SOME THEOREMS ON GRAPHS AND POSETS

William T. TROTTER, Jr. and John I. MOORE, Jr.*

Department of Mathematics and Computer Science, University of South Carolina, Columbia, SC 29208, U.S.A.

Received 4 March 1975 Revised 18 August 1975

In this journal, Leclerc proved that the dimension of the partially ordered set consisting of all subtrees of a tree T, ordered by inclusion, is the number of end points of T. Leclerc posed the problem of determining the dimension of the partially ordered set P consisting of all induced connected subgraphs of a connected graph G for which P is a lattice.

In this paper, we prove that the poset P consisting of all induced connected subgraphs of a nontrivial connected graph G, partially ordered by inclusion, has dimension n where n is the number of noncut vertices in G whether or not P is a lattice. We also determine the dimension of the distributive lattice of all subgraphs of a g. (ph.

1. Introduction

The dimension of a partially ordered set (X, P) was defined by Dushnik and Miller [4] as the minimum number of linear orders on X whose intersection is P. A poset has dimension one if and only if it is a chain. In [6] Leclerc proved the following result which gives an alternate definition of dimension for those posets which are not chains.

Theorem 1.1. The dimension of a poset (X, P) which is not a chain is the smallest positive integer n for which there exists a tree T with n end vertices so that (X, P) is isomorphic to some collection of subtrees of T ordered by inclusion.

In this paper we use the characterization of dimension in the authors' paper [13] to generalize Theorem 1.1 to arbitrary graphs.

^{*} Present address: Department of Mathematics, The Citadel, Charleston, SC 29409, U.S.A.

2. TM-cycles

In this section, we briefly summarize some results in [13]. For a poset (X, P), we denote the set of all incomparable pairs $\{(x, y): x | y \text{ in } P\}$ by \mathcal{D}_P . For a subset $Q \subseteq X \times X$, we denote the transitive closure of Q by \overline{Q} .

Theorem 2.1. Let $\mathcal{S} \subseteq \mathcal{D}_p$. Then $\overline{P \cup \mathcal{S}}$ is a partial order on X iff there does not exist a subset $\{(a_i, b_i): 1 \leq i \leq m\} \subseteq \mathcal{S}$ where $\{(b_i, a_{i+1}): 1 \leq i \leq m\} \subseteq P$.

We note that in the statement of Theorem 2.1 it is necessary to interpret the subscripts cyclically, i.e., $a_{m+1} = a_1$. If $\delta \subseteq \mathcal{D}_p$, a subset of the form $\{(a_i, b_i): 1 \le i \le m\} \subseteq \delta$ for which $(b_i, a_j) \in P$ iff j = i + 1 for i = 1, 2, ..., m, is called a TM-cycle of length m (for δ).

Corollary 2.2. Let $\mathcal{S} \subseteq \mathcal{D}_p$. Then $\overline{P \cup \mathcal{S}}$ is a partial order iff \mathcal{S} has no TM-cycles.

This corollary and Szpilrajn's well known theorem [7] on the extension of partial orders to linear orders gives the following alternate definition c f dimension for posets for which $\mathcal{D}_P \neq \emptyset$. (Note that if $\mathcal{D}_P = \emptyset$, then (X, P) is a chain and dim(X, P) = 1)

Theorem 2.3. The dimension of a poset (X, P) for which $\mathcal{D}_P \neq \emptyset$ is the smallest positive integer t for which there exists a partition $\mathcal{D}_P = \mathcal{S}_1 \cup \mathcal{S}_2 \cup ... \cup \mathcal{S}_t$ so that no \mathcal{S}_t has a TM-cycle.

3. Crowns and irreducible posets

A poset is said to be irreducible if dim $Y < \dim X$ for every proper subposet. An *n*-dimensional irreducible poset is said to be *n*-irreducible; by convention, we consider a one point poset to be 1-irreducible. The only 2-irreducible poset is a two element antichain. However, the problem of finding the collection of all *n*-irreducible posets has not been solved for any $n \ge 3$. A list of all known 3-irreducible posets and many examples of *n*-irreducible posets for $n \ge 4$ are given in [11].

