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A partially ordered set (poset) is planar if it has a planar Hasse diagram. 
The dimension of a bounded planar poset is at most two. We show that the 
dimension of a planar poset having a greatest lower bound is at most three. We 
also construct four-dimensional planar posets, but no planar poset with dimen- 
sion larger than four is known. A poset is called a tree if its Hasse diagram 
is a tree in the graph-theoretic sense. We show that the dimension of a tree is at 
most three and give a forbidden subposet characterization of two-dimensional 
trees. 

1. INTRODUCTION 

A partially ordered set (poset) consists of a pair (X, P) where X is a set 
(always finite in this paper) and P is a reflexive, antisymmetric, and 
transitive relation on X. P is called a partial order on X. The notations 
(x, y) E P, x < y in P, and y > x in P are used interchangeably. Distinct 
points x and y are said to be incomparable, denoted x I y, if neither 
(x, y) nor (y, x) is in P; we let -YP = {(x, y): x I y in PI. If 9P = O, then 
P is called a linear order on X and (X, P) is called a linearly ordered set 
or chain. If x + y and (x, y) E P we write x < y in P or y > x in P. If 
x > y in P and x > z > y in P implies z = y, then we say x covers y 
in P and write x > y in P. 

If P and Q are partial orders on X and P _C Q, then Q is called an 
extension of P. If Q is also a linear order, Q is called a linear extension 
of P. If P is a partial order on X and Y _C 1, the relation P(Y) defined by 
P(Y) = P n (Y x Y) is a partial order on Y called the restriction of P 
to Y and (Y, P(Y)) is called a subposet of (X, P). A subset C _C X is called 
a chain if (C, P(C)) is a chain and a subset A C X is called an antichain 
if P(A) = {(a, a): a E A}. 

For an arbitrary relation 9 on X, the transitive closure of 9$?;, denoted g, 
is defined by L% = {(x, y): There exists an integer n 2 2 and a sequence 
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Xl > k? >"a, X, such that x = xl , y = X, , and (Xi ) xi+& E W for every 
i < FZ]. Note that if P is a partial order on X, then P = P. The dual of 
a relation B!, denoted &, is defined by & = ((x, y): (y, 
is a poset, then (X, p) is also a poset and is called the 

It is sometimes convenient to use a single symbol, usually X, to denote 
a poset. We use the symbol R to denote the set of real numbers with the 
usual ordering. 

2. A THEOREM ON EXTENSIONS OF PARTIAL 

If Q is an extension of P, let S = Q - P. Then S C -ldP and Q = P u S. 
Conversely we may ask when S C -u’P implies P u S is a partial order, 
The answer is given in the following theorem. 

THEOREM 1. Let (X, P) be a poset and S _C 9, . Then the ~o~~~w~~g 
statements are equivalent. 

1. P u S is not a partial order on X. 

2. There exist an integer n >, 2 and a set ((a, , bJ: 1 < i < IZ) C S 
SQ that ((bi , ai+l): 1 < i < n> C P. 

PrrooJ We comment that it is necessary to interpret the set {(b, , ai+l): 
1 < i < n> cyclically. 

Now suppose that statement 2 holds. It follows that (a, I b,) and 
@ r , a,) are in P u S but since (a, , bl) E S C J$ , a, and b, are incom- 
parable points. We conclude that P u S violates the a~tisymmetric 
requirement for partial orders. 

On the other hand suppose statement 1 holds. Since the relation P w S 
is reflexive and transitive, it must then violate the antisymmetric require- 
ment. Choose distinct points x and y from X with (x, y) E P v S and 
(y, x) E 4” u S. It follows that there exist an integer m > 2 and a sequence 
Xl > x2 2...7 XnL containing at least two distinct points such that 
(xi ) xi+3 E P u S for each i < m. Among such sequences we choose one 
with m minimum. It follows that (xi , xj) E P u S ifI j = i + I an 
therefore (xi , xi+3 E P implies (xi+r , xi+& E S. 

