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Abstract We prove two theorems concerning incidence posets of graphs, cover
graphs of posets and a related graph parameter. First, answering a question of Haxell,
we show that the chromatic number of a graph is not bounded in terms of the
dimension of its incidence poset, provided the dimension is at least four. Second,
answering a question of Kříž and Nešetřil, we show that there are graphs with large
girth and large chromatic number among the class of graphs having eye parameter at
most two.
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1 Introduction

The chromatic number of a graph G = (V, E), denoted χ(G), is the least positive
integer r for which there is a partition V = V1 ∪ V2 ∪ · · · ∪ Vr of the vertex set V
of G so that Vi is an independent set in G, for each i = 1, 2, . . . , r. A family R =
{L1, L2, . . . , Lt} of linear extensions of a poset P is a realizer of P if P = ∩R, i.e.,
x < y in P if and only if x < y in Li for each i = 1, 2, . . . , t. The dimension of a poset
P, denoted dim(P), is the minimum size of a realizer of P.

When G = (V, E) is a graph, the incidence poset of G, denoted PG, has V ∪ E as
its ground set; vertices in V are minimal elements of PG; edges in E are maximal
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elements of PG; and a vertex x is less than an edge e in PG when x is one of the two
endpoints of e. Alternatively, considering the edges of a graph as two element subsets
of the vertex set, the incidence poset PG of a graph G = (V, E) is just the set V ∪ E
partially ordered by inclusion.

When x and y are points in a poset P with x > y in P, we say x covers y in P when
there is no point z with x > z > y in P. Also, we let GP denote the cover graph of P.
The graph GP has the elements of P as vertices with {x, y} an edge in GP when one
of x and y covers the other in P. The diagram of P (also called a Hasse diagram or
order diagram) is a drawing of the cover graph of G in the plane with x higher in the
plane than y whenever x covers y in P.

1.1 Mathematical Preliminaries

We will find it convenient to work with the following alternative definition of
dimension of an incidence poset, as proposed by Barrera-Cruz and Haxell [2].

Proposition 1.1 Let G = (V, E) be a graph and let PG be its incidence poset. Then
dim(PG) is the least positive integer t for which there is a family {L1, L2, . . . , Lt} of
linear orders on V so that the following two conditions are satisf ied:

(1) If x, y and z are distinct vertices of G and {y, z} is an edge in G, then there is some
i with 1 ≤ i ≤ t for which both x > y and x > z in Li.

(2) If x and y are distinct vertices of G, then there is some i with 1 ≤ i ≤ t so that
x > y in Li.

We note that some authors (see Hoşten and Morris [7], for example) have worked
with a notion of dimension of a graph, which uses only the first of the two conditions
listed in Proposition 1.1. This parameter is at most the dimension of the associated
incidence poset. However, it can be at most one less. Furthermore, for connected
graphs with no vertices of degree one, the two parameters agree.

In [8], Kříž and Nešetřil defined a new parameter for graphs, which we call the eye
parameter. Formally, the eye parameter of a graph G, denoted eye(G), is the least
positive integer s for which there exists a family {L1, L2, . . . , Ls} of linear orders on
the vertex set of G for which if x, y and z are three distinct vertices of G with {y, z}
an edge of G, then there is some i with 1 ≤ i ≤ s for which x is not between y and z in
Li. In this definition, it is allowed that x be above both y and z or below both y and
z. For example, when G is a path, eye(G) = 1. The following elementary proposition
is stated for emphasis.

Proposition 1.2 Let G be a graph and let PG be the incidence poset of G. Then
eye(G) ≤ dim(PG) ≤ 2 eye(G).

2 Dimension and Chromatic Number

In this section, we state our two main theorems, including just enough background
discussion to place them in context. Proofs are given in the two sections immediately
following.
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To understand the fundamental importance of incidence posets and dimension, we
need only mention the following now classic theorem of Schnyder [10] (recently, a
quite clever and very short proof has been provided by Barrera-Cruz and Haxell [2]).

Theorem 2.1 Let G be a graph and let PG be its incidence poset. Then G is planar if
and only if dim(PG) ≤ 3.

