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a b s t r a c t

We show that for each integer h ≥ 2, there exists a least positive
integer ch so that if P is a poset having a planar cover graph and
the height of P is h, then the dimension of P is at most ch. Trivially,
c1 = 2. Also, Felsner, Li and Trotter showed that c2 exists and is 4,
but their proof techniques do not seem to apply when h ≥ 3. We
focus on establishing the existence of ch, although we suspect that
the upper bound provided by our proof is far from best possible.
From below, a construction of Kelly is easily modified to show that
ch must be at least h + 2.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We assume the reader is familiar with basic combinatorial concepts for finite partially ordered
sets: cover graphs, comparability graphs, order diagrams, maximal and minimal elements, chains,
antichains, height and width. We also assume some familiarity with the concept of dimension for
posets and the role of critical pairs and alternating cycles in determining dimension. Readers who
would like additional background material may find it helpful to consult [16,17].

In this paper, we focus on combinatorial problems associated with order diagrams and cover
graphs. In some sense, it is easy to characterize graphs that are cover graphs, as we have the following
self-evident proposition: a graph G is a cover graph if and only if the edges of G can be oriented so that
there are no oriented paths x1, x2, x3, . . . , xn where n ≥ 3 and x1xn is an edge in G. Nevertheless, it
is quite difficult to devise an algorithm for implementing this test; in fact, Nešetřil and Rödl [14] and
Brightwell [4] have shown that answering whether a graph is a cover graph is NP-complete.

A poset P is said to be planar if it has an order diagram without edge crossings. If a poset is planar,
then its cover graph is planar, but the converse need not be true. Although height two posets with
planar cover graphs also have planar diagrams [13,7], for all h ≥ 3, there exist height h non-planar
posets with planar cover graphs. Also, while there are very fast algorithms for testing graph planarity,
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Fig. 1. Kelly’s construction.

with running time linear in the number of edges [11], Garg and Tamassia [10] showed that it is
NP-complete to answer whether a poset is planar.

Recall that the dimension of a poset P , denoted dim(P), is the least positive integer t for which there
are linear orders L1, L2, . . . , Lt on the ground set of P so that P = L1 ∩ L2 ∩ · · · ∩ Lt . The following
comprehensive theorem summarizes previously known results connecting dimension and planarity
for posets. These results are proved in [1,18,12], respectively.

Theorem 1.1. Let P be a finite poset.
(1) If P has a zero and a one, then P is planar if and only if P is a 2-dimensional lattice.
(2) If P has a zero (or a one), then the dimension of P is at most 3.
(3) There exist planar posets with arbitrarily large dimension.

For n ≥ 2, the standard example Sn is a height two poset with minimal elements a1, a2, . . . , an,
maximal elements b1, b2, . . . , bn, with ai < bj in Sn if and only if i ≠ j. It is well-known that dim(Sn) =

n. Furthermore, Sn is irreducible when n ≥ 3, i.e., the removal of any point from Sn decreases the
dimension to n−1. For n ≤ 4, Sn is planar, so there exist planar posets of dimension 4. For n ≥ 5, even
the cover graph of Sn is non-planar. However, the proof given by Kelly [12] demonstrating that there
are planar posets with arbitrarily large dimension actually shows that for each n ≥ 5, the standard
example Sn is a subposet of a planar poset. We illustrate Kelly’s construction in Fig. 1 for the specific
value n = 5, noting that the construction is easily generalized when n ≥ 6.

2. Planar graphs and dimension

Recall that the vertex–edge poset of a graph G is the height two poset PG having the vertices of G as
minimal elements and the edges of G as maximal elements, with x < e in PG if and only if x is an end
of e in G. In 1989 Schnyder [15] proved the following now classic result.
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Fig. 2. A poset with a one and a planar cover graph.

Theorem 2.1. Let G be a graph and let PG be the vertex–edge poset of G. Then G is planar if and only if
dim(PG) ≤ 3.

The machinery developed by Schnyder in his proof of Theorem 2.1 has led to deep insights in
other areas ofmathematics, such as graph drawing (e.g. see [8]). However, Barrera-Cruz andHaxell [2]
have recently provided a shorter proof avoiding Schnyder’s machinery. In [5,6], Brightwell and Trotter
extended Schnyder’s theorem, but it is the second of these results which is more central to this paper.

Theorem 2.2. Let P be the vertex–edge–face poset of a planar multi-graph drawn without edge crossings
in the plane. Then dim(P) ≤ 4.

3. Posets having a planar cover graph

We show in Fig. 2 a planar cover graph of a poset P that (1) has a one and (2) contains the standard
example S8. Again, this drawing is just one instance of an infinite family and shows that there is no
analogue of the second part of Theorem 1.1 for cover graphs.

A poset of height 1 is an antichain, and non-trivial antichains have dimension 2. For height 2 posets,
we have the following theorem proved by Felsner, Li and Trotter [9].

Theorem 3.1. Let P be a poset of height 2. If the cover graph of P is planar, then dim(P) ≤ 4.

The standard example S4 shows that the inequality in Theorem 3.1 is best possible. Motivated by
this theorem and the fact that the posets in Kelly’s construction have large height, Felsner, Li and
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Trotter conjectured in [9] that a poset with a planar cover graph has dimensionwhich can be bounded
in terms of its height. The primary result of this paper will verify this conjecture.

Theorem 3.2. For every h ≥ 1, there exists a least positive integer ch so that if P is a poset of height h
and the cover graph of P is planar, then dim(P) ≤ ch.