An *n*-dimensional poset contains an *n*-irreducible subposet. In this paper we will prove that a poset X has dimension at least n where $n \ge 3$

by exhibiting an *n*-irreducible subposet of X. Usually this *n*-irreducible poset will be the "standard" example of an *n*-irreducible poset – the crown S_n^0 . Using the terminology and notation introduced in [8], the crown S_n^0 is defined (for $n \ge 3$) as the poset of height one with *n* maximal elements $a_1, a_2, ..., a_n$ and *n* minimal elements $b_1, b_2, ..., b_n$; the partial order on S_n^0 is defined by $b_i < a_j$ if and only if $i \ne j$. S_n^0 is isomorphic to the set of one-element and (n-1)-element subsets of an *n*-element set ordered by inclusion.

For the sake of completeness, we include here an argument to show that S_n^0 is indeed an *n*-dimensional poset. We refer the reader to [3] and [8] for much more general results for families of posets which include S_n^0 . Characterization theorems involving S_n^0 are given in [1,5,10,12].

Fact. dim $S_n^0 = n$.

Proof. Let P be the partial order on S_n^0 and suppose that $\mathfrak{D}_P = \mathfrak{Z}_1 \cup \mathfrak{Z}_2 \cup \ldots \cup \mathfrak{Z}_t$, where t < n. It follows that there exist distinct integers i and j so that $(a_i, b_i) \in \mathfrak{Z}_k$ and $(a_j, b_j) \in \mathfrak{Z}_k$ for some $k \leq t$ But this implies that \mathfrak{Z}_k contains a TM-cycle of length 2. We conclude that dim $S_n^0 \ge n$.

On the other hand for each $i \le n$, let $\delta_i = \{(a_i, b_i)\}$. Since $|\delta_i| = 1, \delta_i$ cannot have any TM-cycles and then $Q_i = P \cup \delta_i$ is a partial order for each $i \le n$. Now let $L_1, L_2, ..., L_n$ be arbitrary linear orders on S_n^0 so that $Q_i \subset L_i$. It is easy to see that P is the intersection of $L_1, L_2, ..., L_n$ and thus $\dim S_n^0 \le n$.

4. Induced subgraphs of connected graphs

The induced connected subgraphs of a connected graph G ordered by inclusion form a poset which we denote X(G). In [6] Leclerc posed the question of determining the dimension of X(G) for those graphs for which X(G) is a lattice. In this section, we determine the dimension of X(G) for an arbitrary connected graph G (including those for which X(G) is not a lattice). Our theorem will use the standard graph theoretic concepts of the distance between vertices and the distance between two sets of vertices. The distance between a vertex x and itself, d(x, x), is zero while if x and y are distinct vertices in a connected graph, the distance from x to y, d(x, y), is one less than the minimum number of vertices in a path from x to y (including x and y). If x is a vertex and A is a set of vertices, the distance from x to A, d(x, A), is min $\{d(x, a): a \in A\}$. **Theorem 4.1.** If G is a nontrivial connected graph with n non-cut vertices, then dim X(G) = n.

Proof. Let P denote the partial order on X(G). Then label the non-cut vertices of C, $x_1, x_2, ..., x_n$. Since G is non-trivial, we note that $n \ge 2$. We first prove that dim $X(G) \ge n$. If n = 2, it is clear that dim $X(G) \ge 2$, and if $n \ge 3$, then the collection of connected subgraphs of G consisting of the trivial graphs determined by the non-cut vertices and the induced subgraphs of the form $G - x_i$, i = 1, 2, ..., n, form a copy of S_n^0 . We conclude that dim $X(G) \ge n$.

To show that dim $X(G) \le n$, we partition the set of incomparable pairs \mathcal{O}_P into *n* subsets so that no subset has a TM-cycle. We define for each $i \le n$, $\delta_i = \{(H_1, H_2) \in \mathcal{O}_P : d(x_i, H_2) \le d(x_i, H_1)\}.$

We first show that $\mathcal{P}_p = \mathcal{S}_1 \cup \mathcal{S}_2 \cup ... \cup \mathcal{S}_n$. Suppose $(H_1, H_2) \in \mathcal{P}_p$. Then there exists a vertex $x \in H_2 - H_1$. If x is a non-cut vertex of G, say $x = x_i$, then $(H_1, H_2) \in \mathcal{S}_i$. Now suppose x is a cut vertex of G. Then H_1 is a subgraph of one of the components of G - x. Choose a non-cut vertex v_i of G which is in a component of G - x not containing H_1 . It follows that $(H_1, H_2) \in \mathcal{S}_i$.

