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This article is dedicated to Professor Endre Szemerédi on the occasion of his 70th

birthday. Among his many remarkable contributions to combinatorial

mathematics and theoretical computer science is a jewel for online problems for

partially ordered sets: the fact that h(h+ 1)/2 antichains are required for an

online antichain partition of a poset of height h.

The linear discrepancy of a poset P is the least k for which there is a linear
extension L of P such that if x and y are incomparable in P, then |hL(x) −
hL(y)| ≤ k, where hL(x) is the height of x in L. In this paper, we consider linear
discrepancy in an online setting and devise an online algorithm that constructs
a linear extension L of a poset P so that |hL(x) − hL(y)| ≤ 3k − 1, when the
linear discrepancy of P is k. This inequality is best possible, even for the class of
interval orders. Furthermore, if the poset P is a semiorder, then the inequality
is improved to |hL(x)− hL(y)| ≤ 2k. Again, this result is best possible.

1. Introduction

The concept of linear discrepancy for finite partially ordered sets (posets)
was introduced by Tanenbaum, Trenk, and Fishburn in [9] and represents an
effort to model a notion of “fairness”, i.e., incomparable elements should be
placed close together in a linear extension to avoid an implicit comparison
being made when one has much greater height than the other.

In this paper, we will consider linear discrepancy in an online setting.
We will show that there is an online algorithm that will construct a linear
extension L of a poset P so that any pair of incomparable points in P are
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2 M. T. Keller, N. Streib and W. T. Trotter

at distance at most 3k−1 in L when the linear discrepancy of P is k. When
the poset is a semiorder, this distance can be lowered to 2k. Both results
are best possible.

The remainder of this paper is organized as follows. In the next section,
we develop essential notation and terminology and discuss briefly some
related work that motivates our line of research. The proofs of lower bounds
for the inequalities in our main theorems are given in Section 4, while the
proofs for upper bounds are given in Section 5.

2. Notation, Terminology and Background

A partially ordered set (poset) P is a pair (X,P ) where X is a finite ground
set and P is a reflexive, antisymmetric and transitive binary relation on X.
Rather than write (x, y) ∈ P , it is more common to write x ≤ y in P , and
we just write x ≤ y when the partial order P is clear from the context. Of
course, we write x < y in P when x ≤ y in P and x 6= y. Distinct points x
and y are comparable in P when either x < y in P or y < x in P ; else they
are incomparable, in which case we write x ‖ y in P .

We let D(x) = {y ∈ X | y < x} and call D(x) the down-set of x. The
up-set of x, U(x), is defined dually. We let Inc (x) = {y ∈ X | y ‖ x} and
define1 ∆(P) = maxx∈X

∣

∣ Inc (x)
∣

∣ . Throughout this paper, we adopt the
standard convention of denoting a poset by a single symbol, so we write for
example, x ∈ P, x < y in P and z ‖ w in P.

For a positive integer n, let [n] = {1, 2, . . . , n}, and let n denote a linear
order on n points, typically labeled as 0 < 1 < 2 < · · · < n − 1. If P and
Q are posets on disjoint ground sets, P + Q denotes the disjoint union of
P and Q. Also, when P does not contain a subposet which is isomorphic
to Q, we say P excludes Q.

The reader may find it helpful to consult Trotter’s monograph [10]
and survey article [11] for additional background material on combinatorial
problems for partially ordered sets.

1This notation is nonstandard. In other settings, ∆(P) denotes the maximum degree
in the comparability graph of P.
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2.1. Interval Orders and Semiorders

A poset P is called an interval order when there exists a function I assigning
to each element x ∈ P a closed interval I(x) =

[

l(x), r(x)
]

of the real line
R such that x < y in P if and only if r(x) < l(y) in R. We call the family

{
[

l(x), r(x)
]

: x ∈ P} of intervals an interval representation of P. It is
easy to see that when P is an interval order, it has an interval representation
with distinct endpoints. It is a well-known result of Fishburn [2] that a poset
is an interval order if and only if it excludes 2+ 2.