Wenote that the proof of Theorem 3.1 proceeds by showing that P is isomorphic to the vertex–face
poset of a planar map, so that the upper bound from Theorem 2.2 may be applied. Independent of this
machinery, we know of no entirely simple1argument to show that the dimension of a poset of height 2
having a planar cover graph is bounded—even by a very large constant. Furthermore, we do not see
how the techniques developed in [9] can be extended to the case h ≥ 3.

4. Proof of the main theorem

Our proof will utilize the following basic concepts concerning dimension. A set of incomparable
pairs in a poset P is reversible if there is a linear extension L of P with x > y in L for every (x, y) in the
set. Also, a set {(xi, yi) : 1 ≤ i ≤ k} of incomparable pairs is called a strict alternating cycle (of length k)
when xi ≤ yj in P if and only if j = i + 1 (cyclically). A set of incomparable pairs is reversible if and
only if it does not contain a strict alternating cycle. An incomparable pair (x, y) is called a critical pair
when u < x implies u < y in P andw > y impliesw > x. The dimension of a poset is one if and only if
it is a linear order, i.e., there are no incomparable pairs. When P is not a linear order, the dimension of
P is then the least positive integer t for which the set Crit(P) of all critical pairs of P can be partitioned
into t reversible subsets.

Now on with the proof. We assume that P is a poset of height h ≥ 3 and that P has a planar cover
graph G. Clearly, we may assume that G is connected. To show that dim(P) is bounded in terms of h,
it is enough to show that we may partition the set Crit∗(P) of incomparable min–max pairs2 into a
small number of reversible sets, where small means bounded as a function of h.

To accomplish this task, we will provide for each critical pair (a, b) from Crit∗(P) a signature. The
reader should think of a signature as a vector of parameters, although we do not require that these
vectors have a common length, nor dowe require that the ith coordinate of every vector represents the
same parameter. However, we do require (1) the number of parameters in the signature is bounded
as a function of h, and (2) the number of distinct values that can be taken by any given coordinate in
the signature is bounded as a function of h. As a consequence of these two conditions, the number of
distinct signatures is also bounded as a function of h. Finally, we will show that any set of critical pairs
with identical signatures is reversible.

We first handle a special case—although aswewill see, this case is actually the heart of the problem.
We then return to the general case in Section 7.
Special case. There is an a0 ∈ min(P) such that a0 < b in P for all b ∈ max(P).

Consider a plane drawing without edge crossings of G with the vertex a0 on the infinite face. We
consider the edges of G oriented from u to v when u < v in P . An oriented path Q = (u0, u1, . . . , ut)
from u = u0 to v = ut witnesses that u0 < ut in the poset P . Frequently, we will refer to such a path
as Q (u, v) to emphasize that Q starts at u and ends at v. When 0 ≤ i ≤ j ≤ t,Q (ui, uj) will denote
the portion of Q starting with ui and ending with uj. In this paper, all oriented paths will be denoted
with the letters Q , L and R.

1 Felsner, Li and Trotter also showed that the dimension of a poset of height two can be bounded as a function of the acyclic
chromatic number of the cover graph. Since a planar graph has acyclic chromatic number at most five [3], this yields a bound
on the dimension of the poset. However, using the techniques of [9], the resulting bound is 65, and while the argument can
no doubt be tightened, it is unlikely to yield the correct answer, which is four. This technique fails for h ≥ 3, as demonstrated
by the poset obtained by subdividing each comparability of Sn (i.e. for each pair (i, j) with i ≠ j, add cij and comparabilities
ai < cij < bj). Coloring all of the a’s with color 1, the b’s with color 2, and c ’s with color 3, we find that the acyclic chromatic
number of the cover graph is at most 3, whereas the dimension of the poset is n.
2 In general, it is necessary to reverse all critical pairs, but for posets with planar cover graphs, it is easy to add new points so

that reversing pairs in Crit∗(P) is enough.
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Fig. 3. The oriented tree T .

However, we will also discuss paths, cycles and walks in G in the general sense, i.e., without any
concern for the orientation on the edges. In particular, we will use the letters T and S to denote trees,
where the vertex sets of such trees will be a proper subset of the vertex set of G. When u and v are
distinct vertices in the tree T , we use T (u, v) to denote the unique path in T startingwith u and ending
with v. In general, T (u, v) is not an oriented path.

For convenience, we let A denote the set min(P) − a0 and we let B = max(P). Let T be an oriented
tree so that:

(1) T is a subgraph of G;
(2) a0 is the root of T ;
(3) all other vertices in T distinct from a0 are on paths oriented away from a0; and
(4) the elements of B are leaves of T (although perhaps there are leaves of T that are not in B).

Using clockwise orientation to establish precedence, we perform a depth first search of T and this
results in a linear order on the vertices of T with the root a0 as the least element. If an element x is
less than another element y in this linear order then we write x<T y. We illustrate in Fig. 3 what the
resulting order on the elements of Bwould be.

One word of caution about Fig. 3. In this figure, we mean that bi <T bj whenever 1 ≤ i < j ≤ 19.
However, in the discussions to follow, we will discuss elements of B with subscripts which do not
necessarily reflect their order in the tree T . In particular, when we say that b1 and b2 are elements of
B, we are not implying that b1 <T b2.

As a second example, we return to Fig. 2 and relabel the point which was previously a one to be a
minimal element a0 which is less than each maximal element. Now we have a poset P satisfying the
properties we are assuming in this special case, and we have a suitable drawing with the vertex a0
on the infinite face. It follows in this example that the oriented tree T is just a star, and the resulting
linear order is a0 <T b1 <T b2 <T · · · <T b8.

When u and v are distinct vertices in T , we let |T (u, v)| count the number of vertices in the path
T (u, v). For brevity, when u = a0, we write T (v) rather than T (a0, v). Furthermore, we refer to the
quantity h(v) = |T (v)| as the height of v in T .

