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In this journal, Leclerc proved that the dimension of the partially ordered set con-
sisting of all subtrees of a tree 7, ordered by inclusion, is the number of end points of
T. Leclerc posed the problem of determizing the dimension of the partially ordered sct
P consisting of all induced connected subgraphs of a connected graph ¢ for which Pisa
lattice.

In this paper, we prove that the posat P consisting of all induced connected subgraphs
of a nontrivial connected graph G, partially ordered by inciusion, has dimensior n where
n is the number of noncut vertices in ¢ whether or not P is a lattice. We also determine
the dimension of the distributive lattics of all subgraphs of a g wh.

1. Introduction

The dimension of a partially ordered set (X, P) was defined by Dushnik
annd Miller [4] as the minimum number of linear orders on X whose
intersection is P. A poset has aimension one if and only if it is a chain.

In {6] Leclerc proved the following result which gives an alternate defi-
nition of dimersion for thos: posets which are not chains.

Theorem 1.1. The dimension of a poset (X, P) which is not a chain is the
smallest positive integer 1 for which there exists a tree T with n end ver-
tices so that (X, P) is isoniorphic to some collection of subtrees of T
ordered by inclusion.

In this paper we use the characterization of d:mension in the authors’
paper [13] to generalize Theorem 1.1 to arbitrary graphs.
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2. TM-cycles

In this section, we briefly summarize some results in [13]. For a poset
(X, P), we denote the set of all incomparable pairs {(x, y): xIy in P} by
9p. For a subset Q € X X X, we denote the transitive closure o Q by Q.

Theorem 2.1. Let S € 9p. Then PU S is a partial order on X iff there
does not exist a subset {(a;, b): 1 i< m} < S where {(b;, a;,):
1xi<smCP

We note hat i the statement of Theorem 2.1 it is necessary to inter-
pret the suoscripts cyclically, i.e., a,,,; =a,.If 3 & Ip, a subset of the
form {(a;, bp): 1 <i<m}< & for which (b;, a)€ Piffj=i+1 for

i=1,2,..,m, is called a TM-cycle of length m (for &).

Corollary 2.2. Let S € 9. Then PUS s a partial order iff S has no
TM-cycles.

This corollary and Szpilrajn’s well known theorem [7] on the exten-
sion of partial orders to linear orders gives the following 2lternate defi-
nition ¢ f dimensicn for posets for which 9p # 0. (Note that if 9p = 0,
then (X, P) is a chain and dim(X, P)= 1)

Theorem 2.3. The dimension of a poset (X, P) for which 9p # @ is the
smallest positive integer t for which there exists a partition
Sp=dy U JyU... U, so that no S; nasa TM-cycle.

3. Crowns and irreducible posets

A poset is said to be irreducible if dim Y < dim X fur every proper
subposet. An n-dimensional irreducible poset is said to be n-irreducible;
by convention, we consider a one point poset to be l-irreducible. The
only 2-irreducible poset is a two element antichain. However, the prob-
lem of finding the collection of all n-irreducible posets has not been
solved for any n > 3. A list of all known 3-irraducible posets and many
examples of n-irreducible posets for n = 4 are givenin [11].

An n-dimensional poset contains an n-irreducible subposet. In this
paper we will prove that a poset X has dimension at least n where n > 3
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by exhibiting an n-irreducitle subposet of X. Usually this n-irreducible
poset will be the “stancard’’ example of an n-irreducible poset — the
crown SP. Using the terminology and notation introduced in [8], the
crown Sﬁ is defined (for n >» 3) as the poset of height one with » maximal
elements ay, a,, ..., a,, and » minimal elements by, b,, ..., b, ; the partial
order on Sé is defined by b; < g; if and only if i # /. Sg is isomorphic to
the set of one-element and (n — 1)-element subsets of an n-element set
ordered by inclusion.

For the sake of co'npleteness, we include here an argument to show
that S0 is indeed an n-dimensional poset. We refer the reader to {3] and
[8] for much more general results for families of posets which include
32. Characterization theorems involving S,‘Z are given in [1,5,10,12].

Fact. dim SD =n,

Proof. Let P be the partial order on SO and suppose that 9, = d, U d,
. U d,, where r < n. It follows that there exist distinct integers i and j

SO that (a;, by) € Sy and (g;, bj) € S for some k < # But this implies that
¢, contains a TM-cycle of length . We conclude th: t dim S0 > n.