A semiorder is an interval order having an interval representation in
which all intervals have length 1. Scott and Suppes [8] showed that an
interval order is a semiorder if and only if it excludes 3+ 1.

2.2. Linear Discrepancy

Let P = (X,P ) be a poset. A linear order L onX is called a linear extension
of P if x < y in L whenever x < y in P . When L is a linear extension of
P and x ∈ P, the quantity

∣

∣{y ∈ P | y ≤ x in L}
∣

∣ is called the height of x
in L and is denoted hL(x).

The linear discrepancy of a linear extension L of P, denoted ld (P, L), is
the least non-negative integer k so that

∣

∣hL(x)−hL(y)
∣

∣ ≤ k whenever x ‖ y
in P . Note that ld (P, L) = 0 if and only if P is a linear order. Now let
E (P) denote the family of all linear extensions of P. The linear discrepancy
of a poset P, denoted ld (P), is then defined by

ld (P) := min
{

ld (P, L) : L ∈ E (P)
}

We note that the parameter ld (P, L) is called the uncertainty of L in [9].

Fishburn, Tannenbaum and Trenk [3] showed that the linear discrepancy
of a poset is equal to the bandwidth of its cocomparability graph. The same
authors noted in [9] that it follows from the work of Kloks, Kratsch, and
Müller [6] on bandwidth that determining whether the linear discrepancy
of a poset P is at most k is NP-complete.

In spite of the fact that the linear discrepancy of a poset is difficult to
compute, it is very easy to approximate. The following result (with different
notation) is given in [6].

Theorem 1. If P is a poset, then ld (P, L) ≤ 3 ld (P) for every linear

extension L of P.
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The inequality of Theorem 1 is tight for all d ≥ 1. This can be seen by
considering the following poset with 3d+1 points: let A, B, and C be chains
with d points, d− 1 points, and d points, respectively, such that a < b < c
for all points a ∈ A, b ∈ B, and c ∈ C. Let x and y be the remaining
points such that x ‖ a, x ‖ b, x < c, y > a, y ‖ b, and y ‖ c, for all a ∈ A,
b ∈ B, and c ∈ C. The linear extension with A < x < B < y < C has
discrepancy d, whereas the linear extension with x < A < B < C < y has
discrepancy 3d.

We note here some key properties of linear discrepancy that will prove
useful later in this paper.

Lemma 2.

(1) Linear discrepancy is monotonic, i.e., if P is a subposet of Q, then

ld (P) ≤ ld (Q).

(2) If P is an n-element antichain, then ld (P) = n − 1, so ld (P) ≥
width (P)− 1.

(3) ∆(P)/2 ≤ ld (P) ≤ 2∆(P)− 2.

The nontrivial upper bound in the third statement of Lemma 2 is proved
in [7], and we note that it remains open to settle whether the upper bound
here can be improved to ⌊(3∆(P)− 1)/2⌋. Special cases have been resolved
in [1, 4, 7, 9].

In discussions to follow, we say a linear extension L of P is optimal if
ld (P, L) = ld (P). It is shown in [9] that ld (P) = width (P)−1, when P is a
semiorder. To see this, just take an interval representation {

[

l(x), l(x)+1
]

:

x ∈ X} for P in which all endpoints are distinct. Let L be the linear
extension of P defined by setting x < y in L whenever lx < ly in R.

In [4], Keller and Young show that for an interval orderP, ld (P) ≤ ∆(P)
with equality if and only if P contains an antichain of size ∆(P) + 1. They
also show that this bound is tight even for interval orders of width 2.

3. Online Linear Discrepancy

In this paper, we consider linear discrepancy in an online setting. A Builder

constructs a poset P from a class P of posets, one point at a time, and an
Assigner assembles a linear extension L of P, one point at a time. Even
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though the poset P and the linear extension L change with time, we use
a single symbol for each. When Builder expands the poset P by adding a
new point x, he will list those points presented previously that are (1) less
than x in P, and (2) greater than x in P. Assigner will then insert x into a
legal position in the linear extension L she had previously constructed just
before x entered.