In view of Schnyder’s result, it is natural to ask the following two questions:

Question 1 Is the dimension of the incidence poset of a graph bounded in terms of
the chromatic number of the graph?

Question 2 Is the chromatic number of a graph bounded in terms of the dimension
of its incidence poset?

The first question was answered in the affirmative by Agnarsson, Felsner and
Trotter in [1], where the following asymptotic formula is proved.

Theorem 2.2 If G is a graph, PG is the incidence poset of G and χ(G) = r, then
dim(PG) = O(lg lg r).

The inequality in Theorem 2.2 is best possible, up to the value of the multiplicative
constant, since as noted in [1] (and by others), the dimension of the incidence poset
Pr of the complete graph Kr is at least lg lg r, a statement which follows easily from
repeated application of the Erdős/Szekeres theorem on monotonic sequences. On
the other hand, Hoşten and Morris [7] showed that it is possible to determine the
exact value of the dimension of Pr for surprisingly large values of r. Furthermore, a
relatively tight asymptotic formula is known (see [1]):

dim(Pr) = lg lg r + (1/2 + o(1)) lg lg lg r.

It follows easily that if P is the incidence poset of a graph G with χ(G) = r, then

dim(P) ≤ 2 lg lg r + (1 + o(1)) lg lg lg r.

In view of Schnyder’s theorem, we know the answer to the second question is yes,
provided the dimension of the incidence poset is at most three. But, in this paper,
we show that in general the answer to Question 2 is no, by proving the following
theorem.

Theorem 2.3 For every r ≥ 1, there exists a graph G with χ(G) ≥ r and dim(PG) ≤ 4.

Of course, the inequality dim(PG) ≤ 4 in Theorem 2.3 will become tight once
r ≥ 5.

2.1 Cover Graphs

The cover graph of a poset is a triangle-free graph, and some thirty years ago, Rival
asked whether there are cover graphs with large chromatic number. Bollobás noted
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in [4] that B. Descartes’ classic proof [5] of the existence of triangle-free graphs with
large chromatic number provided a positive answer. In fact, this construction shows
that for each r ≥ 1, there is a poset P of height r so that the chromatic number of
the cover graph of P is r. In view of the dual form of Dilworth’s theorem, this is the
minimum value of height for which such a poset can possibly exist.

So with the fundamental question answered, several authors went on to prove
somewhat stronger results. First, Bollobás [4] showed that there are lattices whose
cover graphs have arbitrarily large chromatic number. Second, the construction
of Nešetřil and Rödl [9] for graphs (and hypergraphs) with large girth and large
chromatic number also implies that for each pair (g, r) of positive integers, there
is a poset P of height r whose cover graph GP has girth at least g and chromatic
number r.

In another direction, as is well known, the shift graph Sn consisting of all 2-element
subsets of {1, 2, . . . , n} with {i, j} adjacent to { j, k} when 1 ≤ i < j < k ≤ n is a cover
graph of an interval order and has chromatic number �lg n�. In this case, the height
of the associated interval order is n − 1, and it was shown by Felsner and Trotter
in [6] that the height of an interval order must be exponentially large in terms of the
chromatic number of its cover graph. In fact, they conjecture that if P is an interval
order whose height is at most 2r−1 + �(r − 1)/2	, then the chromatic number of the
cover graph of P is at most r. If true, this statement is best possible. Efforts to resolve
this conjecture have led to interesting problems on hamiltonian paths in the subset
lattice (see [3] and [11] for quite recent work on this theme).

Finally, we mention the work of Kříž and Nešetřil [8] answering a question posed
by Nešetřil and Trotter by proving the following theorem, as this work is central to
the results presented here.

Theorem 2.4 For every r ≥ 1, there exists a poset P with dim(P) ≤ 2 so that the
chromatic number of the cover graph of P is r.

If G is the cover graph of poset P with dim(P) ≤ 2, then eye(G) ≤ 2, so as Kříž
and Nešetřil noted, we have the following immediate corollary.

