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a b s t r a c t

Fix an element x of a finite partially ordered set P on n elements. Then let hi(x) be the
number of linear extensions of P in which x is in position i, counting from the bottom.
The sequence {hi(x) : 1 ≤ i ≤ n} is the height sequence of x in P . In 1982, Stanley used
the Alexandrov–Fenchel inequalities for mixed volumes to prove that this sequence is log-
concave, i.e., hi(x)hi+2(x) ≤ h2

i+1(x) for 1 ≤ i ≤ n − 2. However, Stanley’s elegant proof
does not seem to shed any light on the error term when the inequality is not tight; as
a result, researchers have been unable to answer some challenging questions involving
height sequences in posets. In this paper, we provide a purely combinatorial proof of
two important special cases of Stanley’s theorem by applying Daykin’s inequality to an
appropriately defined distributive lattice. As an end result, we prove a somewhat stronger
result, one for which it may be possible to analyze the error terms when the log-concavity
bound is not tight.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a finite partially ordered set (poset) on n elements, and let E(P) denote the family of all linear extensions of P .
For an element x of P and a linear extension L ∈ E(P), let hL(x) = |{y : y ≤ x in L}|. Note that hL(x) is just the position
of x in the linear order L, starting the count from the bottom. When i is a positive integer with 1 ≤ i ≤ n, we then set
hi(x) = |{L ∈ E(P) : hL(x) = i}|. The sequence {hi(x) : 1 ≤ i ≤ n} is called the height sequence of the element x in P .

In a paper that time has shown to be fundamentally important to the combinatorial theory of partially ordered sets,
Stanley [10] used the Alexandrov–Fenchel inequalities for mixed volumes to prove the following result.

Theorem 1.1 (Stanley). For each element x in a finite poset P, the height sequence of x in P is log-concave, i.e.,

hi(x)hi+2(x) ≤ h2
i+1(x)

for all i with 1 ≤ i ≤ n − 2.

For the remainder of the paper, we will fix a finite poset P and an element x of P . We then let I(x) denote the set of
elements in P that are incomparable with x in P . For each 1 ≤ i ≤ n, let Hi = {L ∈ E(P) : hL(x) = i}. Since we have fixed
the element x from P , we write hi rather than hi(x).

The principal result of this paper will be a combinatorial proof of Stanley’s theorem in the case where I(x) is a chain, or
a two-element antichain.
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Theorem 1.2 (Special Case of Stanley’s Theorem). Let P be a finite poset, and let x be an element of P. If I(x) is a chain or a
two-element antichain, then the height sequence of x in P is log-concave, i.e.,

hihi+2 ≤ h2
i+1

for all i with 1 ≤ i ≤ n − 2.

In fact, our proof yields a somewhat stronger result than is stated in Theorem 1.2, and it is our hope that this stronger
result (and the proof techniques we introduce to prove it) will have a broader range of applications.

2. Motivation for our research

Stanley’s theorem is equivalent to the assertion that there is an injection from Hi × Hi+2 into Hi+1 × Hi+1, when
1 ≤ i ≤ n−2. So it is natural to ask whether one could construct such an injection in a purely combinatorial manner. While
finding a combinatorial proof of Stanley’s theorem seems a worthwhile goal just in terms of gaining a better understanding
of the combinatorics of posets, this has not been the driving force for our research. Instead, we are attempting to answer
questions for which current techniques do not seem sufficient. In order to put this issue into perspective, we pause to
summarize briefly some closely related research.

For distinct elements x and y in a poset P , let Pr[x > y] denote the number of linear extensions of P in which x is greater
than y divided by the total number of linear extensions. In [8,9], Shepp used a correlation inequality due to Fortuin et al. [5]
(a result now known as the FKG Inequality) to prove the following theorem.

Theorem 2.1 (The XYZ Theorem). If x, y, and z are distinct elements in a poset P, then

Pr[x > y|x > z] ≥ Pr[x > y].