Given a class P of posets and an integer k ≥ 1, we will investigate
strategies for Builder that will enable him to construct a poset P from P

with ld (P) ≤ k so that Assigner will be forced to assemble a linear extension
L of P with ld (P, L) much larger than k. We will also study algorithms
for Assigner that will enable her to assemble a linear extension L of P with
ld (P, L) relatively close to ld (P). Of course, the inequality of Theorem 1
looms large in our discussion.

We will consider two different ways in which Builder can construct
interval orders and semiorders. One way is for Builder to construct the
poset one point at a time, just by listing the comparabilities for the new
point x. It is easy for Assigner to be assured that Builder stays within the
appropriate class by appealing to their characterization in terms of forbidden
subposets.

However, we will also discuss the situation where Builder constructs
an interval order or a semiorder by providing an interval representation
one interval at a time. In this setting, Builder provides a closed interval
[

l(x), r(x)
]

(with r(x) = 1+ l(x) when P is a semiorder) for the new point.
As we will see, Assigner will find this additional information quite valuable
in constructing a linear extension which has linear discrepancy close to the
optimal value.

With this notation and terminology in place, we can now give a formal
statement of our principal theorems.

Theorem 3. Let k be a positive integer. There is an online algorithm A

for Assigner so that:

(1) If Builder constructs an arbitrary poset P with ld (P) = k and

Assigner assembles a linear extension L using Algorithm A , then

ld (P, L) ≤ 3k − 1. This inequality is best possible, even if Builder is

required to construct an interval order.

(2) If Builder constructs an semiorder P with ld (P) = k and Assigner

assembles a linear extension L using Algorithm A , then ld (P, L) ≤
2k. This inequality is best possible.
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We will also prove the following result when Builder provides an interval
representation.

Theorem 4. Let k be a positive integer. There is an online algorithm L

for Assigner so that:

(1) If Builder constructs an interval order P with ld (P) = k by providing

an interval representation and Assigner assembles a linear extension L
using Algorithm L , then ld (P, L) ≤ 2k. This inequality is best

possible.

(2) If Builder constructs a semiorder P with ld (P) = k by providing an

interval representation and Assigner assembles a linear extension L
using Algorithm L , then L is optimal.

Before proceeding to the proofs of these two theorems, we pause to note
that there is a substantive difference in the outcome when Builder is required
to give an interval representation online. On the other hand, it can be seen
in [5] that for online chain partitioning (and online graph coloring), there is
no distinction between the two versions.

4. Lower Bounds for Online Linear Discrepancy

In this section, we provide strategies for Builder which establish lower
bounds for the inequalities in Theorems 3 and 4.

Lemma 5. For each k ≥ 1, Builder can construct an interval order P with

ld (P) = k so that Assigner will be forced to assemble a linear extension L
with ld (P, L) ≥ 3k − 1.

Proof. Builder constructs a poset P as follows. First, he presents a k + 1-
element antichain. After Assigner has linearly ordered these k+1 elements,
Builder labels the L-least point as x and the others as members of an k-
element antichain A. He then presents another k+1-element antichain, with
all elements of the new antichain larger than all elements of A∪ {x}. After
assigner has extended L, Builder labels the L-largest element as z and the
other elements as as members of a k-element antichain D.

Builder then presents two new elements u and y with

(1) a < u < d and a < y < d for all a ∈ A and d ∈ D, and
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(2) x < u < z, x ‖ y and z ‖ y.

By symmetry (up to duality), we may assume Assigner makes y > u in L.

Next, Builder inserts two antichains, B and C, of sizes k − 1 and k − 2,
respectively, so that:

(1) x, a < b < c < u in P , for all b ∈ B and c ∈ C.

(2) y ‖ b and y ‖ c, for all b ∈ B and c ∈ C.

Assigner must then insert all elements of B as a block of k − 1 consecutive
elements immediately over the L-largest element of A. Assigner must also
insert all elements of C as a block immediately over the highest element
of B. It follows that hL(y)− hL(x) = 3k − 1.