Let xjl , ‘cj2 ,..., xj, be the subsequence consisting of those points for 
which (xji , x~,+~) E S. We note that y2 > 2; now define ai = xji and 
h = xi<+1 for each i < ~1. Then ((ai , b,): 1 < i < n> L S; furthermore if 
xkFI = x~,+~ then ai+l = bi and if xjiil f xji+l 9 then (x~%+~ , x~~+~) E P 
which implies that aif = xji+* . In either case we see that (bbi , ai+ E 
and thus ((bi , Q~+~): 1 < i < rz) C P. 

Suppose that S _C ,IdP and P u S is not a partial order. Among the 
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subsets ((ai , b,): 1 < i < n> C S with y1 > 2 for which {(b, , ai+r>: 
1 < i < n} _C P, choose one such subset with II minimum. It follows 
easily that (ai: 1 < i < n} and {bi: 1 < i < n} are antichains and that 
(bi,aj)~P iff j=i+l and (ai,bj)eP iff i=j+l and ai=bj. 
Hereafter we refer to a subset of S satisfying these properties as a TM 
cycle. 

COROLLARY 1. If P is a partial order on X and (x, y) E Yp , then 
P v ((x, y)} is a partial order on X. 

COROLLARY 2 (Szpilrajn [7]). lf P is a partial order on X, then the 
collection %? of all linear extensions of P is nonempty and 0%’ = P. 

If A and B are disjoint subsets of X and P is a partial order on X, then 
an extension (2 of P is called an injection of B over A if {(a, b): a E A, 
bEB,aIbinP}CQ. 

COROLLARY 3. If A and B are disjoint subsets of X and P is a partial 
order on 1, then there exists an injection of B over A isf there does not 
exist a TM cycle {(ai , bJ: 1 < i < 2) where {a, , az} C A and (b, , bJ _C B. 

COROLLARY 4. If C is a chain of a poset (X, P), then there exists an 
injection of C over X - C and an injection of X - C over C. 

A linear extension L of an injection Q of X - C over C where C is 
a chain is called an upper extension [4] of C. Lower extensions are defined 
analogously. 

We refer the reader to [lo, 1 l] for additional uses of Theorem 1 and 
its corollaries. 

3. THE DIMENSION OF A POSET 

Dushnik and Miller [3] defined the dimension of a poset (X, P), denoted 
Dim(X, P), as the smallest positive integer t for which there exist linear 
extensions L, , L, ,..., Lt of P such that L,nL,n---nL,=P. The 
dimension of a poset is one iff it is a chain; an antichain of two or more 
points has dimension two. If a maximum antichain of (X, P) has cardi- 
nality n, then Dim(X, P) < IZ since Dilworth’s decomposition theorem [2] 
guarantees a partition X = C, u C, v *a- u C, where each Ci is a 
chain and if Li is an upper extension of Ci for each i < ~1, then 
P=L,nL,n*.‘nL,. 

A poset (X, P) is said to have a greatest lower bound if there exists 
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a point 0 E X such that 0 < x in P for every x E X. A poset is said to 
have a least upper bound if there exists a point I E X such that x < i 
in R for every x E X. (X, P) is said to be bounded if it has both a greatest 
lower bound and a least upper bound. Clearly if 0 is a greatest Lower 
bound, then Dim(X, P) = Dim(X - (01, P(X - (0))); a dual statement 
holds if X has a least upper bound. 

We refer the reader to [3, 8, 91 for additional results jn the dimension 
theory of posets. 

