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Abstract

We show that for every interval order X , there exists an integer t so that if Y is any interval
order with dimension at least t, then Y contains a subposet isomorphic to X . c© 2000 Published
by Elsevier Science B.V. All rights reserved.
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1. Introduction

A partially ordered set (or poset) X = (X; P) is called an interval order if there is
a function I assigning to each element x∈X a closed interval I(x) = [lx; rx] of the
real line R so that for all x; y∈X; x¡y in P if and only if rx ¡ ly in R. Recall that
the dimension of a poset X = (X; P) is the least t so that the partial order P is the
intersection of a family of t linear orders on X . For n¿ 1, a poset on 2n points may
have dimension as large as n, but the dimension of an interval order on n points cannot
be nearly as large. In fact, F�uredi et al. [4] showed that the maximum dimension d(n)
of an interval order on n points satis�es:

d(n) = lg lg n+ (12 + o(1))lg lg lg n: (1)

Since the growth rate is quite slow, it is natural to ask what causes an interval order
to have large dimension. Here we provide a somewhat surprising answer. We show
that all small interval orders are contained in any interval order of su�ciently large
dimension. More formally, we will prove the following theorem.
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Theorem 1.1. For every interval order X ; there exists a postive integer t = t(X) so
that if Y is any interval order with dimension at least t; then Y contains a subposet
isomorphic to X .

This theorem is quite special to the class of interval orders. For posets in general, no
such result can hold. To see this, note that for each pair g; t of positive integers, there
exists a height 2 poset X with dimension at least t and girth at least g. It is trivial to
construct such posets from graphs with large girth and large chromatic number.
For additional background material on posets, we refer the reader to Trotter’s mono-

graph [7], and any terms not explicity de�ned here can be found be found in this
source. Other good sources of background material include the survey articles [8,9].

2. Posets and dimension

Throughout this paper, we consider a poset X =(X; P) as a structure consisting of a
set X (almost always �nite) and a re
exive, antisymmetric and transitive binary relation
P on X . We call X the ground set of the poset X , and we call P a partial order on X .
The notations x6y in P; y¿x in P and (x; y)∈P are used interchangeably, and the
reference to the partial order P is often dropped when its de�nition is �xed throughout
the discussion. We write x¡y in P and y¿x in P when x6y in P and x 6= y. When
x; y∈X; (x; y) 6 ∈P and (y; x) 6 ∈P; we say x and y are incomparable and write x‖y in
P. When X = (X; P) is a poset, we call the partial order Pd = {(y; x): (x; y)∈P} the
dual of P and we let Pd = (X; Pd).
When P is a binary relation on X and Y ⊆X , we denote the restriction of P to

Y by P(Y ). When P is a partial order on X; Q = P(Y ) is a partial order on Y and
Y=(Y; Q) is called a subposet of X=(X; P). Also, we call Y the subposet determined
by Y . More generally, whenever a poset X = (X; P) remains �xed in a discussion and
Y ⊆X , we let Y denote the subposet determined by Y .
For an integer n¿1, let n denote the n-element chain 0¡ 1¡ · · ·¡n − 1. Also,

when X and Y are posets, let X + Y denote the disjoint sum of X and Y .
When P and Q are binary relations on a set X , we say Q is an extension of P when

P⊆Q; a linear order L on X is called a linear extension of a partial order P on X
when P⊆L. A family R of linear extensions of P is called a realizer of P (also, a
realizer of X) when P=

⋂
R, i.e., for all x; y in X , x¡y in P if and only if x¡y in

L, for every L∈R. The minimum cardinality of a realizer of P is called the dimension
of X and is denoted dim(X). Note that if X contains Y , then dim(Y)6dim(X).

3. Interval assignments and representations

Let X be a �nite set. A function I assigning to each x∈X a closed (possibly
degenerate) interval I(x) = [lx; rx] of R is called an interval assignment on X . For
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each x∈X; lx is called the left-end point of I(x) and rx is called the right-end point
of I(x). When the assignment I is �xed throughout a discussion, we call lx and rx the
left- and right-end points of x.
Let [a; b] and [c; d] be closed intervals of R; we write [a; b]/ [c; d] when b¡c in R.