On the other hand, the linear order: A < x < B < y < C < u < z < D
shows that ld (P) ≤ k. Also, it is also easy to see that P is an interval order
with representation

A = [1, 1], x = [1, 2], D = [7, 7], z = [6, 7],

y = [2, 6], u = [5, 5], B = [3, 3], C = [4, 4],

where A = [1, 1], for instance, denotes that each element of A is represented
by a copy of the interval [1, 1].

We note that the interval order P constructed in Lemma 5 is not a
semiorder, since it contains a subposet isomorphic to 3 + 1. In fact, it
contains a subposet isomorphic to 4+1. We do not know whether Assigner
can be forced to construct a linear extension L with ld (P, L) = 3k − 1 if
Builder is restricted to interval orders that exclude 4 + 1. We have been
able to show that within this class, Builder can force Assigner to assemble
a linear extension L with ld (P, L) ≥ 2k+(k−1)/2, but do not know if this
is tight.

Lemma 6. For each k ≥ 1, Builder can construct a semiorder P with

ld (P) = k so that Assigner will be forced to assemble a linear extension L
with ld (P, L) ≥ 2k.

Proof. Builder constructs a poset P as follows. First, he presents an
antichain of size k + 1. When Assigner has linearly ordered these k + 1
elements, Builder labels the L-least element as x and the remaining elements
as members of a k-element antichain A. He then presents a k-element
antichain B with
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(1) a < b in P, for all a ∈ A and b ∈ B, and

(2) x ‖ b, for all b in B.

Let b be the L-highest element of B. It follows that hL(b) − hL(x) = 2k,
but the linear order A < x < B shows that ld (P) ≤ 2k. Also, it is clear
that P is a semiorder.

Lemma 7. For each k ≥ 1, Builder can construct an interval representation

of an interval order P with ld (P) = k so that Assigner will be forced to

assemble a linear extension L with ld (P, L) = 2k.

Proof. Builder will construct a poset which is isomorphic to 2k+ 1, which
has linear discrepancy k. He begins by presenting the intervals [1, 4k − 1]
and [2k, 2k]. If Assigner sets [1, 4k−1] < [2k, 2k] in L, then Builder presents
[2k+1, 2k+1], [2k+2, 2k+2], . . . , [4k− 1, 4k− 1]. Assigner has no choice
but to put these 2k − 1 intervals above [2k, 2k] and therefore constructs a
linear extension L of (a copy of) 2k+ 1 with ld (P, L) = 2k.

Similarly, if Assigner makes [2k, 2k] < [1, 4k − 1] in L, Builder proceeds
to present [1, 1], [2, 2], . . . , [2k − 1, 2k − 1], and again Assigner is forced to
assemble a linear extension L with ld (P, L) = 2k.

5. Upper Bounds for Online Linear Discrepancy

In this section, we provide algorithms for Assigner to use in assembling
a linear extension of a poset constructed by Builder. We note that these
algorithms do not need to know anything about the class from which P

arises, and they do not need to know anything about the linear discrepancy
of P. We focus first on posets constructed one point at a time, and later
consider the case where Builder provides an interval representation of an
interval order (or semiorder).

However, in order to motivate the specifics of our algorithm, we pause
briefly to give examples showing that other reasonable strategies are non-
optimal, even for the class of semiorders.
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5.1. Näıve online linear discrepancy algorithms for semiorders

Perhaps the simplest online linear discrepancy algorithm that Assigner
might use works as follows. When presented with a new point x, there
is always a non-empty set of positions where x could be legally inserted.
These positions are always consecutive in the linear extension L. A reason-
able strategy is to insert x as close to the middle of these allowable positions
as possible, say rounding down when there is an odd number of them. We
refer to this algorithm as M , since it places x in the middle of its allowable
range.