On the other hand for eachi < i, let &; = {(g;, b;)}. Smce I$;1=1,d;

cannot have any TM-cycles and then Q; = P U cS is a partial order for
eachi<n Nowletl,, L,, ..., L, be arbitrary lmear orders on SO so that
7); C L;. It is easy to see that P is the intersectionof L, L,, ..., L,, and
thus cim <

4. Induced subgraphs of connected graphs

The induced connected subgraphs of a connected graph G ordered by
inclusion form a poset which we denote X(G). In [6] Leclerc posed the
question of determining the dimension of X(G) for those graphs for
which X(G) is a lattice. In this section, we determine the dimension of
X(G) for an arbitrary connected graph G {(including those for which
X(G) is not a lattice). Our theorer will use the standard graph theoretic
concepts of the distance between vertices and the distance between two
sets of ver*icec. The distance between a vertex x and itself, d(x, x), is
zero whiis .f x and y are distinct vertices in a connected zraph, the dis-
tance from x to y, d(x, y), is one less ‘han the minimum number of ver-
tices in a path from x to y (including x and p). If x is a vertex and 4 is
a set of vertices, the distance from x to 4, d(x. 4), is min{d(x, a): a € A}.
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Taeorem 4.1. If G is a nontrivial connected graph witl: n non-cui vertices,
then dim X(G) = n.

Proof. Let P deaote the partial order on X(G). Then labe: the non-cut
vertices of , x{, X5, ..., X,,. Since G s non-trivial, we no.e that n > 2.
We first prove that dim X(G) > n. If n = 2, it is clear that dim X{(G) > 2,
and if # = 3, then the collection of connected subgraphs of G consisting
of the trivial graphs determined by the non-cut vertices and the induced
subg'?apt*zs; of the form G - x;, i = 1,2, ..., n, form a copy of SS. We con-
clude that dim X(G) > n.

To show that dim X(G) < »n, we partition the set of incomparable pairs
9 p into n subsets o that no subiet has a TM-cycle. We define for each
i<n ;= {(Hy, Hy€ 9p: d(x; FH,) < d(x; H)}

We first show that 9, = S, U d, U ... U J,. Suppose (H,, Hy) € Ip.
Then therc exists a vertex x < F, — H,. If x is a non-cut vertex of G, say
x = x;, then (Hy, Hy) € ;. Now suppose x is a cut vertex of ~. Then H,
is 4 subgraph of one of the components of ¢ - x. Choose a non-cut ver-
tex v; of & which is in a component of G ~- x not containing H,. It fol-
lows that (/, H,) € ;.

We now show that none of these subsets of I, contain a TM-cycle.
Suppose that (H;, K;): 1 << m}isaTM-cycle for ;. Then it follows
that

dix, Ky <dx, H)<d(x, K )< dx. i )< d(x, K, )
<dx,H, <. < d(x,., Hz) < d(x, Kl) .

The contradiction completes the proof.

5 Distributive lattices and subgraphs

Dilworth [ 2] proved that the dimension of a distributive lattice L is
the width of the subposet of L consisting of the join irreducibles. If L
is n-dimensional (for n > 3), then L contains S? zs a subposet. We refer
the reader to [9] for a simple proof of Dilworth's theorem.

If G is a graph, then the poset consisting of all subgraphs (not just the
induced subgraphs) of G ordered by inclusion is a distributive lattice.
The join irreducible elemeuts of this lattice are those subgraphs consisting
of a «ingle vertex or two vertices joined by an edge.
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Theorem 5.1. Let & be a graph with components, Cy, Cs, ..., C,. For each
i < t, let p;and q; be the number of vertices and edges < <spectively of C;.
Then the dimension of the distributive lattice of all subgraphs of G or-
dered by inclusion is

!
Zymax{p, q;}.
i=1

Proof. We denote the lattice of all subgraphs of ¢ by S(G) nd the sub-
poset of S(G) consisting of all join irreducibic elements by 2(G). If G
has t cor  »nents, €, C,, ..., C, where = 2. then P(G) is the free sum
P(C)+ P(.,)+ ... + P(C,). Therefore a maximum antichain A in P(G)
is the freesum A = 4, + 4, +... + 4, where each 4, is a maximum anti-
chain in P(C;). Hence it suffices to prove our theorem for connected
graphs.

Let G be a nontrivial connected graph with p vertices and g edges.
Choose a maximum antichain 4 from P(G) so that t*e number of edges
in A4 is as large as possible. If A4 contains all the edge: of G, then 1 4l = g;
on the other hand, if 4 contains no edges of G, then 141 =p. Now sup-
pose that 4 contains some but not all of the edges in G. Since G is con-
nected we may choose coincident edges e and f withe € 4 but f ¢ A.
Let the end vertices of ¢ be x and y and the end vertices of fbe y and z.
It follows that y ¢ 4 and z € 4; we may then conclude that 4 — {z}U { f}
is a maximum antichain of P(G) containing one more edge than 4. The
contradiction completes the proof.

Note added in proof. The collection of all 3-irreducible posets has been
independently determined by the authors and D. Kelly.
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