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Abstract. We say that a graph G is Class 0 if its pebbling number is exactly equal to its
number of vertices. For a positive integer d, let kðdÞ denote the least positive integer so that
every graph G with diameter at most d and connectivity at least kðdÞ is Class 0. The
existence of the function k was conjectured by Clarke, Hochberg and Hurlbert, who
showed that if the function k exists, then it must satisfy kðdÞ ¼ Xð2d=dÞ. In this note, we
show that k exists and satisfies kðdÞ ¼ Oð22dÞ. We also apply this result to improve the
upper bound on the random graph threshold of the Class 0 property.
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1. Introduction

Let N0 denote the non-negative integers. When G ¼ ðV ;EÞ is a finite graph, a
function / : V ! N0 is called a pebbling. The quantity

P
x2V /ðxÞ is called the size

of /; the size of / is just the total number of pebbles assigned to vertices. In what
follows, we consider a simple rule by which one pebbling is transformed into
another: Choose a vertex x to which at least two pebbles have been assigned.
Remove two pebbles from x and add one pebble to an adjacent vertex y. A
pebbling obtained from / by a sequence of such transformations is called a
descendant of /.
Given a vertex x 2 V and a pebbling /, we say that / pebbles x provided

/ðxÞ > 0. Similarly, we say that / has the potential to pebble x provided that / or
one of its descendants pebbles x. The pebbling number of a graph G ¼ ðV ;EÞ,
denoted f ðGÞ, is then the least p so that for any pebbling / of size p and any
vertex x 2 V , / has the potential to pebble x.
Clearly, the pebbling number of a graph is at least as large as the number of

vertices. Following [3], we say a graph G ¼ ðV ;EÞ is Class 0 if f ðGÞ ¼ jV j. Graphs
which do not belong to Class 0 are said to be Class 1.

1991 Mathematics Subject Classification: 05C35
The research of the fourth author is supported in part by the Office of Naval Research

Graphs and Combinatorics (2002) 18:219–225

Graphs and
Combinatorics
� Springer-Verlag 2002



In [3], Clarke, Hochberg and Hurlbert gave the following conjecture.

Conjecture 1.1. For each d � 1, there exists a least positive integer kðdÞ so that all
graphs of diameter d and connectivity at least kðdÞ belong to Class 0.

This conjecture holds trivially when d ¼ 1, since a graph of diameter 1 is a
complete graph. Note that a path on 3 points shows that kð2Þ � 2. However, as
noted in [3], the following example shows that kð2Þ � 3.

Example 1.2. Label the vertices of a 6-cycle as x1; . . . ; x6 so that fxi; xiþ1g is an
edge for i ¼ 1; 2; . . . ; 5. Of course, fx1; x6g is also an edge. Then let G1 be the
graph formed by adding the edges fx1; x3g and fx3; x5g. Also, let G2 be the graph
formed from G1 by adding the edge fx1; x5g. Then G1 and G2 are 2-connected and
have diameter 2. However, the pebbling number of both graphs is 7.

Clarke, Hochberg and Hurlbert showed that kð2Þ ¼ 3, and they characterized
all 2-connected graphs with diameter 2 which belong to Class 1. The two graphs
G1 and G2 constructed in the preceding example are the only such graphs on 6 or
fewer vertices.
Using a ‘‘blow-up’’ of a path, Clarke, Hochberg and Hurlbert also showed

that if the function kðdÞ exists, then it must satisfy kðdÞ ¼ Xð2d=dÞ.

2. The Principal Result

In this section, we settle Conjecture 1.1 in the affirmative with the following
theorem.

Theorem 2.1. Let d be a positive integer and set k ¼ 22dþ3. If G ¼ ðV ;EÞ is a
graph of diameter at most d and connectivity at least k, then the pebbling number
of G is jV j.

Proof. Let d be a positive integer and set k ¼ 22dþ3. Let G ¼ ðV ;EÞ be any graph
with diameter at most d and connectivity at least k. Then let / be any pebbling of
size jV j on G. We assume that there is a vertex z0 2 V so that / does not have the
potential to pebble z0 and argue to a contradiction.