However, we claim that for each k ≥ 1, Builder can construct a
semiorder P with ld (P) = k so that Assigner is forced to assemble a linear
extension L with ld (P, L) = 3k − 1, provided she uses algorithm M . As
in the proof of Lemma 5, Builder starts by presenting two k + 1-element
antichains with all points of one less than all points of the other. Builder
labels the L-least element as x and the L-greatest element as z with the
remaining elements belonging to A ∪D so that a < d in P, for every a ∈ A
and d ∈ D.

Builder then presents an element y with

(1) x ‖ y and z ‖ y in P, and

(2) a < y < d in P, for all a ∈ A and d ∈ D.

Next, Builder presents the elements of an k−1-element antichain C with

(1) x < c, y ‖ c and z > c in P, for all c ∈ C, and

(2) a < c < d in P, for all a ∈ A, c ∈ C and d ∈ D.

Using Algorithm M , Assigner will place all elements of C as a block
of consecutive elements immediately under y. Assigner then presents an
antichain B of size k − 1 with

(1) x ‖ b, y ‖ b and b < z in P, for all b ∈ B, and

(2) a < b < c in P, for all a ∈ A, b ∈ B and c ∈ C.

Assigner must then insert all elements of B as a block in between
the highest element of A and the lowest element of C. It follows that
hL(y)− hL(x) = 3k − 1. On the other hand, the linear order A < x < B <
y < C < z < D shows that ld (P) ≤ k. Furthermore, P is easily seen to be
a semiorder.
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We now consider a second algorithm that seems intuitive yet fails to
be optimal. When presented with a new point x, this algorithm inserts x
into the position that minimizes the linear discrepancy of the resulting linear
extension, breaking ties by placing x as low as possible. Since this algorithm
is in some sense greedy in its operation, we denote it by G . Although
we do not include the proof, it is straightforward to modify the argument
for Algorithm M to verify the following claim: Builder can construct a
semiorder P, with ld (P) = k, that will force an Assigner using the G

algorithm to order points as x < A < B′ < y < B′′ < C < D < w,
where B′ ∪ B′′ = B and |B′| = ⌊|B|/2⌋. This linear extension has linear
discrepancy ⌈(k − 1)/2⌉+ 2k.

We comment that it is not difficult to construct examples showing
that M , when applied to general posets, can be forced to construct lin-
ear extensions with linear discrepancy 3k (rather than 3k− 1) for posets of
linear discrepancy k.

5.2. An optimal online linear discrepancy algorithm

Let P be a poset and let (x, y) be an ordered pair of elements from P. We
call (x, y) a critical pair if (1) x ‖ y in P; (2) D(x) ⊆ D(y) in P; and
(3) U(y) ⊆ U(x) in P. If (x, y) is a critical pair and (y, x) is not a critical
pair, then we call (x, y) a one-way critical pair. A linear extension L of a
poset P is said to reverse a critical pair (x, y) when y < x in L. The concept
of critical pairs first surfaced in dimension theory, as it is easy to see that
the dimension of poset P is the least positive integer t for which there exists
a family {L1, L2, . . . , Lt} of linear extensions so that for every critical pair
(x, y) in P, there is some i for which (x, y) is reversed in Li. The reader
can find much more information on the role played by linear extensions in
reversing critical pairs in [10].

By contrast, linear discrepancy is all about preserving critical pairs, as
the following elementary but important proposition (see [4]) prevails:

Proposition 8. Let P be a poset which is not a total order.

(1) If L is a linear extension of P and x and y are incomparable points

with hL(y)− hL(x) = ld (P, L), then (x, y) is a critical pair in P.

(2) There exists an optimal linear extension L of P so that if (x, y) is a
critical pair reversed by L, then (y, x) is also a critical pair.
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Accordingly, the online algorithm A we will define here endeavors to
construct a linear extension that reverses few critical pairs. However, we
note that in discussing critical pairs in an online setting, it may happen that
a pair (x, y) is critical at one moment in time but is no longer critical at a
later moment in time. The converse statement cannot hold.

Suppose a new point x enters the poset. Assigner considers the one-way
critical pairs of the form (x, u), where u has already entered, as well as the
one-way critical pairs of the form (v, x), where again v has already entered.
If there are no one-way critical pairs of either type, then x is inserted in any
legal position.