4. P~SET DI.~GRAMS AND PLANARITY 

Lattice diagrams or Hasse diagrams (see [l, p. 41) are a useful conceptual 
aid for posets of small order. In this paper we require our diagrams to 
satisfy the additional condition that each point in the plane lies in the 
interior of at most two arcs of the diagram. For a asse diagram II, 
we define the crossing number of D, denoted v(D), as the number of 

FIGURE 1 

FIGURE 2 

points in the plane which belong to the interior of exactly two arcs in 
A Hasse diagram D is planar if Y(D) = 0. We define the crossing num 
of a poset (A’, P), denoted v(X, P), as min(v(D): D is a Hasse diagram for 
(X, P)). A poset is said to be planar if it has a planar 
The diagram D in Fig. 1 has v(D) = 9 but 13 is a diagram of a planar 
poset as the diagram in Fig. 2 reveals. 
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5. THE DIMENSIONOFAPLANARPOSETHAVINGAGREATESTLOWERBOUND 

In this section, we consider a planar poset (X, P) which contains a 
greatest lower bound 0, and a Hasse diagram D of (X, P) with v(D) = 0. 
We then modify the development presented in [S] and employ Theorem 1 
to obtain an upper bound on Dim(X, P). 

For a chain C of covers x1 > x2 > *.. > X, in (X, P), we define 
J(C) = {z E R x R: There exists an integer i < n such that z is a point on 
the arc from xi to xitl in the diagram O}. For each x E X with x # 0, 
we then define J(X) = u {J(C): C is a chain of covers from x to O}. We 
now define for each x E X with x # 0, the trail of X, denoted T(x), as 
the smallest subset of the plane satisfying the conditions: (i) J(x) _C T(x) 
and (ii) if s is a horizontal line segment in the plane whose end points 
are in T(x), then all interior points of s are in T(x). 

We illustrate these definitions by shading the region T(x) in Fig. 3, 

FIGURE 3 

We note that T(x) may include points of X which are incomparable with 
x in P. We also note that a horizontal line 8 intersects T(x) in either 
a closed line segment, a single point, or not at all. Furthermore for each 
x E X, with x # 0 there exist unique chains of covers C,(X) and C,(x) 
from x to 0 so that for all horizontal lines G which intersect T(x), the 
left end point of T(x) n 8~ J(C,(x)) and the right end point of T(x) n 8~ 
J(C,(x)). The chains C,(X) and CR(x) are called the left and right boundary 
chains of x respectively. 

Let 7~~ and rr2 be the projection maps from R x R---f R. We then 
define a relation 9 on X by 9 = {(x, JJ): there exists a horizontal line G 
for which T(x) n 8 + o # T(y) n 8 and ~~(2) < nl(w) for every 
z E T(x) n / and every w E T(y) n /}. The line 4 in this definition is called 
a test line for (x, u). Not all horizontal lines intersecting T(x) and T(y) 
need be test lines. In Fig. 4, (x, y) E 9 and the line 8 is a test line for 
(x, y). However (y, z) # 9. 

LEMMA 1. If (x, y) E 2’ and zf is a horizontal line intersecting both 
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FIGURE 4 

T(x) and T(y), then for every z E T(y) n t, there exists w G T(x) n L such 
that q(w) < q(z). 

Froo~ Let tfl be a test line for (x, y). We assume first that c1 is lower 
than t: Let a, b, c, and d be the left end points of T(y) n 1, T(x) a 6’, 
T(x) r, t1 , and T(y) n t1 respectively. We show that r,(b) < ~,(a). 

If rr,(b) > ~~(a), then the arcs J(C,(x)) and J(C,(y)) intersect at a 
point z between e and /I . Since D is planar it follows that z corresponds 
to a point of X and that z < x and z < y in P. Therefore c E T(y). The 
contradiction shows that rl(b) < ~,(a) and thus n,(b) < rl(z) fsr every 
z E T(y) n t;. 

The argument when LB is lower than & is similar. Of course if 8 = Cl, 
then rrlQ~) < rrl(z) for every w E T(x) n e and every z 5 r(y) :G 6’. 

The following statement follows immediately from Lemma 1. 

LEMMA 2. 8 is an antisymmetric relation. 

LEMMA 3. 9? is a transitive relation. 

