SOME THEOREMS ON GRAPHS AND POSETS

William T. TROTTER, Jr. and John I. MOORE, Jr.*
Departmeat of Mathematics and Computer Science. University of South Carolina, Columbia, SC 29208. LSSA.

Received 4 March 1975
Revised 18 August 1975

In this journal, Leclerc proved that the dimension of the partially ordered set consisting of all subtrees of a tree T, ordered by inclusion, is the number of end points of T. Leclerc posed the problem of determ:sing the dimension of the partially ordered set P consisting of all induced connected subgraphs of a connected graph G for which P is a lattice.

In this paper, we prove that the poset P consisting of all induced connected subgraphs of a nontrivial connected graph G. partially ordered by inclusion, has dimension n where n is the number of noncut vertices in G whether or not P is a lattice. We also determine the dimension of the distributive lattic of all subgraphs of ag. ph.

1. Introduction

The dimension of a partially ordered set (X, P) was defined by Dushnik and Miller [4] as the minimum number of linear orders on X whose intersection is P. A poset has dimension one if and only if it is a chain. In [6] Leclerc proved the following result which gives an alternate definition of dimersion for thos: posets which are not chains.

Theorem 1.1. The dimension of a poset (X, P) which is not a ithain is the smallest positive integer n for which there exists a tree T with n end vertices so that (X, P) is isomorphic to some collection of subtrees of T ordered by inclusion.

In this paper we use the characterization of dimension in the authors' paper [13] to generalize Theorem 1.1 to arbitrary graphs.

[^0]
2. TM-cycles

In this section, we briefly summarize some results in [13]. For a poset (X, P), we denote the set of all incomparable pairs $\{(x, y): x \mid y$ in $P\}$ by \mathcal{G}_{P}. Foir a subset $Q \subseteq X \times X$, we denote the transitive closure $o^{*} Q$ by \bar{Q}.

Theorem 2.1. Let $\delta \subseteq \mathcal{G}_{p}$. Then $\overline{P \cup} \bar{\delta}$ is a partial order on X iff there does not exist a subset $\left\{\left(a_{i}, b_{i}\right): 1 \leqslant i \leqslant n\right\} \subseteq$ of where $\left\{\left(b_{i}, a_{i+1}\right)\right.$: $1 \leqslant i \leqslant m\} \subseteq P$.

We note that in the statement of Theorem 2.1 is is necessary to interpret the subscripts cyclically, i.e., $a_{m+1}=a_{1}$. If $\delta \subseteq \Im_{p}$, a subset of the form $\left\{\left(a_{i}, b_{i}\right): 1 \leqslant i \leqslant m\right\} \subseteq \delta$ for which $\left(b_{i}, a_{j}\right) \in P$ iff $j=i+1$ for $i=1,2, \ldots, m$, is called a TM-cycle of length m (for δ).

Corollary 2.2. Let $\delta \subseteq \mathcal{I}_{p}$. Then $\overline{\boldsymbol{P} U d}$ is a partial orderiff δ has no TM-cycles.

This corollary and Szpilrajn's well known theorem [7] on the extension of partial orders to linear orders gives the following alternate definition of dimensicn for posets for which $\mathcal{G}_{P} \neq \emptyset$. (Note that if $\mathcal{O}_{P}=\emptyset$, then (X, P) is a chain and $\operatorname{dim}\left(X, P^{\prime}\right)=1$)

Theorem 2.3. The dimension of a poset (X, P) for which $\Im_{P} \neq \emptyset$ is the smallest positive integer t for which there exists a partition $\Theta_{p}=\delta_{1} \cup \delta_{2} \cup \ldots \cup \delta_{t}$ so that no δ_{i} nas a $T M-c y c l e$.

3. Crowns and irreducible posets

A poset is said to be irreducible if $\operatorname{dim} Y<\operatorname{dim} X$ fur every proper subposet. An n-dimensional irreducible poset is said to be n-irreducible; by convention, we consider a one point poset to be 1 -irreducible. The only 2 -irreducible poset is a two element antichain. However, the problem of finding the collection of all n-irreducible posets has not been solved for any $n \geqslant 3$. A list of all known 3-irreducible posets and many examples of n-irreducible posets for $n \geqslant 4$ are given in [11].

An n-dimensional poset contains an n-irreducible subposet. In this paper we will prove that a poset X has dimension at least n where $n \geqslant 3$
by exhibiting an n-irreducible subposet of X. Usually this n-irreducible poset will be the "standard" example of an n-irreducible poset - the crown S_{n}^{0}. Using the terminology and notation introduced in [8], the crown S_{n}^{0} is defined (for $n \geqslant 3$) as the poset of height one with n maximal elements $a_{1}, a_{2}, \ldots, a_{n}$ and n minimal elements $b_{1}, b_{2}, \ldots, b_{n}$; the partial order on S_{n}^{1} is defined by $b_{i}<a_{j}$ if and only if $i \neq j$. S_{n}^{0} is isomorphic to the set of one-element and $(n-1)$-element subsets of an n-element set ordered by inclusion.

