1 

, Y2 
1 : I 

• I Y3 
I : t 

• I Y4 

I Ys 
I • I 

I xn'l -- I Yn 
i Xne I I: " 

Fig. 3. A split semiorder. 

b(xl ) < f (Y l  ) by xl ~ yl ,  

f ( x l ) < a ( y 2 ) < a ( y 3 )  byXl  --<y2 • 

The last line gives f ( x l )  < a(y3) and the three before it give b(Xl) < f(Y3),  so we 

obtain Xl -< Y3, a contradiction to x] ~ y3. [] 

As noted earlier, all bipartite posets that are minimally forbidden for split semiorders 

and split interval orders are described in [18,20]. 

Theorem 4.2. m + n is minimally forbidden for split semiorders if  and only if  it is 
2 + 3 or 1 + 4; m + n is minimally forbidden for split interval orders if  and only iJ 
it is 3 + 3 .  

Proof.  It is easily seen that every m + n with m + n ~< 4 is a split semiorder, and that 

every 2 + n is a split interval order. The proof is completed by showing that 2 + 3 and 

1 + 4 are not split semiorders, and 3 + 3 is not a split interval order. Proposition 4.1 

in [5] proves the 3 + 3 case. For the others set X = {x,y,z, p,q}, [X I = 5. 
Suppose p -~ q and x ~ y -< z along with p ~ z. We prove that if  (X, --<) is a split 

semiorder then x -< q. Consequently, 2 + 3 is not a split semiorder. Our hypotheses 

imply for a split semiorder representation (U,F) that 

f ( x )  < a(y) a n d a ( x ) +  1 < f ( y ) ,  
f ( y )  < a(z) and a(y) + 1 < f ( z ) ,  
f ( p )  < a(q)anda(p) + 1 < f ( q )  

and either a(z)<<.f(p) or f (z)<~a(p)+ 1, for not (p  -< z). Suppose a(z)<<.f(p). Then 

f ( x )  < a(y)<~f(y)  < a(z)<~f(p) < a(q)<~f(q), 
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which in conjunction with a(x) + 1 < f ( y )  implies f ( x )  < a(q) and a(x) + 1 < f ( q ) ,  

so x -< q. Suppose f ( z )<~a(p)+  1. Then 

a(x) + 1 <~ f ( x )  + 1 < a(y) + 1 < f(z)<~a(p) + 1 <~ f ( p )  + 1 < a(q) + 1 

which in conjunction with a ( p ) +  1 < f ( q )  implies f ( x )  < a(q) and a(x)+ 1 < f (q ) ,  
so again we have x -< q. 

Suppose x -< y -< z -< p and q ~ p. We prove that if  (X,-<) is a split semiorder 

then x -< q. Consequently, 1 + 4 is not a split semiorder. Our hypotheses imply for a 

split semiorder representation that 

f ( x )  < a(y) and a(x) + 1 < f ( y ) ,  

f ( y )  < a(z) and a(y) + 1 < f ( z ) ,  

f ( z )  < a(p) and a(z) + 1 < f ( p )  

and either a(p)<~f(q)  or f (p)<~a(q)+ 1, for not (q -~ p) .  Suppose a(p)<~f(q).  Then 

f ( x )  < a(q) because f i x )  < a(y) < f ( z ) -  1 < a ( p ) -  1 <~ f (q ) -  1 <~a(q), and a(x)+ 
1 < f ( q )  because a(x)+ 1 <~f(x)+ 1 < a ( y )+  1 < f ( z )  < a(p)<. f (q ) ,  so x -< q. Or, 

if  f ( p ) < . a ( q ) +  1, then f ( x )  < a(q) by f ( x )  < a(y) < f ( z )  - 1 < a(p) - 1 <~f(p) - 

1 <~a(q), and a(x) ÷ 1 < f ( q )  by a(x) + 1 < f ( y )  < a(z) < f ( p )  - 1 <~a(q)<~f(q), 
so again we get x -< q. [] 

We conclude this section with a height-3 poset that is minimally forbidden for split 

semiorders and does not include 2 + 3. 

Theorem 4.3. The poset of  Fi9. 4 is m&imally forbidden for split semiorders. 

Proof. Let P denote the eight-point poset o f  Fig. 4. There are three nonisomorphic 

seven-point induced subposets o f  P obtained by deleting x or 1 or 4. Each of  the three 

is a split semiorder, so every proper induced subposet o f  P is a split semiorder. 