Suppose there are only one-way critical pairs of the form (x, u) but none
of the other type. Let let u0 be the lowest element of L for which (x, u0)
is a one-way critical pair. Insert x in any legal position which is under u0.
There is such a position, since D(x) ⊆ D(u0). Dually, if there are only one-
way critical pairs of the form (v, x) but none of the other type, let v0 be the
highest element of L for which (v0, x) is a one-way critical pair. Insert x in
any legal position over v0.

We are left to consider the case where there are one-way critical pairs
of both types. Now let u0 and v0 be defined as above. Insert x in any legal
position between u0 and v0. In making this statement, we note that u0 and
v0 can occur in either order in L. If v0 < u0 in L, then some positions
between u0 and v0 may be illegal, but there is at least one position between
them which is legal. On the other hand, if u0 < v0 in L, then all positions
between them are legal.

To analyze the behavior of A , we require the following elementary
proposition.

Proposition 9. If (x, y) and (y, z) are critical pairs in a poset P, then

either x < z in P or (x, z) is a critical pair in P.

Next we establish a key lemma concerning how A handles a configura-
tion we denote by C. This configuration consists of four points x, y, z, w.
Among these points, we require

(1) z > w, z > x, y > w, and x ‖ y in P, and

(2) (y, z) and (w, x) are critical pairs in P.

Note that conditions (1) and (2) imply that (y, z) and (w, x) are in fact
one-way critical pairs.
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Lemma 10. Algorithm A never constructs a linear extension L such that

points forming a copy of C are ordered as x < w < z < y in L, all points
less than x in L are less than y in P, and all points greater than y in L are

greater than x in P.

Proof. We argue by contradiction. Consider the first time a copy of C is
placed according to the conditions of the lemma. Notice that the last point
presented must be one of x, y, w, or z, as the relationships amongst only
those points induce C. By duality, it suffices to consider only the cases
where x or w is the last point to enter the poset.

We first consider the possibility that x was the last point presented.
Since x < w in L and (w, x) is a critical pair, there is a point x′ such that
(x, x′) is a critical pair and x′ < x in L. Since (x, x′) is a critical pair, we
must have that x′ ‖ y. This contradicts the fact that x, y, w, and z are
placed according to the conditions of the lemma.

Now suppose w was the last point presented. Since x < w in L and
(w, x) is a critical pair, there is a point w′ such that (w′, w) is a critical
pair but w < w′ in L. Now (w′, x) is also a critical pair. Since (w′, w) is a
critical pair, we must have w′ < z and w′ < y. Hence, {x, y, z, w′} forms a
copy of C placed in the forbidden order at an earlier stage, a contradiction.

With Lemma 10 in hand, we are in position to analyze the performance
of algorithm A . We first consider the case of arbitrary posets in the
following lemma.

Lemma 11. Let k ≥ 1. If Builder constructs a poset P with ld (P) = k,
and Assigner uses Algorithm A , she will assemble a linear extension L with

ld (P, L) ≤ 3k − 1.

Proof. Let L be the linear extension of P assembled by Assigner. We show
that ld (P, L) ≤ 3k − 1. To the contrary, suppose that ld (P, L) = 3k.
Consider the first moment in time where there are points x and y with
x ‖ y and hL(y)− hL(x) = 3k. Let S = {s | x < s < y in L} and note that
|S| = 3k − 1. Also note that (x, y) is a critical pair in P.

Let M be an optimal linear extension of P. In view of Proposition 8,
we may assume x < y in M . Now let Z = {z ∈ S | y < z in M} and
W = {w ∈ S | w < x in M}. It follows that z ‖ y for all z ∈ Z, so |Z| ≤ k.
Similarly, |W | ≤ k. On the other hand, since hM (y)− hM (x) ≤ k, we know
∣

∣S − (Z ∪W )
∣

∣ ≤ k − 1. Thus |Z| = |W | = k and
∣

∣S − (Z ∪W )
∣

∣ = k − 1.
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Now let z be the M -largest element of Z and let w be the M -least element
of W . It follows that hM (x)−hM (w) ≥ k, but since M is optimal, we know
hM (x)− hM (w) = k and thus (w, x) is a critical pair in P. Similarly, (y, z)
is a critical pair in P. Also z > w in P. It follows that x, w, z, and y form a
configuration C which L orders as x < w < z < y. Furthermore, all points
less than x in L are less than y in P and all points greater than y in L
are greater than x in P since hL(y) − hL(x) = ld (P, L). This contradicts
Lemma 10.