Now let a ∈ A. Set Spec(a) = {s ∈ T : a < s in P and a ∥ u for all u ∈ T (s) with u ≠ s}. We say
the elements of Spec(a) are the special points of a. When s and s′ are distinct special points in Spec(a),
it may happen that s < s′ in P . However, s cannot be on the path T (s′). The following elementary
statement is so important to our argument that it deserves to be listed as a proposition.

Proposition 4.1. If a ∈ A, u ∈ T and a < u in P, then there is some s ∈ Spec(a) so that s is on the path
T (u).
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Fig. 4. Unimodal sequence.

5. Unimodal sequences

For each a ∈ A, we define two sequences. One is a unimodal sequence (h0(a), h1(a), . . . , hr(a)) of
positive integers. In particular, there is some integer i ≥ 0 for which

h ≥ h0(a) > h1(a) > · · · > hi(a) ≤ hi+1(a) < hi+2(a) < · · · < hr(a) ≤ h.

This sequence can be trivial and consist of a single integer. We also have a sequence
(v0(a), v1(a), . . . , vr(a)) of distinct points from Spec(a). These two sequences are uniquely defined
by the following requirements.

(1) v0(a) <T v1(a) <T · · · <T vr(a).
(2) For each j = 0, 1, . . . , r, hj(a) = h(vj(a)).
(3) hi(a) = min{h(s) : s ∈ Spec(a)}.
(4) If 0 ≤ j < r, s ∈ Spec(a) and vj(a) <T s<T vj+1(a), then h(s) ≥ max{hj(a), hj+1(s)}.

The sequence (h0(a), h1(a), . . . , hr(a)) is called the unimodal sequence of the element a. The
corresponding sequence of points (v0(a), v1(a), . . . , vr(a)) is called the unimodal sequence of special
points of a. Note that v0(a) is the <T -least element of Spec(a), while vr(a) is the <T -largest element
of Spec(a). We illustrate this definition in Fig. 4 where we show a minimal element a with unimodal
sequence (10, 9, 6, 6, 7, 8, 9). In this figure, the solid lines represent edges in the tree T while the
dashed lines represent edges oriented away from a.

Clearly, the number of unimodal sequences is bounded as a function of h, and the unimodal
sequence of a minimal element awill be added to the signature of all critical pairs (a, b)with a as first
coordinate. On the other hand, the unimodal sequence of special points of a will not be part of the
signature, as the number of such sequences is not bounded in terms of h. Since we will be considering
sets of critical pairs with the same signature, we will often drop the reference to a and denote the
terms of the unimodal sequence as (h0, h1, . . . , hr).

5.1. Safe and dangerous critical pairs

Let (a, b) ∈ Crit∗(P). We say that (a, b) is left-safe if b<T s for every s ∈ Spec(a). Similarly, we say
that (a, b) is right-safe if s<T b for every s ∈ Spec(a). In Fig. 4, (a, b1), (a, b2) and (a, b3) are left-safe
while (a, b7) and (a, b8) are right-safe.
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Proposition 5.1. The following two subsets of Crit∗(P) are reversible:

(1) {(a, b) ∈ Crit∗(P) : b is left-safe for a}.
(2) {(a, b) ∈ Crit∗(P) : b is right-safe for a}.

Proof. Suppose that the proposition fails for the first set. Choose an integer k ≥ 2 and a strict
alternating cycle {(ai, bi) : 1 ≤ i ≤ k} with bi left-safe for ai for each i = 1, 2, . . . , k. For each i,
let si denote the <T -least element of Spec(ai). Also, for each i = 1, 2, . . . , k, since ai ≤ bi+1, there is a
point ti ∈ Spec(ai)with ai < ti ≤ bi+1 in P and ti on T (bi+1). But this implies ti ≤T bi+1 <T si+1 ≤T ti+1,
which cannot hold cyclically. The proof for the second set is the same. �

So for the remainder of the proof, we consider only critical pairs (a, b) in Crit∗(P)which are neither
left-safe or right-safe.We call these pairs dangerous. In Fig. 4, (a, b4), (a, b5) and (a, b6) are dangerous.
When (a, b) is a dangerous critical pair, there is a unique integer j so that vj(a) <T b<T vj+1(a). The
integer j is called the location of b. In Fig. 4, the location of b4 is 0, the location of b5 is 2 and the location
of b6 is 4.

In view of these remarks, we fix a positive integer r , a sequence σ = (h0, h1, . . . , hr) and an
integer j with 0 ≤ j < r . We then consider the subfamily Crit∗(P, σ , j) of all critical pairs (a, b)
from Crit∗(P) where (1) σ is the unimodal sequence of a, and (2) the location of b is j. We assume that
Crit∗(P, σ , j) is non-empty, and we will focus on strategies for partitioning Crit∗(P, σ , j) into a small
number (bounded as a function of h) of reversible subfamilies.

Since the poset P , the unimodal sequence σ and the integer j are fixed, we will simplify notation
and just write Crit∗ rather than Crit∗(P, σ , j). As the argument proceeds and we identify additional
parameters to be added to the signature, we will always assume that Crit∗ denotes a subfamily on
which are relevant parameters are constant.