We now show that none of these subsets of \mathcal{D}_{p} contain a TM-cycle. Suppose that $\{(H_{j}, K_{j}): 1 \leq j \leq m\}$ is a TM-cycle for \mathcal{D}_{j} . Then it follows that

$$d(x_i, K_1) < d(x_i, H_1) \le d(x_i, K_m) < d(x_i, H_m) \le d(x_i, K_{m-1}) < d(x_i, H_{m-1}) < \dots < d(x_i, H_2) \le d(x_i, K_1).$$

The contradiction completes the proof.

5 Distributive lattices and subgraphs

Dilworth [2] proved that the dimension of a distributive lattice L is the width of the subposet of L consisting of the join irreducibles. If L is *n*-dimensional (for $n \ge 3$), then L contains S_{n}^{0} as a subposet. We refer the reader to [9] for a simple proof of Dilworth's theorem.

If G is a graph, then the poset consisting of all subgraphs (not just the induced subgraphs) of G ordered by inclusion is a distributive lattice. The join irreducible elements of this lattice are those subgraphs consisting of a single vertex or two vertices joined by an edge.

Theorem 5.1. Let G be a graph with components, $C_1, C_2, ..., C_t$. For each $i \le t$, let p_i and q_i be the number of vertices and edges cospectively of C_i . Then the dimension of the distributive lattice of all subgraphs of G ordered by inclusion is

$$\sum_{i=1}^t \max\{p_i, q_i\}.$$

Proof. We denote the lattice of all subgraphs of G by S(G) and the subposet of S(G) consisting of all join irreducible elements by P(G). If G has t core onents, $C_1, C_2, ..., C_t$ where $t \ge 2$, then P(G) is the free sum $P(C_1) + P(c_2) + ... + P(C_t)$. Therefore a maximum antichain A in P(G)is the free sum $A = A_1 + A_2 + ... + A_t$ where each A_i is a maximum antichain in $P(C_i)$. Hence it suffices to prove our theorem for connected graphs.

Let G be a nontrivial connected graph with p vertices and q edges. Choose a maximum antichain A from P(G) so that the number of edges in A is as large as possible. If A contains all the edge: of G, then |A| = q; on the other hand, if A contains no edges of G, then |A| = p. Now suppose that A contains some but not all of the edges in G. Since G is connected we may choose coincident edges e and f with $e \in A$ but $f \notin A$. Let the end vertices of e be x and y and the end vertices of f be y and z. It follows that $y \notin A$ and $z \in A$; we may then conclude that $A - \{z\} \cup \{f\}$ is a maximum antichain of P(G) containing one more edge than A. The contradiction completes the proof.

Note added in proof. The collection of all 3-irreducible posets has been independently determined by the authors and D. Kelly.

References

- [1] K.P. Bogart and W.T. Trotter, Maximal dimensional partially ordered sets II, Discrete Math. 5 (1973) 33-44.
- [2] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950) 161-166.
- [3] B. Dushnik, Concerning a certain set of arrangements, Proc. Am. Math. Soc. 1 (1950) 788-796.

- [4] B. Dushnik and E. Miller, Partially ordered sets, Am. J. Math. 63 (1941) 600-610.
- [5] R. Kimble, Extremal problems in dimension theory for partially ordered sets, Ph.D. Thesis, M.I.T., Cambridge, Mass. (1973).
- [6] B. Leclerc, Arbres et dimension des ordres, Discrete Math. 14 (1976) 69-76.
- [7] E. Szpilrajn, Sur l'extension der order partiel, Fund. Math. 16 (1930) 386-389.
- [8] W.T. Trotter, Dimension of the crown S_n^k , Discrete Math. 3 (1974) 85-103.
- [9] W.T. Trotter, A note on Dilworth's embedding theorem, Proc. Am. Math. Soc. 52 (1975) 33-39.
- [10] W.T. Trotter, A forbidden subposet characterization of an order-dimension inequality, Math. Systems Theory, to appear.
- [11] W.T. Trotter, On the construction of irreducible posets, submitted.
- [12] W.T. Trotter and K.P. Bogart, Maximal dumensional partially ordered sets III, Discrete Math., to appear.
- [13] W.T. Trotter and J.I. Meore, The dimension of planar posets, J. Combin. Theory B, to appear.