For the sake of co npleteness, we include here an argument to show that S_{n}^{\bullet} is indeed an n-dimensional poset. We refer the reader to $\{3]$ and [8] for much more general results for families of posets which include S_{n}^{0}. Characterization theorems involving S_{n}^{0} are given in [1,5,10,12].

Fact. $\operatorname{dim} S_{n}^{0}=n$.
Proof. Let P be the partial order on S_{n}^{0} and suppose that $\mathcal{S}_{P}=\delta_{1} \cup \delta_{2}$ $\cup \ldots \cup \delta_{t}$, where $t<n$. It follows that there exist distinct integers i and j so that $\left(a_{i}, b_{i}\right) \in \delta_{k}$ and $\left(a_{i}, b_{j}\right) \in \delta_{k}$ for some $k \leqslant t$ But this implies that δ_{k} contains a TM-cycle of length 2 . We conclude thit $\operatorname{dim} S_{n}^{0} \geqslant n$.

On the other hand for each $i \leqslant n$, let $\delta_{i}=\left\{\left(a_{i}, b_{i}\right)\right\}$. Since $\left|\delta_{i}\right|=1, \delta_{i}$ cannot have any TM-cycles and then $Q_{i}=\bar{P} \cup \delta_{i}$ is a partial order for each $i \leqslant n$. Now let $L_{1}, L_{2}, \ldots, L_{n}$ be arbitrary linear orders on S_{n}^{0} so that $\eta_{i} \subset L_{i}$. It is easy to see that P is the intersection of $L_{1}, L_{2}, \ldots, L_{n}$ and thus cim $S_{\eta}^{0} \leqslant n$.

4. Induced subgraphs of connected graphs

The induced connected subgraphs of a connected graph G ordered by inclusion form a poset which we denote $X(G)$. In [6] Leclerc posed the question of determining the dimension of $X(G)$ for those graphs for which $X(G)$ is a lattice. In this section, we determine the dimension of $X(G)$ for an arbitrary connected graph G (including those for which $X(G)$ is not a lattice). Our theorern will use the standard graph theoretic concepts of the distance between vertices and the distance between two sets of vertices. The distance between a vertex x and itself, $d(x, x)$, is zero while if x and y are distinct vertices in a connected graph, the distance from x to $y, d(x, y)$, is one less than the minimum number of vertices in a path from x to y (including x and y). If x is a vertex and A is a set of ertices, the distance from x to $A, d(x, A)$, is $\min \{d(x, a): a \in A\}$.

Theorem 4.1. If G is a nontrivial connected graph with: n non-cut vertices. then $\operatorname{dim} X(G)=n$.

Proof. Let P denote the partial order on $X(G)$. Then labe: the non-cut vertices of $C, x_{1}, x_{2}, \ldots, x_{n}$. Since G is non-trivial, we noie that $n \geqslant 2$. We first prove that $\operatorname{dim} X(G) \geqslant n$. If $n=2$, it is clear that $\operatorname{dim} X(G) \geqslant 2$, and if $n \geqslant 3$, then the collection of connected subgraphs of G consisting of the trivial graphs determined by the non-cut vertices and the induced subgraphs of the form $G-x_{i}, i=1,2, \ldots, n$, form a copy of S_{n}^{0}. We conclude that $\operatorname{dim} X(G) \geqslant n$.

To show that $\operatorname{dim} X(G) \leqslant n$, we partition the set of incomparable pairs ρ_{p} into n subsets so that no subiet has a TM-cycle. We define for each $i \leqslant n . \delta_{i}=\left\{\left(H_{1}, H_{2}\right) \in \mathcal{O}_{p}: d\left(x_{i}, H_{2}\right)<d\left(x_{i}, H_{1}\right)\right\}$.

We first show that $\supset_{p}=\delta_{1} \cup \delta_{2} \cup \ldots \cup \delta_{\eta}$. Suppose $\left(H_{1}, H_{2}\right) \in \mathcal{I}_{p}$. Then there exists a vertex $x \in H_{2}-H_{1}$. If x is a non-cut vertex of G, say $x=x_{i}$, then $\left(H_{1}, H_{2}\right) \in \delta_{i}$. Now suppose x is a cut vertex of Θ. Then H_{1} is a subgraph of one of the components of $G-x$. Choose a non-cut vertex v_{i} of G which is in a component of $G-x$ not containing H_{1}. It follows that $\left(H_{1}, H_{2}\right) \in \delta_{i}$.