5.2. Minimal regions

Let (a, b) be a critical pair from Crit∗. Set x = vj(a) and y = vj+1(a). Then let L = L(a, x) and
R = R(a, y) be oriented paths in G, and let m = m(L, R) be the last point of L which is also a point
on R. The paths L(m, x) and R(m, y) together with the path T (x, y) in T form the boundary of a region
in the plane. The family of all regions formed in this manner is partially ordered by inclusion, and we
choose paths L and R so that the region is a minimal element in this partial order. This minimal region
is denoted Rj(a), and the last point L and R have in common is denotedmj(a). The boundary of Rj(a)
is a simple closed curve formed by the three defining paths L(m, x), R(m, y) and T (x, y). Note that
a0 does not belong to the interior of Rj(a), but of course, it may belong to its boundary. Also, it may
happen that a = mj(a).

We add to the signature of (a, b) the quantities |L(m, x)| and |R(m, y)|. Letting p be the last common
point of T (x) and T (y), we also record h(p) in the signature of (a, b). Of course, we do not include
mention of the specific pointsm, x, y or p in the signature of (a, b).

The next proposition is self-evident, but it may help the reader to see why we have introduced
regions.

Proposition 5.2. Let (a, b) be a dangerous critical pair from Crit∗. Then b is in the interior of the region
Rj(a).

The following propositions, which use the notation of the preceding discussion, are stated without
proof, as they admit quite elementary proofs; however, they are key to future arguments.

Proposition 5.3. There is no non-trivial oriented path Q in G starting at a point from L(m, x) ∪ R(m, y)
and ending at a point from the boundary of Rj(a) with all edges of Q in the interior of Rj(a).

We point out that there is a basic inconsistency in our notation, but it is so minor that we feel no
confusion can arise. When a1 and a2 are distinct, but there is some point x such that x = vj(a1) =

vj(a2), we refer to the paths L(m1, x) and L(m2, y). This might be construed to mean that L(m1, x) and
L(m2, y) are both part of a single path, but in fact, they are just oriented pathswith the same end point.
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Fig. 5. Incomparable regions.

Since the location j is fixed, when (a, b) is a critical pair from Crit∗, we will again abuse notation
slightly and refer to the region Rj(a) as R(a). Also, we just write m(a) rather than mj(a). With this
understanding, when {(ai, bi) : 1 ≤ i ≤ t} is a family of critical pairs from Crit∗, we may use the
shorthand notation: xi = vj(ai), yi = vj+1(ai),mi = mj(ai) and Ri = Rj(ai).

Proposition 5.4. Let (a1, b1) and (a2, b2) be critical pairs from Crit∗ with a1 ≠ a2. Suppose that there is
a point x with x = x1 = x2. If u is a vertex common to both L(m1, x) and L(m2, x), then the portion of
these two paths starting at u and ending at x is identical.

There is an obvious dual form of the preceding proposition for paths R(m1, y) and R(m2, y) which
we will not state formally. However, the following consequence follows immediately.

Proposition 5.5. Let (a1, b1) and (a2, b2) be critical pairs from Crit∗ with a1 ≠ a2. Suppose there are
distinct points x and y so that x = x1 = x2 and y = y1 = y2. Then the following statements hold.
(1) If m1 is not in the interior of R2, then R2 is a proper subset of R1.
(2) If m2 is not in the interior of R1, then R1 is a proper subset of R2.

We continue with the notation of Proposition 5.5 and assume that we have regions R1 and R2,
neither of which is a subset of the other. In this case, it is easy to see that exactly one of the following
two statements is valid.
(1) R(m1, y) intersects L(m2, x).
(2) R(m2, y) intersects L(m1, x).

If the first statement holds, we say a1 is left of a2. Otherwise, a2 is left of a1. Clearly, when x and y
remain fixed, this concept is transitive, i.e., if a1 is left of a2 and a2 is left of a3, then a1 is left of a3.

We illustrate this situation in Fig. 5, where the paths for a1 are shown with solid lines while the
paths for a2 are dashed. Here, a1 is left of a2. Note that the paths R(m1, y) and L(m2, x)may interweave
and may even share edges. In this figure, shared edges are solid. Also, we show a1 as belonging to the
exterior of R1 while a2 is in the interior of R2. Any combination is possible.

Let {(ai, bi) : 1 ≤ i ≤ t} be a sequence of critical pairs from Crit∗. We say that (a1, a2, . . . , at) is a
left-to-right sequencewhen (1) there are points x and y so that x = xi and y = yj for each i = 1, 2, . . . , t ,
and (2) for each i = 1, 2, . . . , t − 1, Ri and Ri+1 are incomparable regions, with ai to the left of ai+1.
Of course, this definition requires that the elements of {ai : 1 ≤ i ≤ t} are distinct.
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Lemma 5.6. For fixed special points x and y, the length of a left-to-right sequence (a1, a2, . . . , at) is
bounded as a function of h.

Proof. We apply Ramsey theory, coloring the 2-element subsets of {1, 2, . . . , t} with h2 colors. For
each 2-element set {i1, i2} with 1 ≤ i1 < i2 ≤ t , consider the first point q common to R(mi1 , y)
and L(mi2 , x). Note that q is distinct from mi1 and mi2 . Assign to the pair {i1, i2} the color (c, d)
where c = |R(mi1 , q)| and d = |L(mi2 , q)|. If t is sufficiently large, then there is a three element
monochromatic set {ii < i2 < i3}. This implies that there is some point q distinct from m1,m2 and
m3 where R(mi1 , y), R(mi2 , y), L(mi2 , x) and L(mi3 , x) all meet. This is impossible since L(mi2 , x) and
R(mi2 , y) have no common point except formi2 . �

In viewof this lemma, it is natural to add to the signature of a critical pair (a, b) themaximumvalue
t for which there is a left-to-right sequence (a1, a2, . . . , at) of elements with a = a1. It follows that if
(a1, b1) and (a2, b2) are distinct elements of Crit∗ with the same signature, and there are elements x
and y so that x = xi and y = yj for i = 1, 2, then one of R1 and R2 is a subset of the other. Otherwise,
we may assume that a1 is to the left of a2, which would imply that there is a longer left-to-right
sequence starting with a1 than there is starting with a2.