The XYZ Theorem was first conjectured by Rival and Sands, who noted that the inequality holds trivially unless x, y, and
z form a three-element antichain in P . They further conjectured that the inequality is strict in this case, a subtlety that does
not follow from Shepp’s approach.

Subsequently, Fishburn [4] used a generalization of the FKG Inequality due to Ahlswede and Daykin [1] to prove the
strong form of the XYZ Theorem, i.e., the inequality in the XYZ Theorem is strict when x, y, and z form a three-element
antichain. In fact, Fishburn’s theorem also provides the error term in the inequality and characterizes those posets for which
the strict inequality – with error term – is tight.

The FKG Inequality and the generalization due to Ahlswede and Daykin (also called the Four Functions Theorem) have
been used by several authors (see [3,6,7], for example) to prove correlation inequalities for partially ordered sets.

By way of contrast, Stanley’s convex geometry approach does not seem to provide techniques for analyzing the error
term when the inequality is not tight. To explain why we are concerned with error terms, we discuss briefly a challenging
problem posed by Kahn (personal communication). Let x be an element in a finite poset P with |P| = n. The average height
of x ∈ P is

h(x) =

n∑
i=1

ihi(x)

n∑
i=1

hi(x)
.

Also, for each element x ∈ P , let D[x] = {y ∈ P : y ≤ x in P}.
Kahn made the following conjecture.

Conjecture 2.2. Let x and y be elements of a finite poset P. If m = |D[x] ∪ D[y]|, then

max{h(x), h(y)} ≥ m − 1.

Kahn observed that his conjecture follows from Stanley’s theoremwhen |P| = m, i.e. when all maximal elements of P are
in {x, y}. To see this, let n = |P| and let e(P) be the number of linear extensions. It is clear that for one of x or y, hn ≥ e(P)/2.
Using the fact that

∑n
i=1 hi = e(P) and that the sequence hi is log-concave, one can argue that the average height is bounded

below by the case when hi = e(P)/2n−i+1. So

max{h(x), h(y)} ≥

n∑
i=1

i e(P)

2n−i+1

e(P)
= n − 1 +

1
2n

.

When n > m and additional elements are present in the poset, we still observe that one of x and y is in position m (or
higher) in at least half the linear extensions of P . Onemight think that this would force the average height of such an element
to be at leastm − 1, but log-concavity alone only guarantees that it be at leastm ln 2, which is about 0.7m.
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It is reasonable to believe that if we had a better understanding of the behavior of the error terms in Stanley’s inequality,
wemight have some chance of resolving Kahn’s conjecture. Indeed, this over-arching goal motivated Brightwell and Trotter
to investigate combinatorial approaches to correlation inequalities as presented in [2]. While their research managed to
eliminate the role of the FKG Inequality and the Four Functions Theorem in the proof of the strong form of the XYZ Theorem
(including the error term analysis), the FKG Inequality and the Four Functions Theorem are generally considered as part of
a combinatorial mathematician’s toolkit. With this perspective in mind, we derive a special case of Stanley’s theorem as a
consequence of the Four Functions Theorem.

The remainder of the paper is organized as follows. In Section 3, we develop some essential background material,
including the concept of a Shepp lattice. Then, in Sections 4 and 5, we present the proof of our principal theorem.

3. Background material

For completeness, we state the Four Functions Theorem of Ahlswede and Daykin [1]. In presenting this result, we use
R0 to denote the set of all nonnegative real numbers. When L is a lattice and f is a function mapping L to R0, we let
f (X) =

∑
x∈X f (x). And when X and Y are subsets of L, we define:

X ∧ Y = {x ∧ y : x ∈ X, y ∈ Y }

X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y }.

Theorem 3.1 (Ahlswede and Daykin). Let L be a distributive lattice, and let α, β , γ and δ be four functions mapping L to R0. If

α(x)β(y) ≤ γ (x ∧ y)δ(x ∨ y)

for all x, y ∈ L, then

α(X)β(Y ) ≤ γ (X ∧ Y )δ(X ∨ Y )

for all subsets X and Y of L.