We now show that none of these subsets of \mathcal{I}_{F} contain a TM-cycle. Suppose that $\left\{\left(H_{j}, K_{j}\right): 1 \leqslant j \leqslant m\right\}$ is a TM-cycle for δ_{i}. Then it follows that

$$
\begin{aligned}
d\left(x_{i}, K_{i}\right) & <d\left(x_{i}, H_{1}\right) \leqslant d\left(x_{i}, K_{m}\right)<d\left(x_{i} . H_{m}\right) \leqslant d\left(x_{i}, K_{m-1}\right) \\
& <d\left(x_{i}, H_{m-1}\right)<\ldots<d\left(x_{i}, H_{2}\right) \leqslant d\left(x_{i}, K_{1}\right) .
\end{aligned}
$$

The contradiction completes the proof.

5 Distributive lattices and subgraphs

Dilworth [2] proved that the dimension of a distributive lattice L is the width of the subposet of L consisting of the join irreducibles. If L is n-dimensional (for $n \geqslant 3$), then L contains $S_{\text {, as }}^{0}$ a a subposet. We refer the reader to [9] for a simple proof of Dilw.rth's theorem.

If G is a graph, then the poset consisting of all subgraphs (not just the induced subgraphs) of G ordered by inclusion is a distributive lattice.
The join irreducible elements of this lattice are those subgraphs consisting of a ingle vertex or two vertices joined by an edge.

Theorem 5.1. Let G be a graph with components, $C_{1}, C_{2}, \ldots, C_{f}$. For each $i \leqslant t$, let p_{i} and q_{i} be the number of vertices and edges sispectively of C_{i}. Then the dimension of the distributive lattice of all subgraphs of G ordered by inclusion is

$$
\sum_{i=1}^{t} \max \left\{p_{i}, q_{i}\right\}
$$

Proof. We denote the lattice of all subgraphs of G by $S(G)$ and the subposet of $\Upsilon(G)$ consisting of all join irreducibie elements by $P(G)$. If G has t co ments, $C_{1}, C_{2}, \ldots, C_{t}$ where $t \geqslant 2$. then $P(G)$ is the free sum $P\left(C_{i}\right)+P\left(,_{2}\right)+\ldots+P\left(C_{t}\right)$. Therefore a maximum antichain A in $P(G)$ is the free sum $A=A_{1}+A_{2}+\ldots+A_{t}$ where each A_{i} is a maximam antichain in $P\left(C_{i}\right)$. Hence it suffices to prove our theorem for connected graphs.

Let G be a nontrivial connected graph with p vertices and q edges. Choose a maximum antichain A from $P(G)$ so that the number of edges in A is as large as possible. If A contains all the edge: of G, then $|A|=q$; on the other hand, if A contains no edges of G, then $|A|=F$. Now suppose that A contains some but not all of the edges in G. Since G is connected we may choose coincident edges e and f with $e \in A$ but $f \notin A$. Let the end vertices of e be x and y and the end vertices of f be y and z. It follows that $y \notin A$ and $z \in A$; we may then conclude that $A-\{z\} \cup\{f\}$ is a maximum antichain of $P(G)$ containing one more edge than A. The contradiction completes the proof.

Note added in proof. The collection of all 3 -irreducible posets has been independently determined by the authors and D. Kelly.

References

[1] K.P. Bogart and W.T. Trotter, Maximal dimensional partially ordered sets II, Discrete Math. 5 (1973) 33-44.
[2] R.P. Difwurth, A decomposition theorem for partially o.dered strs, Ann. Math. 51 (1950) 161-166.
[3] B. Duslinik, Concerning a certain set of arrangements, Proc Am. Math. Soc. 1 (1950) 788-796.
[4] B. Dushnik and E. Miller, Partially ordered sets, Am. J. Math. 63 (1941) 600-610.
[5] R. Kimble, Extremal problems in dimension theory for partially ordered sets, Ph.D. Thesis, M.I.T., Cambridge, Mass. (1973).
[51 B. Leclerc, Arbres et dimension des ordres, Discrete Math. 14 (1976) 6976.
[7] E. Szpiltain, Sur l'extension der order partiel, Fund. Math 16 (1930) 386-389.
|hif W.I. Trotter, Dimension of the crown s_{n}^{h}, Discrete Math. 3 (1974) 85-103.
[9] W.T. Trotter, A note on Dilworth's embeddiag theorem, Proc. Am. Math. Soc. 52 (1975) 33-39.
[10] W.T. Trotter, A forbidden subposet characterization of an order-dimension inequality. Math. Systems Theory, to appear.
[11] W.T. Trotter, On the construction of irreducible posets, submitted.
[12] W.T. Trotter and K.r. Bogart, Maximal duaensional partially ordered sets III, Discrete Math, to appear.
[13] W.T. Trotter and J.I. Mcore, The dir ension of planar posets, J. Combin. Theory B, to appear.

[^0]: * Present address: Denartment of Mathematics, The Citadel. Charleston. SC 29409, U.S.A.