5.3. Identical regions

Now we consider a region R and the subfamily Crit∗(R) consisting of all pairs (a, b) from Crit∗
with (1)R = R(a) and (2) a in the interior ofR. For this subfamily, there are pointsm, x and y so that
the boundary of R is formed by the paths L(m, x), R(m, y) and T (x, y). Consider the set S consisting of
m and the points in the interior of R which are less thanm in P . We choose appropriate edges from G
so that S can be considered as a tree withm as root. In this tree, all other points are on paths oriented
towards m. Using clockwise orientation, we carry out a depth-first search of S to determine a linear
order <S on the vertices in S. As before, m is the least element. In discussions to follow, we will use
the same conventions for paths in the tree S that we have used for paths in the tree T .

An ordered pair ((a1, b1), (a2, b2)) of critical pairs from Crit∗(R) is called a reversing pair if

(1) a1 < b2 and a2 < b1 in P .
(2) b1 <T b2.
(3) a1 <S a2.

Lemma 5.7. Let ((a1, b1), (a2, b2)) and ((a2, b2), (a3, b3)) be reversing pairs. Then ((a1, b1), (a3, b3))
is also a reversing pair.

Proof. Consider the following four conditions.
Condition 1: there is a point d1 on the path T (b1) with d1 < b2 and a3 < d1 in P .
Condition 2: there is a point e3 on the path S(a3) with a2 < e3 and e3 < b1 in P .
Condition 3: there is a point d3 on the path T (b3) with d3 < b2 and a1 < d3 in P .
Condition 4: there is a point e1 on the path S(a1) with a2 < e1 and e1 < b3 in P .

Considering paths that witness a2 < b1 and a3 < b2 in P , we see that one or both of Conditions 1
and 2 must hold. Both of these conditions imply that a3 < b1 in P .

Similarly, one or both of Conditions 3 and 4must hold. Both of these conditions imply that a1 < b3
in P . So ((a1, b1), (a3, b3)) is a reversing pair. �

We illustrate in Fig. 6 the situation where only Conditions 2 and 3 of Lemma 5.7 are valid.
A sequence ((a1, b1), (a2, b2), . . . , (at , bt)) of critical pairs from Crit∗(R) is called a reversing

sequence if each consecutive pair in the sequence is a reversing pair. In view of the Lemma 5.7, this
implies that ((ai1 , bi1), (ai2 , bi2)) is a reversing pair for all 1 ≤ i1 < i2 ≤ t .

The next result is similar in flavor to Lemma 5.6.

Lemma 5.8. The length of a reversing sequence ((a1, b1), (a2, b2), . . . , (at , bt)) is bounded as a function
of h.
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Fig. 6. Transitivity of reversing pairs.

Proof. Again, we use Ramsey theory but this time, we color triples. First, using Lemma 5.7, for each
triple, we choose one of the four conditions which it satisfies; also record the associated path length.
For example, if the triple satisfies Condition 3, we record |T (d3, b3)|. Accordingly, the triples are
colored using at most 4h colors. We show that we get a contradiction if there is a monochromatic
sequence of length 4. To make the argument concrete, we assume that, after relabeling, we have
a monochromatic subsequence ((a1, b1), (a2, b2), (a3, b3), (a4, b4)) with all four triples satisfying
Condition 3. Considering the triple {2, 3, 4}, there is a point d4 on T (b4) with d4 < b2 and a2 < d4
in P . Now consider the triple {1, 2, 4}. Then there is a point d′

4 on T (b4) with d′

4 < b2 and a1 < d′

4 in
P . Since |T (d4, b4)| = |T (d′

4, b4)|, we conclude that d4 = d′

4. But now we have a2 < d4 = d′

4 < b2,
which is false. Similar contradictions are reached in other cases. �

In view of this lemma,we add to the signature of a critical pair (a, b) in Crit∗ the largest integer t for
which there is a reversing sequence of length t starting with (a, b). We also store the largest integer
t ′ for which there is a reversing sequence ending with (a, b).

We remind the reader that there can be arbitrarily many dangerous pairs for which all the
parameters identified thus far as part of the signature are constant.

It is natural to say that pairs in Crit∗ are left-dangerous if hj > hj+1, center-dangerous if hj = hj+1
and right-dangerous if hj < hj+1. In Fig. 4, (a, b4) is left-dangerous, (a, b5) is center-dangerous and
(a, b6) is right-dangerous.

5.4. Center-dangerous critical pairs

We have already done all that is required for center-dangerous critical pairs—although this may
not be at all obvious at the moment.

Lemma 5.9. The set of all center-dangerous critical pairs with the same signature is reversible.

Proof. The proof involves a modification of the classic proof used by Erdős and Szekeres to show that
any sequence of nm + 1 distinct real numbers has either an increasing subsequence of length n + 1
or a decreasing subsequence of lengthm + 1.



484 N. Streib, W.T. Trotter / European Journal of Combinatorics 35 (2014) 474–489

Fig. 7. A strict alternating cycle in the center region.

Suppose the lemma is false and that there is a strict alternating cycle {(ai, bi) : 1 ≤ i ≤ k} of
center-dangerous pairs having the same signature. For each i, bi+1 is in the interior of the region Ri+1.
Since ai ≤ bi+1 in the partial order P , a path in the oriented graphG from ai to bi+1 cannot pass through
any vertex on the boundary of Ri+1, and it follows that ai is also in the interior of Ri+1. However, this
implies that Ri ⊆ Ri+1. Since this statement must hold cyclically, we must have Ri = Ri+1 for all i,
and we denote this common region as R. Of course, this also implies that there are pointsm, x and y,
so that x = xi, y = yi and m = mi for all i.