Whenever X = (X; P) is an interval order, an interval assignment I on X is called an
representation of X when x¡y in P if and only if I(x)/ I(y). For brevity, whenever
I is an interval assignment on a set X and x∈X , we will use the alternate notation
[lx; rx] for the closed interval I(x).
Note that we do not require that the end points of intervals in the range of an

interval assignment be distinct. We even allow degenerate intervals, and I need not be
an injection. On the other hand, an interval assignment I is said to be distinguishing
if all intervals are non-degenerate and all end points are distinct. It is easy to see that
every interval order has a distinguishing representation.
One of the most fundamental results for interval orders is the following forbidden

subposet characterization theorem due to Fishburn [2].

Theorem 3.1. A poset X is an interval order if and only if it does not contain a
subposet isomorphic to 2+ 2.

A poset X = (X; P) is called a weak order if there exists a function w :X → R so
that x¡y in P if and only if w(x)¡w(y) in R. Weak orders also admit a simple
characterization by forbidden subposets (see [3], for example).

Proposition 3.2. A poset X=(X; P) is a weak order if and only if it does not contain
a subposet isormorphic to 2+ 1.

For additional background information on interval orders, the reader is encouraged
to consult Fishburn’s monograph [3] and Trotter’s survey article [10].

4. Canonical interval orders and thickets

For an integer n¿2, let In = (In; Pn) denote the interval order determined by the
non-degenerate intervals with integer end points from {1; 2; : : : ; n}. For this interval
order, the identity map is a representation, although of course, not a distinguishing
one. The interval orders in the family {In: n¿2} are called canonical interval orders.
In [1], Bogart et al., showed that limn→∞dim(In)=∞. A much more precise estimate
on the growth rate of dim(In) was given by F�uredi et al. [4], and this estimate is
essential to the formula given in Eq. (1).

Theorem 4.1.

dim(In) = lg lg n+ (12 + o(1))lg lg lg n: (2)

The following elementary result is immediate.
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Proposition 4.2. Let X=(X; P) be an interval order with |X |=n. Then X is isomorphic
to a subposet of the canonical interval order I2n.

De�nition 4.3. An n-thicket is a poset Tn=(Tn; Pn) whose ground set Tn is the union
Tn = Cn ∪ Dn; where Cn = {xi: 16i6n} and Dn = {yj; k : 16j¡k6n}. Furthermore,
we require that:

1. xi ¡ xi+1 in Pn, for i = 1; 2; : : : ; n− 1;
2. xi ¡yj; k in Pn if and only if 16i¡ j¡k6n; and
3. yj; k ¡ xi in Pn if and only if 16j¡k ¡ i6n.

It is important to recognize that the de�nition of a n-thicket Tn = (Tn; Pn) does not
specify the order relation on Tn precisely. In particular, we do not know whether yi;j
and yk;l are comparable or incomparable when j6k6j + 1. Also, note that when
n= 1; D1 = ∅, and a 1-thicket is just a one element poset. The next lemma allows us
to show that an interval order contains a canonical interval order In by showing that
it contains a 3n-thicket.

Lemma 4.4. Let X = (X; P) be an interval order; and let n¿2. If X contains a
subposet isomorphic to a 3n-thicket; then X contains a subposet isomorphic to the
canonical interval order In.

Proof. Suppose that X contains a subposet isormorphic to a 3n-thicket. Label the
points which form this subposet using the notation from De�nition 4.3. Then de�ne an
injection f : In → X by setting f([i; j]) = y3i−1; 3j. It is easy to see that f is an order
preserving injection.

5. Linear extensions of interval orders

Let I be a representation of an interval order X=(X; P). A choice function f on I is
an injection f :X → R such that lx6f(x)6rx in R, for all x∈X . For a choice function
f, the f-extension of I is the linear order L(f) obtained by setting x¡y in L(f) if
and only if f(x)¡f(y) in R. We state the following elementary result for emphasis.

Proposition 5.1. Let I be a representation of an interval order X . For every choice
function f on I; L(f) is a linear extension of P.

The notion of a choice function allows us to provide a very short proof of an
important lemma due to Rabinovitch [6].

Lemma 5.2. Let X = (X; P) be an interval order; and let X = Y ∪ Z be a partition
of X . Then there exists a linear extension L of P such that y¿z in L whenever
y∈Y; z ∈Z and y‖z in P.
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Proof. Let I be a distinguishing representation of X . De�ne a choice function f on I
by setting f(y) = ry, for all y∈Y and f(z) = lz, for all z ∈Z .