Suppose that P itself is a split semiorder with distinguishing representation (U,F) :  

see Theorem 3.1. Assume without loss of  generality that f ( 6 )  < f ( 5 )  < f ( 4 ) ,  as in 
the middle of  Fig. 4. We have a(x) + 1 < f ( y )  by x -< y, f ( y )  < a(4) by y -< 

4, and a ( 4 ) < f ( 2 )  because 2 -< 5 gives a ( 2 ) +  1 < f ( 5 ) < f ( 4 ) ,  hence a ( 2 ) +  
1 < f ( 4 ) ,  so 2 -,~ 4 requires a(4) < f ( 2 ) ,  Therefore a(x) + 1 < f ( 2 ) .  Because x -,~ 2, 

we have a(2)  < f ( x ) ,  and x -< y implies f i x )  < a(y), so a(2)  < a(y) and a(2)  + 
1 < a(y) + 1. Next, y -< 6 implies a(y) + 1 < f ( 6 ) ,  so a(2)  + 1 < f ( 6 ) ,  and since 

2 ,-~ 6 we have a(6)  < f ( 2 ) .  By 3 -< 6, a(3)  + 1 < f ( 6 )  < f ( 5 ) ,  so 3 ,-~ 5 re- 
quires a(5)  < f ( 3 ) .  Also, by 2 < 5 and 3 -< 6, f ( 2 )  < a(5) and f ( 3 )  < a(6). Hence 

f ( 2 )  < a(5) < f ( 3 )  < a(6)  < f ( 2 ) ,  a contradiction. We conclude that P is not a split 
semiorder. [] 

5. Bipartite orders 

This section describes the reconfiguration of  classes on Fig. 1 for the bipartite domain 
,~2. For P = (X, -<) in ~2,  we let B(P) = {x E X : x -< y for some y C X}  and T(P) = 
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4 5 6 

Y l  = I 
I = 14 

remove x: 1 I -= I 
I ... 1 5  

2 ~  -- , I 
, ~. 16 

31 • I 

Yl -- I 
:- I I -" 15  x l  21 :. I 

remove 1: I • 16 
31 

- ~"  -" 14 

(restore 1, remove 4)-~ 1 I---- .e I 

Fig. 4. Split semiorder representations for proper induced subposets. 

{y E X • x -< y for some x E X}. Four lemmas will facilitate the reconfiguration. The 

first is proved in Trotter [17]. 

Lemma 5.1. I f P  E ~i~2 then dim(P)~< 1 + Idim(P). 

Lemma 5.2. The only P E ~2 o f  dimension 3 and no more than 7 points for which 

Idim(P) < 3 are 

and their duals. 

Proof. The characterization of irreducible three-dimensional posets in Trotter and Moore 
[20], Kelly [11], or Trotter [18] shows that i f P  has height 2, dimension 3, and 7 points, 
then either it is one of the three posers in Lemma 5.2, the dual of  one of those, or has 
crown C3 as an induced poset. The lemma's posets have interval dimension 2, whereas 
Idim(C3) = 3. [] 

The next lemma abbreviates Theorem 2.12 in Bogart and Trenk [5]. Its initial equiv- 
alence is central to our reconfiguration. Part 3 of  the lemma offers a method of testing 
for membership in the class. 
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Lemma 5.3. Suppose P E ~2. Then the following are equivalent: 

1. P is a bitolerance order, 

2. P is a unit tolerance order, 

3. I f  [B(P)[ = m > 0 and IT(P)[ -- n > 0, then B(P)  can be indexed as xl,x2 . . . . .  xm 

and T (P)  as Yl, Y2 . . . . .  y ,  so that, whenever xi ~ yj, either xi ~ yk for  all k <~j, 

or x / , ~  yj  f o r  all E <<. i. 

Fig. 1 and the equivalence of unit bitolerance orders and split interval orders [4] 
show that tolerance orders, unit bitolerance orders, and split interval orders are identical 
to each other and to the bitolerance orders or unit tolerance orders in the bipartite 
domain. Moreover, because the general bitolerance class is tantamount to all P E 
with Idim(P)<~2, the resultant class in ~2 consists of all bipartite posets with interval 
dimension at most 2. Lemma 5.1 shows that dim(P)~< 3 for all P in this bipartite class. 

Lemma 5.4. I f  P E ~2 is a sprit interval order then it is a split semiorder. 

Proof. Suppose R is a split interval representation of split interval order P = (X, -<) 
in ~2. It is easily seen that the representation's implications for -< are unchanged 
when the left endpoints of intervals for B(P)  are extended leftward, the right endpoints 
of intervals for T(P)  are extended rightward, and endpoints for isolated points are 
extended both ways. It follows that R can be modified into R' in which every interval 

has the same length. [] 

Our final lemma brings bisemiorders into the picture. 

Lemma 5.5. I f  P E ~2 & a split &terval order then it & a b&emiorder. 