We illustrate this situation in Fig. 7 where we show an alternating cycle of length 6. In composing
this figure, we took for each i an arbitrary oriented path Qi = Qi(ai, bi+1) witnessing that ai ≤ bi+1 in
P . In view of the properties of a strict alternating cycle, the paths Q1,Q2, . . . ,Qk are pairwise disjoint.
Our figure may serve to suggest that the manner in which these paths intersect with the trees T and
S is overly restricted. However, this much is certain. When i2 ≠ i1 + 1, the oriented path Qi cannot
intersect T (bi2). Also, when i2 ≠ i1 − 1, the oriented path Qi cannot intersect S(ai2).

We consider the linear order <T restricted to {b1, b2, . . . , bk} and let bi be the <T -least element. If
k = 2, then ((a1, b1), (a2, b2)) is a reversing sequence. This would imply that (a1, b1) and (a2, b2) do
not have the same signature. So wemay assume that k ≥ 3. Now consider the paths Qi,Qi−1 and Qi−2.

At this point, we have two cases, depending on the order of bi+1 and bi−1 in the tree T . We consider
first the case where bi−1 <T bi+1, as this is the situation in our figure. The argument for the other case
is much the same.

Now let t ′ be the maximum length of a reversing sequence ending in (ai, bi). Since ((ai−2, bi),
(ai−1, bi−1)) is a reversing pair, we know that t ′ ≥ 2. It suffices to show that, given any reversing
sequence ending with (ai, bi), we can (1) delete (ai, bi) from the end of the sequence and (2) add the
reversing pair ((ai−2, bi), (ai−1, bi−1)) in its place to form a reversing sequence of length t ′ +1 ending
at (ai−1, bi−1). To this end, let (a, b) be the pair immediately before (ai, bi) in the sequence. We need
only show that ((a, b), (ai−2, bi)) is a reversing pair, but this is a straightforward argument following
along the same lines as the proof of Lemma 5.7. �

We are left with handling the left-dangerous and right-dangerous pairs, a challenge which will
be much more formidable. In the next section, we treat the left-dangerous pairs, noting that the
arguments for right-dangerous pairs are dual.
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Fig. 8. Left-consistent pairs: three types.

6. Left-dangerous critical pairs

We pause to develop one additional parameter, which is a slight generalization of the left-to-right
property studied previously.With the additions to signaturesmade using this parameter, wewill then
show that there are no strict alternating cycles among critical pairs with the same signature.

Let xbe a vertex inG and consider the subfamily of all critical pairs (a, b) in Crit∗ forwhich x = xj(a).
In view of Proposition 5.4, the paths L(m(a), x) with a the first coordinate of a critical pair in this
subfamily form a tree which we denote Tx. So wewill writem(a) < m(a′) in Tx when a clockwise scan
of Tx, starting with x as root, discoversm(a) beforem(a′).

Now let (a1, b1) and (a2, b2) be critical pairs from Crit∗ with x = x1 = x2. We say that ((a1, b1),
(a2, b2)) is a left-consistent pair whenm1 < m2 in Tx and y1 <T y2. Note that this definition requiresm2
to be in the interior of R1. Nevertheless, as we illustrate in Fig. 8, there are essentially three different
configurations for a left-consistent pair. The first arises when y2 is in the exterior of R1. The second
arises when y2 is not in the exterior of R1 and T (y2) intersects L(m1, x). The third arises when y2 is in
the interior of R1 and R(m1, y1) intersects T (y2).

A sequence ((a1, b1), (a2, b2), . . . , (at , bt)) of critical pairs with x = xi for all i = 1, 2, . . . , t
is called a left-consistent sequence when ((ai, bi), (ai+1, bi+1)) is a left-consistent pair for each i =

1, 2, . . . , t . Trivially, the notion of left-consistency is transitive.

Lemma 6.1. For a fixed special point x, the length of a left-consistent sequence ((a1, b1), (a2, b2),
. . . , (at , bt)) is bounded as a function of h.

Proof. We use Ramsey theory for a third time. For each ordered pair (i1, i2) with 1 ≤ i1 < i2 ≤ t , we
consider the left consistent pair ((ai1 , bi1), (ai2 , bi2)). First, we recordwhich of the three configurations
(see Fig. 8) is applicable. Second, we record all relevant path lengths. For example, if the pair is of the
third type, we choose a point z from T (y2) ∩ R(m1, y1) and record |T (z)| and |R(m1, z)|.

We now show that there cannot be a monochromatic set of size 3. We provide the details when
all pairs are of the third type. The argument in the other two cases is very similar. Suppose that after
relabeling, ((a1, b1), (a2, b2), (a3, b3)) is a monochromatic set of size 3 with all three pairs of the third
type. Then considering the pair (1, 2), there is a point z1 on T (y2) ∩ R(m1, y1). Then considering the
pair (1, 3), there is a point z3 on T (y3) ∩ R(m1, y1). Since the path lengths are constant, we see that
z1 = z3. This forces a2 ≤ y1 in P which violates the unimodal requirements for a2. �

As before, we add to the signature of a critical pair (a, b) the maximum integer t for which there
exists a left-consistent sequence of length t starting with (a, b).

We have now assembled all the tools we need to complete the argument.We assume that we have
a strict alternating cycle {(ai, bi) : 1 ≤ i ≤ k} with all pairs having the same signature and argue to a
contradiction. We start by developing several properties of the critical pairs in the cycle.