It is customary to say that Y is over Z in the linear extension L constructed in the
preceding Lemma. This is a slight abuse of terminology, since we do not require that
y¿z in L for all y∈Y and all z ∈Z . We only require this ordering to hold when y
is incomparable to z in P.
The next lemma asserts that all linear extensions of interval orders arise from choice

functions.

Lemma 5.3. Let I be a distinguishing representation of an interval order X =(X; P).
For every linear extension L of P; there exists a choice function f on I such that
L= L(f).

Proof. We argue by induction on |X |. The base step |X | = 1 is trivial, so assume
the lemma holds for every interval order whose ground set has smaller cardinality.
Let x0 be the L-largest element of X . Then x0 is also a maximal element of X . Set
Y = X − {x0}. Let L′ and I ′ be the restrictions of L and I to Y , respectively. By the
induction hypothesis, there exists a choice function f′ on I ′ such that L′ = L(f′).
Let Z = {y∈Y : f′(y)¿rx0}. If Z = ∅, we extend f′ to X by setting f(x0) = rx0

and f(y) = f′(y), for all y∈Y . In this case, it is obvious that L = L(f). So we
may suppose that Z 6= ∅. Now let p = max{f′(y): y∈Y − Z}. Then p¡rx0 . Let
s = max{ly: y∈Z}. Since x0 is maximal in X , and I is distinguishing, s¡ rx0 . Set
q=max{s; p}. Then q¡rx0 . Let g be an order preserving injection from {f′(z): z ∈Z}
into the open interval (q; rx0 ) of R. Finally, de�ne a choice function f on I as follows.

f(x) =



rx0 if x = x0;
g ◦ f′(z) if z ∈Z;
f′(y) if y∈Y − Z:

Clearly L= L(f).

The next lemma is again very special to interval orders. It does not hold for posets
in general.

Lemma 5.4. Let X = (X; P) be an interval order; and let X = X1 ∪ X2 ∪ · · · ∪ Xs be
a partition. For each i = 1; 2; : : : ; s; let Li be a linear extension of P(Xi). Then there
exists a linear extension L of P so that for each i = 1; 2; : : : ; s; Li = L(Xi).

Proof. Let I be a distinguishing representation of X . For each i = 1; 2; : : : ; s, let Ii be
the restriction of I to Xi. By Lemma 5.3, for each i = 1; 2; : : : ; s, there exists a choice
functions fi on Ii so that Li = L(fi). Clearly, we may assume that f(x) 6= f(y),
when x∈Xi; y∈Xj and 16i¡ j6s. Then de�ne a choice function f on I by setting
f(x) = fi(x); when x∈Xi. Finally, set L= L(f).
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Let I be a distinguishing representation of an interval order X =(X; P). Then de�ne
dim∗(X ; I) as the least t¿0 for which there exists a family R of t linear extensions of
P so that if x and y are distinct incomparable points of X and lx ¡ ly ¡rx ¡ ry, then
there exists L∈R with x¿y in L. Strictly speaking, dim∗(X ; I) depends only on I ,
but we use this notation as a reminder of the poset for which I is a representaton. As
the next lemma shows, the value of dim∗(X ; I) does not stray too far from dim(X).

Lemma 5.5. Let I be a distinguishing representation of an interval order X =(X; P).
Then

dim∗(X ; I)6dim(X)6dim∗(X ; I) + 2: (3)

Proof. The inequality dim∗(X ; I)6dim(X) is immediate. We now show that dim(X)6
dim∗(X ; I) + 2.
For each x∈X , let f(x) = lx and g(x) = rx. Then set M1 = L(f) and M2 = L(g).

Now suppose that dim∗(X ; I) = t as evidenced by the family R of t linear extensions
of P. Then {M1; M2} ∪R is a realizer of P so that dim(X)6t + 2, as claimed.

It is important to note that the value of dim∗(X ; I) depends on the representation I .
For example, consider a three-element interval order X = (X; P) with X = {x; y; z} as
de�ned by the distinguishing representation I(x)= [1; 3]; I(y)= [2; 5] and I(z)= [4; 6].
The poset X is isomorphic to 2 + 1, and it is easy to see that dim∗(X ; I) = 2. On
the other hand, the function J (x) = [2; 3]; J (y) = [1; 6] and J (z) = [4; 5] is also a
distinguishing representation of X and dim∗(X ; J ) = 0.
When I is a distinguishing representation of an interval order X=(X; P); Y ⊆X and

J is the restriction of I to Y , we write dim∗(Y ; I) rather than dim∗(Y ; J ).