Daykin’s inequality is just the special case of Theorem 3.1 when all four functions are the constant function mapping all
elements of L to 1. With this interpretation, the conclusion of the theorem becomes

|X ||Y | ≤ |X ∧ Y ||X ∨ Y |

and this is the result we will need in this paper.

3.1. Constructing distributive lattices

For a positive integer k, let k denote the k-element chain {0 < 1 < · · · < k − 1}. Now let P be a finite poset and let L
denote the set of all order-preserving maps from P to k. It is natural to define a partial order on L by setting f ≤ g if and
only if f (x) ≤ g(x) for all elements x in P . It is easy to see that under this partial order L is in fact a distributive lattice, with
the meet f ∧ g and join f ∨ g of elements f and g from L defined as follows:

(f ∧ g)(x) = min{f (x), g(x)} and (f ∨ g)(x) = max{f (x), g(x)}

for all elements x in P .
In [8,9], Shepp applied the FKG Inequality to a distributive lattice defined on the same set of order-preserving functions

from P to k, but with an alternative partial order and consequently, alternative notions of meets and joins. First, he fixed an
element x0 from the poset P as a root, and then defined f ≤ g when

1. f (x0) ≥ g(x0) and
2. f (x) − f (x0) ≤ g(x) − g(x0), for all elements x in P with x ≠ x0.

It is straightforward to verify that, equipped with this definition, the set of all order preserving functions from P to k
forms a distributive lattice with meets and joins determined as follows:

(f ∧ g)(x0) = max{f (x0), g(x0)}
(f ∧ g)(x) = max{f (x0), g(x0)} + min{f (x) − f (x0), g(x) − g(x0)} for all x ≠ x0. (1)

Similarly,

(f ∨ g)(x0) = min{f (x0), g(x0)}
(f ∨ g)(x) = min{f (x0), g(x0)} + max{f (x) − f (x0), g(x) − g(x0)} for all x ≠ x0. (2)

Intuitively, the meet operation pushes x0 up, and everything else down, relative to x0. Dually, the join operation pushes
x0 down, and everything else up, relative to x0.
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In what follows, we call this lattice the Shepp latticewith the root element x0.

3.2. Algebraic properties of distributive lattices

In arguments to follow, we will take advantage of the following elementary result.

Proposition 3.2. If L1 and L2 are distributive lattices, then their Cartesian product L1 × L2 is also a distributive lattice.

The plan is to apply Daykin’s inequality to the appropriate subsets of the Cartesian product of two Shepp lattices.

4. When I(x) is a chain

We fix a finite poset P and an element x from P . Suppose that I(x) = {y1, . . . , yl}. In this section we concentrate on the
case when I(x) is a chain, and we assume y1 < y2 < · · · < yl in P .

We also fix a positive integer kwith kmuch larger than |P|. Let Q be the poset obtained from P by removing the element
x and adding a new element uwith u incomparable to every element of P .

We now construct a distributive lattice L. The elements of the ground set of L are pairs of functions (f1, f2) such that f1
and f2 are order preserving functions from Q to k.

To complete the definition of the lattice L, we define lattice operations as follows. The meet and join operations on the
right hand side are based on Shepp lattices with root element u.

(f1, f2) ∧ (g1, g2) = (f1 ∧ g1, f2 ∧ g2)
(f1, f2) ∨ (g1, g2) = (f1 ∨ g1, f2 ∨ g2).

By appealing to Proposition 3.2, and the fact that the Shepp lattice is distributive, we may conclude the following basic
fact.

Proposition 4.1. L is a distributive lattice.