We begin by defining a partition of the vertex set of G by setting
V ¼ Z [ U [ B, where

1. Z ¼ fz 2 V : /ðzÞ ¼ 0g,
2. U ¼ fu 2 V : /ðuÞ ¼ 1g, and
3. B ¼ fb 2 V : /ðbÞ > 1g.

In the remainder of the argument, we use the natural convention that vertices of Z
(zeroes) will be denoted by the letter z (perhaps with subscripts or primes ap-
pended). Similarly, elements of U (units) will be denoted by the letter u, while
elements of B (bigs) will be denoted by the letter b. Whenever we want to make a
statement about an arbitrary vertex of the graph, we will use the letter v.
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Next, we observe that since the size of / is jV j, we must haveX
b2B

/ðbÞ ¼ jBj þ jZj:

Of course the vertex z0 belongs to Z, so Z 6¼ ;. Thus B 6¼ ;. Note that there are no
edges from z0 to vertices in B. Let m ¼ jBj. Then let x ¼

P
b2B /ðbÞ=m denote the

average number of pebbles assigned by / to vertices in B. It follows that
jZj ¼ mðx � 1Þ.
Before proceeding with the proof, we pause to make a few elementary ob-

servations about properties which the pebbling / must satisfy. As noted previ-
ously, the vertex z0 has no neighbors in B. In fact, more can be said. There cannot
be a path P beginning at z0 and ending at a point in B with all interior points of P
belonging to B [ U . This follows from the fact that the existence of such a path
would allow us to shift a pebble from the endpoint of P which belongs to B along
the path until it rests on z0.
Also, as noted previously, we know that /ðvÞ < 2d for every v 2 V . But again

we can say more.

Claim 1. Let v 2 V and let E be a family of paths such that

1. Each path in E begins at v and ends at a point of B.
2. For each b 2 B, at most b/ðbÞ=2c paths in E end at b.
3. No two paths in E have any points in common, apart from v and, if they end at

the same point, their common endpoint.
4. All interior points of paths in E belong to B [ U .

Then jEj < 2d .
Proof. Let b 2 B. Then let Eb denote the set of all paths in E which end at b. We
know that jEbj � b/ðbÞ=2c. It follows that we may shift jEbj pebbles from b to v,
one along each path in Eb. Since the paths in E have no interior points in com-
mon, it follows that a descendant of / places jEj pebbles on v. This requires
jEj < 2d , as claimed. n

Now let v 2 V and consider the subgraph Hv of G induced by fvg [ U [ B. We
modify Hv into a new graph H

0
v as follows. For each vertex b 2 B� fvg, we

replace b by an independent set Ab of cardinality b/ðbÞ=2c. Furthermore, if b is
adjacent to a vertex v0 in Hv, then every vertex of Ab is adjacent to v0 in H0

v, and if
b1; b2 2 B� fvg and b1 is adjacent to b2 in Hv, then every vertex of Ab1 is adjacent
to every vertex of Ab2 in H

0
v. We let B

0
v ¼ [fAb : b 2 B� fvgg. Then add a new

vertex v̂v with v̂v adjacent to all vertices of B0
v but to no other vertices in H

0
v. In

particular, v̂v is not adjacent to v in H0
v.

We now apply Menger’s theorem to the non-adjacent pair fv; v̂vg, i.e., the
minimum number of vertices in H0

v required to separate v and v̂v is equal to the
maximum number of pairwise disjoint paths from v to v̂v. Choose a minimum
subset S0v of vertices separating v from v̂v in H0

v. Then fv; v̂vg \ S0v ¼ ; and every path
inH0

v beginning at v and ending at v̂v passes through one or more points of S
0
v. Note

that S0v � B0
v [ U for every v 2 V .
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Claim 2. For every v 2 V , the following statements hold.

1. Any path in H0
v beginning at v and ending at a point of B

0
v passes through a

point of S0v.
2. jS0vj < 2d .
3. If b 2 B, b 6¼ v and Ab \ S0v 6¼ ;, then Ab � S0v.

Proof. Let v 2 V . The fact that statement 1 holds is an immediate consequence of
Menger’s theorem and the definition of the graph H0

v. We now show that state-
ment 2 holds.

Let t ¼ jS0vj. Then there is a family G of t paths in H0
v each beginning at v and

ending at v̂v with any two of these paths having no point in common other than v
and v̂v. For each path P in G, start at v and travel along P towards v̂v. Then let bðP Þ
be the first point on P which belongs to B0

v. Clearly, there must be such a point
since the next to last point of P belongs to B0

v. Note that any point of P between v
and bðP Þ on P belongs to U . Then let P 0 denote the initial segment of P beginning
at v and ending at bðP Þ, and let G0 ¼ fP 0 : P 2 Gg. Note that by Menger’s theo-
rem, each path in G0 contains a unique point of S0v.
For each b 2 B� fvg, let G0

b denote the set of all paths in G0 which end at a
point of Ab, and let Bv consist of those points of B� fvg for which G0

b 6¼ ;.
Clearly, jG0

bj � jAbj ¼ b/ðbÞ=2c for each b 2 Bv.
For each b 2 Bv, let Gb denote the family of paths in Hv obtained by replacing

the ending point of each path in G0
b by b. Evidently, all paths in Gb start at v and

end at b. However, other than starting and ending points, the paths in Gb are
pairwise disjoint. Also, if b1 and b2 are distinct elements of Bv, then v is the unique
common point of a path from Gb1 and a path from Gb2 . From these remarks, it
follows from Claim 1 that jS0vj ¼ jGj ¼ jG0j < 2d , as claimed.
Finally, we show that statement 3 holds. Let b 2 B� fvg and suppose that