Proof. Let (x, y) E 9 and (y, z) E 9; then let 4, and t2 be test lines 
for (x, y) and (y, z) respectively. Then let e be the lower of the two lines 
J1 and tz . From Lemma 1, we conclude that C is test line showing 
(x, z) E 2. 

Let A = ((x, x): x E X); then dip1 = 9 u A is a partial order on X. 
If (A’, P) is a bounded poset, it is easy to see that for distinct points 
x,v~x,(x,y)E~~iff(x,y)~~~1. In this case, P and 59 are “‘comple- 
mentary” partial orderings. The existence of a complementary partial 
ordering is a well-known characterization of a poset with dimension at 
most two [3]. Zilber first observed that a bounded planar poset had a 
complementary partial ordering [I, p. 321. 



60 TROTTER, JR. AND MOORE, JR. 

In this paper, we will be concerned primarily with those planar posets 
(X, P) with greatest lower bounds for which the poset (Xl, P) obtained 
by adding a least upper bound to (X, P) is no longer planar. For such 
posets, 9 is not a complementary partial ordering. For example, consider 
the posets illustrated in Fig. 5. Each of these posets has dimension three. 

FIGURE 5 

Now define a relation ~62’ on .X by (x, y) E ~2’ iff (x, y) E .YP and 
T(X) C T(y). In Fig. 5, (x, y) E k in each of the three diagrams. It follows 
easily that if (x, y) E 4;P , then exactly one of the following statements is 
true (x, Y) E 2, (Y, x) E 2, (x, Y> 6 d, (u, 4 E A. 

Since x < y in P implies T(x) C T(y), we conclude from Lemma 1 
that the following statement holds, 

LEMMA 4. If L is a horizontal line intersecting both T(x) and T(y) 
and there exists a point z E T(y) n L such that nl(z) > Z-~(W) for every 
w E T(x) n 8, then either x < y in P or (x, y) E 9 u A?‘. 

If x < y in P, then ITS < T~( y). More generally we have the fol- 
lowing result, which may be proved by an argument very similar to the 
one used for Lemma 1. 

LEMMA 5. If (x, y) E &2' and x < z in P, then 7r2(z) < 7.r2(y). 

As a consequence of Lemma 5 we conclude that J?Y is an antisymmetric 
and transitive relation on X. 

We now proceed to establish an upper bound on the dimension of a 
planar poset with a greatest lower bound. 

THEOREM 2. Let (A’, P) be a planar poset with a greatest lower bound. 
Then Dim@, P) < 3. 

ProoJ Let D be a poset diagram for (X, P) with v(D) = 0. Then let 
the relations 2 and &Z be defined as before. Now define S, = 4, 
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S, = .Ji? LJ J&‘, and S, = 2 U A’. We show that P U Si is a partial 
order on X for each i < 3 by proving that no Si generates a TM cycle. 

First suppose that ((ai, bJ: 1 < i < n) is a TM cycle for S, . Then 
(bi , ai) E A for each i < n. Since (b, , ai+ E P for every i < 17, we 
conclude by Lemma 5 that rz(aiL,) < -~,(a~) for each i < 12 and clearly 
this is not possible. 

Now suppose that ((a, , bi): 1 f i < 72) is a TM cycle for S, . note 
,that b, > aj for all i < n and all j _C n. We now prove the Wing 
statement by induction. For each i < n, a, I bi and (al , bJ E 9 v A’. 
This statement holds for i = 1 by definition of S, . Suppose it is valid 
for 1’ < k where 1 < k < n. 

We assume first that (a, ) blJ E A. If (ok+1 , b,,,) E Al’, ‘&hen (a, , b,,.J E A!’ 
since J. is transitive. Now suppose that (aJCbl j bii+J E 9. Since 
T(b,+,) Q T(a3 we cannot have a, 2 bk+l in P or (bk+, , aI) E A?‘. Sincze 
b,,, > a, in P, we have a,1 b,,, in P. If (ai) b,,& $9 v ~44, then 

@ x+1 , al) E 9~ However, 9 is transitive requiring (a,,, , aI) E 2, but 
this is not possible because T(aJ C T(a,+J. 