Lemma 6.2. If xi−1 <T xi, then yi−1 <T xi.
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Proof. We assume that yi+1 >T xi and argue to a contradiction. We start by noting that the unimodal
sequence properties for ai force it to be incomparable with xi−1. If there is a point u from T (xi) with
ai−1 < u in P , then there is special point s1 ∈ Spec(ai−1) with s1 on the path T (u). This implies that
h(s1) ≤ hj. But we also know that xi−1 <T s1 < yi−1, which violates the requirements for the unimodal
sequence of special points for ai−1.

Now letQ1(ai−1, xi−1) andQ2(ai−1, bi) be oriented paths inG. These two paths show that regardless
of whether ai−1 is the interior of Ri or in the exterior, we always have Spec(ai−1) ∩ T (yi) ≠ ∅.
Case 1. There is a special point s1 ∈ Spec(ai−1) ∩ T (yi) with s1 < xi−1 in P .

In this case, it is clear that s1 ≠ yi. Let z be the last point of Q1(ai−1, xi−1) which belongs to T (yi).
Then the oriented path Q1(z, xi−1) and T (xi−1, z) form a region F which properly contains Ri. It is
clear that bothmi and ai belong to the interior of F .

Now let c = min{h(s) : s ∈ Spec(ai−1), s < xi−1 in P} and let s2 be the <T -largest point of
Spec(ai−1)with h(s2) = c . Since h(s2) < hj+1, there is a point s3 from Spec(ai)with h(s3) = h(s2) = c.
If s2 = s3, then ai < xi−1 in P . The contradiction shows that s2 ≠ s3. If s2 <T s3, then the pathQ1(z, xi−1)
cannot intersect T (s3) for this contradict the value of c. It follows that s3 is outside the region F . Now
an oriented path Q3(ai, s3) must cross the boundary of F which would again force ai < xi−1 in P . We
conclude that yi <T s3 <T s2. As before the path Q1(z, xi−1) cannot contain s3, so it cannot intersect
T (s3). This places s3 in the exterior of F , which forces Q3(ai, s3) to intersect the boundary of F , which
it cannot do. The contradiction completes the proof of Case 1.
Case 2. There is no special point s1 ∈ Spec(ai−1) ∩ T (yi) with s1 < xi−1 in P .

In this case, ai−1 is in the exterior of Ri. Furthermore, any oriented path from ai−1 to xi−1 must
not contain any points from the boundary of Ri. Let u be the last common point of Q1(ai−1, xi−1) and
Q2(ai−1, bi). Let z be the first point on the oriented path Q2(u, bi) which belongs to T (yi). Then z ≠ yi.
Also, T (xi−1, z),Q2(u, z) and Q1(u, xi−1) form the boundary of a region F properly containing Ri. As
before bothmi and ai are in the interior of F .

We already know that there is a point from Spec(ai−1) on T (yi), but now we also know that this
special point is less than u in P . Now let c = min{h(s) : s ∈ Spec(ai−1), s < u in P} and let s2 be the
<T -largest point of Spec(ai−1) with h(s2) = c . Since h(s2) < hj+1, there is a point s3 from Spec(ai)
with h(s3) = h(s2) = c. Clearly, s3 is not on the boundary of F . If s3 is in the exterior of F , then any
oriented path from ai to s3 would have to intersect one of Q1(u, xi−1) and Q2(u, z). The first statement
implies that ai < xi−1 in P . The second implies that ai < z in P . Both implications are false, so we may
conclude that s3 is in the interior of F .

The path Q2(u, z) cannot intersect T (s3). Similarly, the path Q1(u, xi−1) cannot intersect T (s3). This
forces s3 to be in the exterior of F . Now any oriented path from ai to s3 must intersect the boundary
of F , which it cannot do. With this observation, the proof of Case 2 is complete. �

We illustrate one of the cases in the preceding lemma in Fig. 9. In this picture, we show ai−1 in the
interior of Ri and yi <T s2.

Lemma 6.3. If xi <T xi−1, then yi−1 ≤T yi.

Proof. We argue by contradiction. Suppose that yi <T yi−1. We claim if ai−1 is in the exterior of Ri,
then an oriented path from ai−1 to bi would have to intersect the boundary of Ri. This would force
either ai−1 ≤ xi in P or ai−1 ≤ yi in P . Both statements violate the unimodal requirements for ai−1.
We conclude that ai−1 is in the interior of Ri. Similarly, if u ≥ ai−1 in P , then u must also belong
to the interior of Ri. In particular, all points of Spec(ai−1) are in the interior of Ri. Furthermore, if
s ∈ Spec(ai−1) and h(s) ≤ h(yi−1), then yi−1 ≤T s and the path T (s) intersects the boundary of Ri at
a point x with ai ≤ x in P . It follows that there is a special point s′ from Spec(ai) with s′ on the path
T (s), s′ not in the interior of Ri and h(s′) ≤ h(x) < h(s).

We illustrate this last assertion in Fig. 10. Furthermore, applying the assertion to yi−1, we see that
there is a special point s0 on T (yi−1) with s0 not in the interior of Ri and h(s0) < h(yi−1).

Now let C consist of all s ∈ Spec(ai) satisfying (a) s is not in the interior of Ri, (b) h(s) ≤ h(yi−1)
and (c) there is some point z on the boundary of Ri for which s ≤ z in P . The set C is non-empty since
s0 ∈ C . Now let c = min{h(s) : s ∈ C} and let s1 be any element of C with h(s1) = c.
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Fig. 9. Left-going special points.

Fig. 10. Right-going special points.