Ab \ S0v 6¼ ;. Choose a path P in G having a point b1 2 Ab \ S0v in its interior.
Then b1 is the unique point from S0v belonging to P . If there is a point
b2 2 Ab � S0v, then the path P̂P obtained from P by appending b2 and v̂v onto the
initial segment of P beginning at v and ending at the vertex immediately
preceding b1 on P is a path from v to v̂v in H0

v which passes through no point of
S0v. This would contradict the assumption that S

0
v separates v from v̂v. So Ab � S0v

as claimed. n

For each v 2 V , let Sv ¼ ðS0v \ UÞ [ fb 2 B� fvg : Ab � S0vg. Note that v 62 Sv.
Also note that Sv separates v from B� fvg in Hv, i.e., any path in Hv starting at v
and ending at a point in B� fvg passes through one or more points of Sv. From
Claim 2, it is clear that jSvj < 2d . However, using the second part of Claim 2, even
more can be said.

Claim 3. For every v 2 V ,

/ðvÞ þ
X
b2Sv

/ðbÞ < 2dþ2:
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Proof. Let v 2 V . Obviously, /ðvÞ < 2d . From Claim 2, we know that
X
b2Sv

b/ðbÞ=2c ¼
X
b2Sv

jAbj � jS0vj < 2d

and

X
b2Sv

/ðbÞ � 2
X
b2Sv

�
b/ðbÞ=2c þ jS0vj

�
� 3ð2dÞ;

so that

/ðvÞ þ
X
b2Sv

/ðbÞ < 2d þ 3ð2dÞ ¼ 2dþ2: 4

Claim 4. There exists a positive integer q with q > mx=2dþ2, a q-element subset
B0 � B, and a labelling fb1; b2; . . . ; bqg of the elements of B0 so that for all i and j
with 1 � i < j � q, bj 62 Sbi .

Proof. We form the subset B0 inductively. Choose an arbitrary element of B as b1.
Then remove from consideration all remaining elements Sb1 \ B. By Claim 3, the
total number of pebbles assigned by / to the elements selected or removed from
consideration is less than 2dþ2. Since the total number of pebbles assigned to
elements of B is mx, we may repeat this procedure mx=2dþ2 times to obtain the
desired subset B0. n

The reader should note that if 1 � i < j � q, then we know that bj 62 Sbi , but
we do not know whether bi belongs to Sbj . Now let W ¼ [b2B0Sb. Note that
jW j < q2d . Also note that W \ Z ¼ ;.
Since the connectivity of G is at least k, we know that for each b 2 B0, there are

k paths P1ðb; z0Þ; P2ðb; z0Þ; . . . ; Pkðb; z0Þ, each beginning at b and ending at z0, with
two paths in this family having no points in common other than b and z0. Since
fb; z0g is not an edge in G, each path Piðb; z0Þ contains at least one interior point,
and in fact, each Piðb; z0Þ contains at least one interior point which belongs to Z.
Since jSbj < 2d and k ¼ 22dþ3, we may assume that the paths have been labelled

so that for each i ¼ 1; 2; . . . ; k � 2d , the path Piðb; z0Þ does not contain a point of Sb.
Now let b 2 B0 and let i be an integer with 1 � i � k � 2d . Follow the path

Piðb; z0Þ beginning at b and let viðbÞ be the first point (distinct from b) on the path
which belongs to W [ Z. We let QiðbÞ be the initial segment of Piðb; z0Þ beginning
at b and ending at viðbÞ. We call b the root of this path and viðbÞ the terminal point,
and we let F ¼ fQiðbÞ : b 2 B0; 1 � i � k � 2dg. Note that jFj ¼ qðk � 2dÞ.
Of course, for each v 2 W [ Z and each b 2 B, there is at most one integer i

with 1 � i � k � 2d for which the path QiðbÞ has b as its root and v as its terminal
point. However, if b; b0 2 B, there may exist integers i; i0 2 f1; 2; . . . ; k � 2dg so
that QiðbÞ and Qi0 ðb0Þ both have v as their terminal point; but when b and b0 both
belong to B0, we can say much more.
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Claim 5. Let v 2 W [ Z and let b and b0 be distinct points of B0. If
i; i0 2 f1; 2; . . . ; k � 2dg and QiðbÞ and Qi0 ðb0Þ both have v as their terminal point,
then QiðbÞ and Qi0 ðb0Þ have no point in common other than v.