Now assume that (al, b,) E 9. If (arz+l, b& E A, then T(b,) C 
2”(ak+l) C T(b,+,). Now let G be a test line for (al , b,); since T&J n 8 C 
T(b,+,) n 8, it follows from Lemma 4 that (a1 ) b& E 9 u ~2’. On the 
other hand, suppose (a Ic+l , bkfl) E 2. If (b, , bad E 9 then (aI , b+d E 9 
because 9 is transitive. Therefore we may assume by Lemma 4 that 
(b, , bk+l) E .A?’ and thus r(b,) C T(b,+J. As before we conclude that 
(a, , b,+3 E 5’? w A! and the inductive proof is complete. However 1. 
statement contradicts our assumption that ((ai : bJ: 1 < i < n> is a TM 
cycle for S, . 

From the definition of 9 it is clear that the argument to show that 
S, = 8 u &? generates no TM cycles is dual to the argument for S-, 
and the proof of our theorem is complete. 

6. FOUR-DIMENSIONAL PLANAR POSETS 

In this section we show that the inequality given in Theorem 2 is best 
possible by exhibiting an infinite family of four-dimensional planar 
posets. We use the notation for crowns and dimension products introduced 
in [8]. 

FACT. For each k >, 0, the poset Ssk 0 S,O is a four-dimensional 
planar poset. 

We illustrate with a planar diagram for S,” @ SlO. 
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FIGURE 6 

We have not been able to establish an upper bound on the dimension 
of a planar poset nor have we been able to construct a planar poset 
whose dimension is greater than four. 

7. TREES 

In this paper, we call a poset a tree1 if its Hasse diagram is a tree in 
the graph theoretic sense. For example, the posets J1 and J2 whose Hasse 
diagrams are drawn in Fig. 1 are trees. 

We now show that J1 and J, each have dimension 3. 

LEMMA 6. Dim J1 = 3. 

Jl 52 

FIGURE 7 

IIn set theory, the word tree is used to describe a partially ordered set (X, P) for 
which {X E X : x Q yin P} is a well-ordered subposet of (AT, P) for every y E X. For an 
example, see Rudin [6]. In another setting it is only required that {x E X : x Q y in P} 
be a chain (see Wolk 1121). 
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Proof. Consider the linear extensions L1, L, , L, , of J1 defined by: 
e<f<c<d<a<b<ginL,,a<f<g<ccb<e<dinL,, 
andf<g<a(c<e<b<dinL,. 

Since these extensions intersect to yield the partial order on ji , we 
conclude Dim J1 < 3. 

Now suppose Dim J1 < 2 and let Ml and MZ be linear orders whose 
intersection is the partial order on J1 . Since b I e in JL we may assume 
b<einM,ande~binM,.NowxIyinJ1impliesx<yinoneof 
-M1 and MZ and y < x in the other; furthermore x < y in J1 implies 
~<yinM~andM~.Weconcludethata<f<c<b<e<din 
ande<f<c<d<a<binM~.Thengmustbelessthancinone 
of M1 and M, . If g < b in Ml , then b < g in Nd, , which implies that 
a < b in M, and it&, . On the other hand g < c in MZ implies e < g in 
M1 and M, . The contradiction completes the proof that Dim J, = 3. 

A similar argument shows that Dim Jz = 3. For reasons of brevity, 
it is omitted. 

We now show that the poset T, obtained from a tree T by attaching 
a zero is planar. As is often the case in combinatorics, the proof is accom- 
plished by establishing an apparently stronger result. For a tree T with 
Hasse diagram G(T), let H(T) be the graph obtained from G(T) by adding 
a new vertex 0 which is adjacent to every vertex in G(T). We prove that 
there exists a plane drawing D of H(T) without edge crossings SQ that 
the following two conditions are satisfied: 

(i) Deleting the edges from 0 to nonminimal elements of T pro- 
duces a Hasse diagram of T,, . 