Lemma 12. Let k ≥ 1. If Builder constructs a semiorder P with ld (P) = k,
and Assigner uses Algorithm A , she will assemble a linear extension L with

ld (P, L) ≤ 2k.

Proof. Let L be the linear extension of P assembled by Assigner. We
show that ld (P, L) ≤ 2k. To the contrary, suppose that ld (P, L) ≥ 2k + 1.
Consider the first moment in time where there are points x and y with x ‖ y
and hL(y) − hL(x) ≥ 2k + 1. Let S = {s | x < s < y in L} and note that
|S| = 2k. Also note that (x, y) is a critical pair in P.

Let M be an optimal linear extension of P. In view of Proposition 8,
we may assume x < y in M . Now let Z = {z ∈ S | x < z in P} and
W = {w ∈ S | w < y in P}. If Z = ∅, then x ‖ s for every s ∈ S, and since
x ‖ y, we know that ∆(P) ≥ 2k+1 which would imply that ld (P) ≥ k+1.
The contradiction forces Z to be nonempty. Similarly, W 6= ∅.

Choose z ∈ Z and w ∈ W . Since x ‖ y, we must have z ‖ y and w ‖ x
in P. Since P is a semiorder and a semiorder is a special case of an interval
order, we must have z > w in P. Observe that in a semiorder, whenever we
have two distinct incomparable points u and v, then (at least) one of (u, v)
and (v, u) is a critical pair. However, this implies that both of (y, z) and
(w, x) are critical pairs in P, while neither of (z, y) nor (x,w) is a critical
pair. It follows that x, w, z, and y form the configuration C in the order
forbidden by Lemma 10, a contradiction.

5.3. Online interval representations

We now turn our attention to the situation where Builder constructs an
interval order (or semiorder) by providing an interval representation, one
interval at a time. Now Assigner will use the following algorithm, which
we denote L . A new point x comes with an interval

[

l(x), r(x)
]

and this

Keller 13 31.5.2010 15:58



14 M. T. Keller, N. Streib and W. T. Trotter

interval is fixed in time. Assigner will then insert x into L so that elements
are ordered by the left endpoints of their intervals, i.e., u < v in L whenever
l(u) < l(v) in R. Ties can be broken arbitrarily.

Lemma 13. Let k ≥ 1. If Builder constructs an interval order P by

providing an interval representation, with ld (P) = k, and Assigner uses

Algorithm L , she will assemble a linear extension L with ld (P, L) ≤ 2k.

Proof. Let L be the linear extension of P assembled by Assigner. We
show that ld (P, L) ≤ 2k. To the contrary, suppose that ld (P, L) ≥ 2k + 1.
Clearly, we may stop when L first violates the conclusion. So we may choose
points x and y so that hL(y)− hL(x) = 2k + 1.

Let S = {s | x < s < y in L}. If S ⊆ Inc (x), then it follows that
ld (P) ≥ ⌈∆(P)/2⌉ ≥ k + 1. So there is a point z ∈ S with x < z in P. It
follows that l(x) ≤ r(x) < l(z) ≤ l(y) in R, which is a contradiction, since
it implies that x < y in P.

We state the analogous result for semiorders, noting that there is nothing
to prove, as we are simply restating the well-known characterization of
optimal linear extensions of semiorders.

Lemma 14. Let k ≥ 1. If Builder constructs a semiorder P by providing

an interval representation, with ld (P) = k and Assigner uses Algorithm L ,

then she will assemble an optimal linear extension L.
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