Lemma 5.6. Let I be a distinguishing representation of an interval order X =(X; P);
and let X = X1 ∪ X2 be a partition of X into two non-empty parts. Then

1: dim(X)62 + max{dim(X1); dim(X2)}; and
2: dim∗(X ; I)62 + max{dim∗(X1; I); dim∗(X2; I)}:

Proof. We prove Statement 1. The argument for Statement 2 is similar. Let t =
max{dim(X1); dim((X2)}. Then use Lemma 5.4 to choose a family S of t linear
extensions of P so that for i=1; 2, the restrictions of the linear extensions in S to Xi
form a realizer of Xi. Then set R=S∪{M1; M2}, where X1 is over X2 in M1 and X2
is over X1 in M2. It is clear that R is a realizer of P.

Lemma 5.7. Let I be a distinguishing representation of an interval order X =(X; P);
and let X = Y ∪ Z be a partition of X into two non-empty parts. Suppose further
that Y is a subset of the maximal elements of X . Then

1: dim(X)61 + dim(Z); and
2: dim∗(X ; I)6max{2; 1 + dim∗(Z ; I)}.
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Proof. Again, we prove Statement 1 only. Suppose that dim(Z)= t as evidenced by a
family S={M1; M2; : : : ; Mt} of t linear extensions of Z . Choose a linear extension Lt+1
of P with Z over Y in Lt+1. Then for each i = 1; 2; : : : ; t, let Li be a linear extension
of P with

1: Y over Z in Li;
2: The restriction of Li to Z is Mi; and
3: The restriction of Li to Y is the dual of the restriction of Lt+1 to Y .

It is easy to see that R= {L1; L2; : : : ; Lt+1} is a realizer of P.

Of course, the preceding proposition has a dual form in which Y is constrained to
be a subset of the minimal elements of X . We leave the following elementary result
as an exercise.

Proposition 5.8. Let I be a distinguishing representation of a weak order X =(X; P).
Then dim∗(X ; I)61. Furthermore; X admits a distinguishing representation J with
dim∗(X ; J ) = 0.

6. Overlap graphs

Let [a; b] and [c; d] be closed intervals of R. We say [a; b] and [c; d] overlap if
either

1: a¡c¡b¡d; or
2: c¡a¡d¡b.

In other words, two intervals overlap when they intersect but neither is contained in
the other.
Now let I be an interval assignment on a �nite set X . De�ne the overlap graph of

I as the graph X = (X; E) whose vertex set is X and whose edge set E consists of
all pairs {x; y} for which I(x) and I(y) overlap. An interval assignment on a set X
determines both an interval order and an overlap graph. However, the overlap graph
is not unique to the interval order. Instead, it depends on the representation. For the
three-element interval order discussed in Section 5, the overlap graph of I is a path,
while the overlap graph of J is an independent graph.
When the interval assignment I remains �xed, we use the symbol X for both the

interval order and the overlap graph. Also, when Y ⊆X , we use Y to denote both
the induced subgraph and the subposet determined by Y . It will always be clear from
the context whether we are referring to posets or graphs.
Now let I be an distinguishing interval assignment on X , and let Y ⊆X . When Y

is a connected subgraph of the overlap graph of I , the unique vertex of Y whose left
end point is minimal in R is called the root of Y . If y∈Y , we let d(x;Y) denote
the distance in Y from x to the root of Y . In [5], Gy�arf�as showed that the chromatic
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number of an overlap graph is bounded in terms of its maximum clique size, and the
following lemma is implicit in his proof.

Lemma 6.1. Let I be a distinguishing interval assignment on a �nite set X; and let
G;H ⊆X; with H ⊆G. Suppose further that G and H are connected subgraphs of the
overlap graph of I . Also; let y∈G; and let [a; b]=∪{I(x): x∈H}. If d(y;G)¡d(x;G);
for every x∈H; and I(y)⋂ [a; b] 6= ∅; then I(y)* [a; b].

Proof. We argue by induction on k = d(y;G). If k = 0, then y is the root of G so
ly 6 ∈ [a; b]. Now suppose that k¿1, but that [ly; ry]⊆ [a; b]. Choose a vertex z ∈G
so that d(z;G) = k − 1 and {y; z}∈E. By the inductive hypothesis, [lz; rz]* [a; b]. It
follows that there exists a vertex x∈H which is adjacent to z in the overlap graph.
This contradicts the hypothesis that all vertices in H have distance at least k +1 from
the root of G.