(ii) If y > x in T, then the edge from y to x in D lies to the right 
of the edge from y to 0. 

THEOREM 3. For every tree T, there exists a drawing D of H(T), 
without edge crossings, satisfying conditions (i) and (ii) as given above. 

Proof. If T is a tree on one or two vertices, such a drawing trivially 
exists. We then assume validity for all trees on k vertices and let T be a 
tree on k f 1 vertices. 

Now let x be a vertex in T which is an end vertex of the diagram G(T). 
Then the poset T - x is also a tree. Choose a drawing D satisfying the 
required conditions for T - x and let y be the unique vertex which 
is adjacent to x in G(T). 

Suppose first that x is a minimal element of T. Then let e be the edge 
from y to 0 in the drawing D and / the perpendicular bisector of e. In a 
natural way, the edge e divides 8 into a left and right half. Clearly, it is 
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possible to choose a small positive number G so that if we choose ,a.point x 
on the right half of G at a distance E from e, the straight line segments 
from y to x and x to 0 do not cross any.edges in D. 

This construction produces the required drawing for T. 

FIGURE 8 

Now suppose that x is a maximal element of T. Let Y?~ be the line in 
the plane containing the edge e and let 8,’ be that part of k’@ lying above y. 
Then among the collection of edges emanating upwards from y (including 
8,‘) there is one which is furthest to the left. Choose a line b passing 
through y which is between the horizontal left ray through y’ and this 
left most line. Again it is easy to see that we can choose a point x on 4’ 
sufficiently close to y so that the line segments from x to 0 and x to y 
do not cross edges in D. And we have ,obtained the desired drawing of T 
and the proof of our theorem is complete. 

e‘, 

i 

/ “; 
. / 

\ I 
/ ---- x - --i-L, 
Y 

0 

FIGURE 9 

COROLLARY 5. T,, is planar for every tree T. 

COROLLARY 6. The dimension of a tree is at most three. 

We invite the reader to compare Corollary 6 with 112, Theorem 51. 

8. A CHARACTERIZATION OF 2-DIMIXNS~ONAL TREES 

In this section we prove that the 3-dimensional trees Ji and J, con- 
structed in Section 7 provide a forbidden subposet characterization of 
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2-dimensional trees by proving that every 3-dimensional tree contains 
at least one of J1 , Jz or their duals as a subposet. 

If x and y are distinct points in a poset X, we say that x and y have 
the same holdings if z < x iff z < y and x < z iff y < z for every 
z E X - (x, y}. It is proved in [9] that if x and y have the same holdings 
in X, then Dim(X) = Dim(X - x) = Dim(X - y) unless X - x is a 
chain and in this case Dim(X) = 2. 

If T is a tree and x a cut vertex of G(T), let N(x) 
vertices of G(T) which are adjacent to x in G(T). If y E N(x) we also 
denote the set of vertices {z: the unique path from x to z in G(T) contains y> 
by C,(x) and call C,(x) a component. If x < y in T we say C,(x) is an 
upper component of T - x; otherwise we say C,(x) is a lower component 
of T - x. If C,(x) = ( y>, we call C,(x) a degenerate component. If 6=,(x) 
is an upper component, we say C,(x) is a uniform component if x < P 
in T for every z E C,(x). Similarly a lower component C,(x) is said ta be 
uniform if z < x in T for every z E C,(x). 

Let Q? be the collection of all 3-dimensional trees tihich do not contain 
one or more of J1 or Jz or their duals as subposets. Then let n be the 
minimum number of vertices of any tree in ‘47. 

LEMMA '7. If x is a cut vertex of a tree T E %? on n vertices, y E N(x), 
and C,(x) is uniform, then C,(x) is degenerate. 