Fix i with 1 ≤ i ≤ n − 2. Let A = {y ∈ P : x < y in P}, B = {z ∈ P : z < x in P} and I(x) = {y1, . . . , yl}. Also, let
a = |A|, b = |B|, and m = i − b. If x is in the ith position in a linear extension, then it will be above y1, . . . , ym−1 and below
ym, . . . , yl. In the following definition, let f be an order-preserving function from Q to k. When we write f (S) = c with S a
subset of the ground set of Q and c an integer, we mean that f (s) = c for all s ∈ S.

We then define subsets X and Y of the ground set of L as follows (see Fig. 1):

X = {(f1, f2) :

f1({y1, . . . , ym}) = f1(u),
f1(B) = 0,
f2(A) = k − 1,
f2({ym, . . . , yl}) = f2(u),
f2(u) > f2(p) for all p ∈ B,
fj(p1) ≠ fj(p2) ∀p1, p2 ∈ P, j ∈ {1, 2},

if it is not required otherwise by the conditions above}
Y = {(g1, g2) :

g2({ym+1, . . . , yl}) = g2(u),
g2(A) = k − 1,
g1(B) = 0,
g1({y1, . . . , ym+1}) = g1(u),
g1(u) < g1(p) for all p ∈ A,

gj(p1) ≠ fj(p2) ∀p1, p2 ∈ P, j ∈ {1, 2},
if it is not required otherwise by the conditions above}.

Wewill apply Daykin’s inequality, using the sets X and Y . The theorem tells us that |X ||Y | ≤ |X ∨ Y ||X ∧ Y |, and we will
then interpret this result in terms of linear extensions of P . First, we focus on computing |X | and |Y |, as this is the easy part.
Let X ′ be the set of quadruples (E1, E2, S1, S2) where E1 is a linear extension of A ∪ {ym, . . . , yl}, E2 is a linear extension of
the B ∪ {y1, . . . , ym−1}, S1 is an (a + l − m + 1)-element subset of {1, . . . , k − 1}, and S2 is a (b + m)-element subset of
{0, . . . , k−2}.We define a bijectivemapping between X and X ′ in the followingway. For (f1, f2) ∈ X , let S1 = Range(f1)\{0},
S2 = Range(f2) \ {k − 1}. Let E1 be the linear extension defined by the pre-images of the elements of S1 in increasing order,
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Fig. 1. Illustration of subsets X , Y , X ∨ Y and X ∧ Y . In this figure l = 5, m = 3, a = 2 and b = 3.

with the exception that instead of the pre-image of f1(u) (whichwould be the set {u, y1, . . . , ym}), we use the single element
ym. Also, let E2 be the linear extension defined by the pre-images of the elements of S2 \ f2(u) in increasing order. Note the
existence of another bijection from the set of pairs E1, E2 to Hi.

Define a set Y ′ and a similar bijection from Y to Y ′. It is clear that:

|X | = |X ′
| = hi


k − 1

a + l − m + 1

 
k − 1
b + m


|Y | = |Y ′

| = hi+2


k − 1

a + l − m

 
k − 1

b + m + 1


.

On the other hand, it is not quite so easy to write a simple formula for |X ∨ Y | and |X ∧ Y |, as there may be ‘‘collisions’’,
i.e., cases where in taking the join or meet, two or more elements of Q wind up in the same position. However, when k is
very large, such collisions are rare. With these remarks in mind, we note that we may write:

|X ∨ Y | = h∗

i+1


k − 1

a + l − m + 1

 
k − 1
b + m


+ R∨,

where h∗

i+1 is the number of linear extensions of P such that x is in the ith lowest position and y2 is in a position where y1
could also go. This means h∗

i+1 ≤ hi+1.
Moreover, in this formula, the term R∨ is the number of elements of X ∨ Y in which at least one collision occurs.
Using a similar counting method and notation,

|X ∧ Y | = h∗∗

i+1


k − 1

a + l − m

 
k − 1

b + m + 1


+ R∧

with h∗∗

i+1 ≤ hi+1.
After applying the Daykin’s Inequality and canceling the multiplicative terms from both sides, we have:

hihi+2 ≤

h∗

i+1 + r∨
 

h∗∗

i+1 + r∧


where r∨ =
R∨

k−1
a+l−m+1


k−1
b+m

 and r∧ =
R∧

k−1
a+l−m


k−1

b+m+1

 .
It is easy to see that as k → ∞, the probability of a collision tends to zero. More precisely, as k → ∞, both r∨ → 0

and r∧ → 0. Using the inequalities hi+1 ≤ h∗

i+1 and hi+1 ≤ h∗∗

i+1, the theorem follows. As promised, we actually proved a
somewhat stronger result by stating the inequalities in terms of h∗

i+1 and h∗∗

i+1.

5. When I(x) is a two-element antichain

As in the previous section, we fix a finite poset P and an element x from P . This timewe assume that I(x) is a two-element
antichain, i.e. I(x) = {y1, y2} and y1 ‖ y2.
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Among the linear extensions having x in the ith position, let hi(y1 < y2) be the number with y1 < y2 and hi(y2 < y1) be
the number with y2 < y1. The inequality we need to show is

[hi(y1 < y2) + hi(y2 < y1)][hi+2(y1 < y2) + hi+2(y2 < y1)] ≤ [hi+1(y1 < y2) + hi+1(y2 < y1)]2.

Since

hi(y1 < y2)hi+2(y1 < y2) ≤ hi+1(y1 < y2)2 and
hi(y2 < y1)hi+2(y2 < y1) ≤ hi+1(y2 < y1)2

by the previous section, it is sufficient to show

hi(y2 < y1)hi+2(y1 < y2) + hi(y1 < y2)hi+2(y2 < y1) ≤ 2hi+1(y1 < y2)hi+1(y2 < y1).

We will do this by showing

hi(y2 < y1)hi+2(y1 < y2) ≤ hi+1(y2 < y1)hi+1(y1 < y2) and (3)

hi(y1 < y2)hi+2(y2 < y1) ≤ hi+1(y1 < y2)hi+1(y2 < y1). (4)

We remark that (3) and (4) are not true for just any pair y1 and y2 of incomparable elements in a poset, but it is true in this
particular case. The proof is very similar to the one presented in the previous section with l = 2.

To prove (3), we define A, B, a, b the same way as before. This time l = 2 and I(x) = {y1, y2}. The height sequence has
only three nonzero elements: hb+1, hb+2 and hb+3, so we make i = b+ 1. Wemodify the definition of X and Y appropriately
to count the right linear extensions:

X = {(f1, f2) :

f1(y2) = f1(u),
f1(y2) < f1(y1),
f1(B) = 0,
f2(A) = k − 1,
f2({y1, y2}) = f2(u),
f2(u) > f2(p) for all p ∈ B,
fj(p1) ≠ fj(p2) ∀p1, p2 ∈ P, j ∈ {1, 2},

if it is not required otherwise by the conditions above}
Y = {(g1, g2) :

g2(y2) = g2(u),
g2(y1) < g2(y2),
g2(A) = k − 1,
g1(B) = 0,
g1({y1, y2}) = g1(u),
g1(u) < g1(p) for all p ∈ A,

gj(p1) ≠ fj(p2) ∀p1, p2 ∈ P, j ∈ {1, 2},
if it is not required otherwise by the conditions above}.

Now

|X | = hi(y2 < y1)

k − 1
a + 2

 
k − 1
b + 1


|Y | = hi+2(y1 < y2)


k − 1
a + 1

 
k − 1
b + 2


|X ∨ Y | = hi+1(y2 < y1)∗


k − 1
a + 2

 
k − 1
b + 1


+ R∨

|X ∧ Y | = hi+1(y1 < y2)∗∗


k − 1
a + 1

 
k − 1
b + 2


+ R∧,

and we finish the proof the same way as in the previous section. The inequality (4) can be shown similarly.
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