Corollary 2.5 For every r ≥ 1, there is a graph G with eye(G) ≤ 2 and χ(G) = r.

The graphs constructed by Kříž and Nešetřil in the proof of Theorem 2.4 and
Corollary 2.5 have girth four. However, they were able to prove the following
extension.

Theorem 2.6 For every pair (g, r) of positive integers, there is a graph G with eye(G) ≤
3, girth(G) ≥ g and χ(G) = r.

They asked whether this result remains true if we require eye(G) ≤ 2. Our second
main result will be to answer this question in the affirmative by proving the following
theorem, which is in fact a slightly stronger result.
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Theorem 2.7 For every pair (g, r) of positive integers, there is a poset P = P(g, r)
with cover graph G = G(g, r) so that the height of P is r, while girth(G) ≥ g and
χ(G) = r. Furthermore, there are two linear extensions L1 and L2 of P witnessing that
eye(G) ≤ 2.

The reader should note that we do not claim that the poset P(g, r) in Theorem 2.7
is 2-dimensional. In fact, the dimension of P(g, r) grows rapidly with r, even with g
fixed. We will return to this issue in the last section of this paper.

3 Proof of the First Main Theorem

We first explain why Theorem 2.3 follows as a relatively straightforward corollary to
Theorem 2.4, starting with a lemma which we believe is of independent interest.1

Lemma 3.1 Let P be a poset, let G be the cover graph of P and let Q be the incidence
poset of P. Then dim(Q) ≤ 2 dim(P).

Proof Let t = dim(P) and let R = {Li : 1 ≤ i ≤ t} be a realizer of P. Then for each
i = 1, 2, . . . , t, let Ld

i be the dual of Li, i.e., x > y in Ld
i if and only if x < y in Li. We

claim that the family R∗ = R ∪ {Ld
i : 1 ≤ i ≤ t} witnesses that dim(Q) ≤ 2t.

To see this, note that the second condition of Proposition 1.1 holds since L1 and
Ld

1 are in the family. Now let x, y and z be distinct vertices with {y, z} an edge in
G. Without loss of generality, we take y < z in P. If x �< z in P, then there is some
i with 1 ≤ i ≤ t so that x > z in Li. This implies x > z > y in Li. So we may assume
that x < z in P. Since {y, z} is an edge of the cover graph, we cannot have y < x in
P. It follows that there is some j with 1 ≤ j ≤ t so that x < y in L j. This implies that
x < y < z in L j and x > y > z in Ld

j . This completes the proof of the lemma. �


We now show how Theorem 2.3 follows as an easy corollary to Theorem 2.4. Let
r ≥ 1 and let P be the poset from Theorem 2.4. Then let G = GP be the cover graph
of the poset P, noting that χ(G) ≥ r. Since dim(P) ≤ 2, from Lemma 3.1, we know
that the dimension of the incidence poset of G is at most four.

4 Proof of the Second Main Theorem

We fix an integer g ≥ 4 and then argue by induction on r. The basic idea behind the
proof will be to make a minor adjustment to the construction used by Nešetřil and
Rödl in [9]. The cases r = 1 and r = 2 are trivial. To handle the case r = 3, we let n
be an odd integer with n ≥ g. Then we take G = G(g, 3) as an odd cycle with vertex
set {a1, a2, . . . , an}, with {ai, ai+1} an edge for each i = 1, 2, . . . , n − 1. Also, {an, a1} is

1We thank an anonymous referee for pointing out that our original manuscript included this lemma
implicitly.
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an edge of G. Then we take P = P(g, 3) as a poset whose cover graph is G by setting
the following covering relations in P:

a1 < a2 < a3 > a4 < a5 > a6 < a7 > a8 < a9 > · · · > an−1 < an > a1.

We then take

L1 = a1 < a2 < a4 < a3 < a6 < a5 < a8 < a7 < · · · < an−1 < an−2 < an

and

L2 = an−1 < a1 < an < an−3 < an−2 < · · · < a6 < a7 < a4 < a5 < a2 < a3.