7. The Proof

We are now ready to present the proof of our principal result, Theorem 1.1. In view
of Proposition 4.2, Lemmas 4.4 and 5.5, it su�ces to prove the following somewhat
more technical result.

Theorem 7.1. Let m¿2; and let I be a distinguishing representation of an interval
order X = (X; P). If dim∗(X ; I)¿5m− 8; then X contains an m-thicket Tm.

Proof. We proceed by induction on m. First consider the base step m = 2. Suppose
that dim∗(X ; I)¿2. We claim that X contains a 2-thicket. Note that a 2-thicket T2 is
just 2 + 1. If X does not contain a 2 + 1, then it is a weak order. From Proposition
5.8, we would conclude that dim∗(X ; I)61, which is a contradiction. Now suppose
that m¿3 and that the theorem holds for smaller values of m.
Let G1; G2; : : : ; Gs be the vertex sets of the components of the overlap graph deter-

mined by I . Clearly, dim∗(X ; I) = max{dim∗(Gi ; I): 16i6s}. Without loss of gener-
ality, we may assume dim∗(X ; I) = dim∗(G1; I).
Set G = G1, and for each k¿0, let D(k) = {x∈G: d(x;G) = k}. Then for each

�∈{0; 1}, let W (�)=⋃{D(k): k ≡ �mod 2}. Then de�ne a partition W (�)=W (�; L)∪
W (�; R) as follows. First, set W (�; L) = {x∈W (�): there exists a vertex y∈G so that
d(y;G) + 1 = d(x;G) and ly ¡ lx ¡ ry ¡rx}. In other words, I(y) overlaps I(x) and
protrudes out the left side of I(x). Then set W (�; R) = W (�) − W (�; L). Note that
if x∈W (�; R), and x is not the root of G , then there exists a vertex y∈G with
d(y;G) + 1 = d(x;G) and lx ¡ ly ¡rx ¡ ry. Applying Lemma 5.6 twice, it follows
that there exists �∈{0; 1} and �∈{L; R}, so that dim∗(W (�; �); I)¿5m− 12. Choose
a component H of W (�; �) for which dim∗(H ; I) = dim∗(W (�; �); I). Note that there
is some k¿0 so that d(x;G) = k, for all x∈H . Furthermore, k¿2. For if k61, then
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the right-end point of the root of G is contained in the interval I(x) for each x∈H , so
H is an antichain. This implies that dim∗(H ; I)61. In turn, this requires 5m− 1261
and thus m62. The contradiction shows k¿2.
Now suppose � = R. The argument is symmetric when � = L. Let Y denote the set

of maximal elements of H and let Z =H − Y . By Lemma 5.7, dim∗(Z ; I)¿5m− 13;
so by the inductive hypothesis Z contains an (m − 1)-thicket. Label the elements of
this (m− 1)-thicket as Cm−1 = {xi: 16i6m− 1} and Dm−1 = {yi;j: 16i¡ j6m− 1}.
Then let xm be the unique element of Y whose left- end point is maximum. Note that
z¡xm in P, for all z ∈Z .
For each i=1; 2; : : : ; m−1, let yi;m be an element of G so that d(yi;m;G)+1=d(xi;G)

and lxi ¡ lyi;m ¡ rxi ¡ ryi;m . Now let [a; b] =
⋃{[lz; rz]: z ∈H}. It follows from Lemma

6.1 that b¡ryi;m , for each i=1; 2; : : : ; m− 1. This completes the proof that X contains
an m-thicket, as claimed.

The following corollary, which follows immediately from Theorem 7.1, Proposi-
tion 4.2 and Lemma 4.4 gives a quantitative formulation of our main theorem.

Corollary 7.2. Let X = (X; P) be an interval order with |X |= n. If Y is any interval
order with dim(Y)¿30n− 6; then Y contains a subposet isomorphic to X .

8. Concluding remarks

We suspect that the linear bound in Corollary 7.2 is not tight and that the ex-
pression 30n − 6 can be replaced by a function which is o(n), perhaps as small as
O(log n).
It would also be of interest to determine which interval orders have distinguishing

representations for which dim(X)=dim∗(X ; I). We know that this is not true for weak
orders, but perhaps it holds for all other interval orders.
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