Proof. Let R with functions a, b and f be a split interval order representation of 
split interval order P = (X, -<) in ~2, and assume that -< is not empty. Let I ( P )  = 

X \ [B(P) U T(P)], the set of isolated points in X. Define -<1 on X by 

x--q y i f x E I ( P )  and y E B ( P )  U T ( P ) ,  

x-<l y i f x E B ( P ) , y E T ( P )  and f ( x ) < a ( y )  ; 

define -<2 on X by 

x - < 2 y i f x E B ( P )  UT(P)  and y E I ( P ) ,  

x - < 2 y i f x E B ( P ) , y E T ( P )  and b ( x ) < f ( y ) .  

It follows that x -< y if and only i f x  -<l y and x -<2 y. In -<l, all isolated points are 
below all others; in -<2, all isolated points are above all others. When we delete I(P),  
the remainders of -<l and -<2 are height-2 interval orders and are therefore semiorders. 
It follows that -<l and -<2 are semiorders, hence that P is a bisemiorder. [] 
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all bipartite posets 
subsemiorders 

semitransitive orders 

v 
bi-interval orders 
bitolerance orders 
split interval orders 

unit bitolerance orders 
tolerance orders 

unit tolerance orders 
split semiorders 

bisemiorders 

Idim = Sdim(P) L 2 

dim(P) < 3 

1 bilinear orders 1 Idim = Sdim(P) I2, dim(P) I2 

interval orders Idim = Sdim(P) = 1, dim(P) I 2 

Idim = Sdim(P) = 1, dim(P) 5 2 

dim(P) = 1 

Fig. 5. Bipartite reconfiguration of Fig. 1. 

Fig. 5 describes our bipartite reconfiguration of Fig. 1. Each box represents 

one subclass of 9)~. Orders in the top box can have arbitrarily large dimension, and 

the next three boxes below it are characterized by Idim d 2, dim(P) <2 and 

Idim = 1, respectively. 

Theorem 5.6. The subclasses of Yz defined by each row of Fig. 5 are identical within 
each box. The boxed classes are linearly ordered by proper inclusion from bottom to 

top. The poset shown between adjacent boxes is the uniquely smallest bipartite poset 
that is contained in the class of the upper box and is not in the class of the lower 
box, except for the seven-point poset which has the companions of Lemma 5.2 that 
are split semiorders and not bilinear orders. 

Proof. We comment on within-box equivalences and then note the proper inclusions. 

Forbidden 1 + 3 for semiorders does not occur when H(P)<2, so the bipartite 

semiorder and interval order classes are identical. The classes of subsemiorders and 
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semitransitive orders in ~ include all bipartite posets, so the three classes in the top 
box are mutually identical. Lemmas 5.3 and 5.4 along with the comments preceding the 
latter show that all bipartite classes, except perhaps that of bisemiorders, in the second 
box down are mutually identical. The bisemiorder class is included in the tolerance 
order class by Fig. 1, and the tolerance order class is included in the bisemiorder class 
by Lemma 5.5. 

The inclusion of each boxed class on Fig. 5 in the next higher boxed class follows 
from Fig. 1, Lemma 5.1, the observations on dimensions in the paragraph that precedes 
Theorem 5.6, and Idim~< dim. The specific posets circled in Fig. 5 show that the 
inclusions are proper. The minimal cardinality of each poset is obvious for 1 + 1, 1 + 2 

and 2 + 2, and is easily checked for C3, which is the uniquely smallest poset of 
height 2 and dimension 3 that is not a split semiorder. Indeed the only other posets 
of dimension 3 with fewer than seven points are the height-3 chevron and its dual. 
Lemma 5.2 identifies the minimum-cardinality bipartite posets that are split semiorders 
and not bilinear orders. [] 

6. Discussion 

Our purpose has been to provide a comprehensive introduction to split semiorders and 
split interval orders based on prior work in [9,10] and other contributions, especially 
[5,12,18,20]. Aspects of split orders were considered through their representations, 

dimensionalities, minimal forbidden posets, and inclusion relationships to other poset 
classes for the general case and the restricted bipartite case. 

Several questions remain open. One is characterizations of split semiorders and split 
interval orders by minimal forbidden posets. We know the part of this characterization 
for forbidden height-2 posets, but not for greater heights. Other questions involve di- 
mensionalities. A central problem, emphasized in [10], is to determine the maximum 
values of Sdim(P) and dim(P) for split semiorders. We wonder whether any split 
semiorder P has dim(P) - Sdim(P) >~ 3 or Sdim(P) - Idim(P) >/2. 

Another set of questions focuses on representational properties and restrictions. An 
example is whether there is an interesting characterization of split semiorders that 
have (U,F)  representations in which all splitting points lie in a central range of their 
intervals' midpoints such as If(x)- a ( x ) -  1 ~1~<)~ for fixed 2 in [0, 1/2). 
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