Now let s2 be a point from Spec(ai−1) with h(s2) = h(s1). Then s2 is in the interior of Ri so, using
analysis similar to that above, there is a point s3 ∈ Spec(ai) so that s3 is not in the interior of Ri and
s3 is on T (s2). This is a contradiction since h(s3) < h(s2) = h(s1). �

Consider the set of (not necessarily) distinct points {yi : 1 ≤ i ≤ k} and let I1 = {i : yi ≤T yi′ for all
i′ with 1 ≤ i′ ≤ k}. Then set I2 = {i ∈ I1 : xi ≥ xi′ for all i′ ∈ I1}. Then let i be any integer from I2.

We claim that xi−1 = xi, for if xi−1 <T xi, then yi−1 <T xi <T yi by Lemma 6.2, which violates the fact
that i ∈ I1. On the other hand, if xi−1 >T xi, then we know by Lemma 6.3 that yi−1 ≤T yi, which shows
that i ∉ I2.

Now we know that xi−1 = xi, we consider whether yi−1 is distinct from yi. Suppose first that
yi−1 ≠ yi which requires yi <T yi−1. If mi−1 < mi in Tx, then we consider an oriented path Q (ai−1, bi).
If this path intersects the boundary of Ri at any point u with mi ≤ u in P , then ai < bi in P , which is
false. But if Q (ai−1, bi) intersects the boundary of Ri at a point u with u ∥ mi, then the unimodal
sequence requirements for ai−1 are violated. We conclude that ai−1 is in the interior of Ri. Now
consider an oriented path Q (ai−1,mi). Clearly, this path must intersect the boundary of Ri and we
obtain a contradiction regardless of how this occurs.
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It follows that mi < mi−1 in Tx. But this implies that ((ai−1, bi−1), (ai, bi)) is a left-consistent pair.
This implies that these two pairs do not have the same signature.

We are left to conclude that yi−1 = yi. Thus i − 1 also belongs to I2. Proceeding around the cycle,
we see that we must have I2 = {1, 2, . . . , k}. This implies that there are points x and y so that x = xi
and y = yi for all i = 1, 2, . . . , k. It follows that for each i = 1, 2, . . . , k, one of Ri and Ri−1 is a
subset of the other. Now suppose that for some i, the region Ri is properly contained in Ri−1. Then
mi ≠ mi−1. Ifmi−1 < mi in Tx, thenmi−1 is in the exterior of Ri. On the other hand, wemust have ai−1
in the interior of Ri. However, this implies that an oriented path from ai−1 tomi−1 must intersect the
boundary of Ri which cannot happen.

We conclude thatmi < mi−1 in Tx, which is impossible when Ri is properly contained in Ri−1. We
are left to conclude that Ri−1 is always contained in Ri. Since we have an alternating cycle, we find
that there is a fixed region R so that R = Ri for all i = 1, 2, . . . , k. Now the contradiction comes
for the subsection on fixed regions. And with this observation, we have finished the proof of our main
theorem in the special case that there is some minimal element a0 which is less than all maximal
elements.

7. The general case

As promised, we can quickly dispense with the general case. Fix an arbitrary minimal element a0.
Set B1 = {b ∈ max(P) : a0 < b in P} and A1 = {a ∈ min(P) − {a0}: there is some b ∈ B1 with a < b
in P}. Then define recursively subsets of A and B as follows:

(1) Bi+1 consists of all maximal elements of B − (B1 ∪ B2 ∪ · · · ∪ Bi) for which there is some a ∈ Ai
with a < b in P .

(2) Ai+1 consists of all minimal elements of A − ({a0} ∪ A1 ∪ A2 ∪ · · · ∪ Ai) for which there is some
b ∈ Bi+1 with a < b in P .

Proposition 7.1. The set {(a, b) ∈ Crit∗(P) : a ∈ Ai1 , b ∈ Bi2 , i1 ≥ 1 + i2} is reversible. Also, the set
{(a, b) ∈ Crit∗(P) : a ∈ Ai1 , b ∈ Bi2 , i2 ≥ 2 + i1} is reversible.

Proposition 7.2. For each i ≥ 1, the set Crit∗(P, Left) consisting of all critical pairs (a, b) with a ∈ Ai
and b ∈ Bi can be partitioned into a bounded number of reversible sets. Also, for each i ≥ 1, the set
Crit∗(P, Right) consisting of all critical pairs (a, b) with a ∈ Ai and b ∈ Bi+1 can be partitioned into a
bounded number of reversible sets.

Proof. The proof for Crit∗(P, Left) and i = 1 is just what we have done prior to this section. All other
cases can be reduced to this base case by taking graph minors. To be more precise, we can contract all
points in (A1 ∪ B1)∪ (A2 ∪ B2)∪ · · · ∪ (Ai−1 ∪ Bi−1)∪{a0} to a single point which is less than all points
of Bi. The other case is dual. �

We are now ready to claim the entire main theorem. This follows from the fact that any strict
alternating cycle in Crit∗(P, Left) is associated with a single value of i. A similar remark applies for
Crit∗(P, Right).

8. Concluding remarks and acknowledgment

Returning to Fig. 2, we previously discussed relabeling the element marked with a 1 as a 0. Relabel
it again as a minimal element a0. Then add a new point in the center of the figure. Connect it to
a1, a2, . . . , a8 and label it as b0. The resulting diagram is a drawing without edge crossings of the
cover graph of height seven containing the standard example S9 as a subposet. In general, this shows
that ch ≥ h + 2 and this might even be the right answer.

The authors would like to express their deep appreciation to Stefan Felsner for many helpful
conversations on the topics discussed here.
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