Proof. If C,(x) is nondegenerate, it is easy to see that there exists a 
distinct pair of end vertices z, w E C,(x) which have the same boldi~gs 
in T. Since Dim(T - z) = Dim(T) and z is an end vertex of T, T - z 
is a tree and the result follows. 

LEMMA 8. If x is a cut vertex of a tree T E Gf on n vertices and 
/ N(x)/ 3 4, then / N(x)1 = 4, x has two upper components exactly one of 
which is degenerate and two lower components exactly one of which is 
degenerate. 

Proof. No pair of end vertices in T can have the same holdings. 
Therefore x cannot have more than one degenerate upper component 
or more than one degenerate lower component. If x has only one upper 
component, C,(x), and it is degenerate, then x and y have the same 
holdings so Dim(T - y) = Dim(T) but T - y is a tree. 

If x has three or more nondegenerate upper components C,(x), C,(x),. 
CyQ(x)2 we may choose points z, , w1 , z2 , w2 , z3 , w, such that x < zI S 
x < z2 , x < z3, w1 < z, , wz < z2 , and w3 < z3 in T. ut this implies 
that T contains J, as a subposet. Similarly if x has three or more non- 
degenerate lower components, then T contains j, as a subposet. If x has. 
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two or more nondegenerate upper components and one or more non- 
degenerate lower components, then T contains J1 . Finally if x has two 
or more nondegenerate lower components and one or more nondegenerate 
upper components then T contains & . 

THEOREM 4. If T is a tree, then Dim(T) < 2 unless’ T contains one or 
more of the trees J1 and Jz or their duals as subposets. 

ProoJ: Let T be a tree from y having n vertices. The argument used 
in the preceding lemma shows that no cut vertex has more than two 
nondegenerate components. Now let W be the tree formed from T by 
adding to each cut vertex in T a degenerate upper component if it does 
not have one and a degenerate lower component if it does not have one. 
The Hasse graph of W has the appearance of the tree shown in Fig. 10. 

FIGURE 10 

With this observation, it is easy to see that the poset formed from W 
by adding both a zero and a one is planar. By the remarks of Section 5, 
we conclude that Dim(W) < 2. Since T is a subposet of W, we have 
Dim(T) < 2. The contradiction completes the proof of our Theorem. 

If X and Y are posets we say that X is a homeomorph of Y if X = Y 
or if a Hasse diagram of X can be formed by inserting one or more vertices 
in an edge or edges of a Hasse diagram for Y. If D is a Hasse diagram 
of a poset X, then any diagram E formed by deleting edges in D or deleting 
vertices and incident edges is called a subdiagram of D. A subdiagram E 
of a Hasse diagram D of a poset X is always a Hasse ‘diagram for some 
poset, but not necessarily a subposet of X. With the notions of homeo- 
morph and subdiagram we can restate Theorem 2 in a form analogous to 
Kuratowski’s Theorem. 

THEOREM 5. If D is a Hasse diagram for a tree T, then Dim(T) < 2 
unless D contains a subdiagram which a hdmeomorph of the Hasse diagrams 
of one of the pose@ J1 , Jz , .fl , or .?z . 

9. SOME COMMENTS ON THE ORIGIN OF THE PROBLEM 

In 1972 R. Kimble discovered a natural device for transforming the 
computation of the dimension of an arbitrary poset X into the computa- 
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tion of the dimension of a poset of height one (the height of a poset is 
one less than the maximum number of vertices in a chain). For a poset X, 
he defined the split of X, denoted S(X), as the poset whose point set is 
{x’: x E A’> u (x”: x E Xl with partial order tiefined by y” < z’ in S( 
iffy < z in X. Kimble showed that Dim(X) < Dim S(X) < 4 + Dim(X) 
and asked if a poset is split repeatedly, can the dimension increase 
arbitrarily. It follows from Corollary 6 that repeated splitting of a poset 
can increase the dimension of a poset by at most two. Furthermore, this 
result is best possible. 
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