Proof. Suppose that F ¼ QiðbÞ and F 0 ¼ Qi0 ðb0Þ have a common point distinct
from v. Then there exists a path F 00 from b to b0 with F 00 � ðF [ F 0Þ � fvg. Fur-
thermore, F 00 � B [ U . Thus F 00 \ Sb 6¼ ; 6¼ F 00 \ Sb0 . However, F 00 \ F does not
contain a point from Sb, and F 00 \ F 0 does not contain a point from Sb0 . Therefore
F 00 \ F \ Sb0 6¼ ; and F 00 \ F 0 \ Sb 6¼ ;.

Without loss of generality, we may assume that b was chosen before b0 in the
construction of B0 described in Claim 3. Then b0 62 Sb. It follows that F 00 \ F 0 \ Sb
contains a point of Sb which is distinct from b0. However, this contradicts the
hypothesis that v is the terminal point of F 0. n

We pause to point out that the argument in the preceding claim works only in
one direction, as it may happen that b 2 Sb0 .
We are now ready to complete the proof. We observe that jW [ Zj <

q2d þ mðx � 1Þ < qð2dþ2 þ 2dÞ and jFj ¼ qðk � 2dÞ. Since jFj=jW [ Zj > 2d � 1,
it follows that there is a vertex v 2 W [ Z and a subfamily E � F, with jEj ¼ 2d ,
so that every path in E has v as its terminal point. However, from Claim 5, any
two paths from E have no point in common other than v, so the existence of E is
now seen to be a contradiction to Claim 1. (

3. Threshold

The notion that graphs with very few edges tend to have large pebbling number
and graphs with very many edges tend to have small pebbling number can be
made precise as follows. Let Gn;p be the random graph model in which each of the
n
2

� �
possible edges of a random graph having n vertices appears independently

with probability p. For functions f and g on the natural numbers we write that
f � g (or g� f ) when f =g! 0 as n! 1. Let oðgÞ ¼ ff j f � gg and define
OðgÞ (resp., XðgÞ) to be the set of functions f for which there are constants c;N
such that f ðnÞ � cgðnÞ (resp., f ðnÞ � cgðnÞ) whenever n > N . Finally, let
HðgÞ ¼ OðgÞ \ XðgÞ.
Let P be a property of graphs and consider the probability PrðPÞ that the

random graph Gn;p has P. For large p it may be that PrðPÞ ! 1 as n! 1, and
for small p it may be that PrðPÞ ! 0 as n! 1. More precisely, define the
threshold of P, thðPÞ, to be the set of functions t for which p � t implies that
PrðPÞ ! 1 as n! 1, and p � t implies that PrðPÞ ! 0 as n! 1, if this set is
nonempty.
It is not clear that such thresholds exist for arbitrary P. However, we observe

that Class 0 is a monotone property (adding edges to a Class 0 graph maintains the
property), and a theorem of Bollobás and Thomason [1] states that thðPÞ exists for
every monotone P. It is well known [4] that thðconnectedÞ ¼ Hðlg n=nÞ, and since
connectedness is required for Class 0, we see that thðClass 0Þ � Xðlg n=nÞ. In [3] it is
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noted that Gn;1=2 is Class 0 with probability tending to 1. It is straightforward to
extend their argument to show that, for fixed p, Gn;p is Class 0 with probability
tending to 1. Here we prove the following theorem.

Theorem 3.1. For all d > 0, thðClass 0Þ � oððn lg nÞ1=d=nÞ.

Proof. We prove the equivalent statement that thðClass 0Þ � Oððn lg nÞ1=d=nÞ for
all d > 0. It is proven in [2] that thðdiameter � dÞ � Xððn lg nÞ1=d=nÞ, and in [5]
that thðconnectivity � kÞ � Xððlg n þ k lg lg nÞ=nÞ. Hence, for any fixed d and k
with k � 22dþ3, and for any p � ðn lg nÞ1=d=n, the probability that Gn;p has di-
ameter at most d and connectivity at least k tends to 1. Therefore the probability
that Gn;p is Class 0 tends to 1. h
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