It is easy to see that L1 and L2 are linear extensions of P. Furthermore, the two
endpoints of an edge in G occur consecutively in either L1 or L2, except for the edge
{an−1, an}. However, only an−2 is between an−1 and an in L1. Also, only a1 is between
an−1 and an in L2. It follows that L1 and L2 witness that eye(G) ≤ 2.

Now suppose that for some r ≥ 3, we have constructed a poset P = P(g, r) with
cover graph G = G(g, r) so that the height of P is r, while girth(G) ≥ g and χ(G) = r.
Suppose further that L1 and L2 are linear extensions of P witnessing that eye(G) ≤ 2.

We now explain how to construct a poset Q = P(g, r + 1) with cover graph H =
G(g, r + 1) so that the height of Q is r + 1, while girth(H) ≥ g and χ(H) = r + 1. We
will also construct linear extensions M1 and M2 of Q witnessing that eye(H) ≤ 2. As
the reader will sense, there is considerable flexibility in how these steps are taken,
and our approach is an effort to make the exposition as clear as possible.

Let A denote the vertex set of G and let n = |A|. Using the results of Nešetřil
and Rödl as developed in [9], we know there exists a hypergraph H satisfying the
following conditions: H is a simple n-uniform hypergraph; the girth of H is at least g;
and the chromatic number of H is r + 1. Let B and E denote, respectively, the vertex
set and the edge set of H. In the discussion to follow, we consider each edge E ∈ E
as an n-element subset of B.

The poset Q is assembled as follows. Set Z = E × A. The ground set of Q will
be B ∪ Z with all elements of B maximal in Q. For each edge E in E , the elements
of {E} × A determine a subposet of Q which we will denote P(E). When a and a′
are distinct elements of A, we will set (E, a) < (E, a′) in Q if and only if a < a′ in
P. Accordingly, for each E ∈ E , the subposet P(E) is isomorphic to P. Also, when
E, E′ ∈ E and E �= E′, we make all elements of P(E) incomparable with all elements
of P(E′).

We pause to point out that regardless of how the comparabilities between B and
Z are defined in Q, for each edge E ∈ E , the covering edges of P(E) are covering
edges in Q and these edges form a copy of G.

We now describe these comparabilities between B and Z . This will be done by
prescribing when an element b ∈ B covers an element (E, a) ∈ Z . We begin by
choosing an arbitrary linear order L(B) on B. Also, let {a1, a2, . . . , an} be a labelling
of A so that L1 is the subscript order, i.e., ai < a j in L1 if and only if i < j. Next, we fix
an edge E ∈ E and describe the cover relations between B and P(E). This process
will be repeated for each edge E ∈ E and when this step has been completed, the
poset Q is fully determined. First, when b ∈ B − E, we make b incomparable to all
elements of P(E) in Q. Second, let {b 1, b 2, . . . , b n} be the labelling of the elements of
E so that bi < b j in L(B) if and only if i < j. Then for each i = 1, 2, . . . , n, we make
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bi cover (E, ai) in Q. It follows that if (E, a) ∈ Z , then there is a unique element
b ∈ B so that b covers (E, a) in Q.

Now that Q = P(G, r + 1) has been defined, we take H = G(g, r + 1) as the cover
graph of Q, and we pause to show that the height of Q is r + 1, while girth(H) ≥ g and
χ(H) = r + 1. First, we note that the height of Q is at most r + 1, since we have added
B as a set of maximal elements to a family of pairwise disjoint and incomparable
copies of P. On the other hand, once we have shown that χ(H) = r + 1, we will have
also shown that the height of H must be r + 1, using the dual form of Dilworth’s
theorem.

Second, we note that χ(H) ≥ r, since H contains copies of G. On the other hand,
it is trivial that we may color all elements of Z with r colors and use one new color
on the independent set B, so that χ(H) ≤ r + 1. Now suppose that χ(H) = r, and let
φ be a proper coloring of H using r colors. Then since the chromatic number of H is
r + 1, there is some edge E of H on which φ is constant. This implies that φ colors
the cover graph of P(E) with only r − 1 colors, which is impossible. The contradiction
shows that χ(H) = r + 1, as desired.

Third, we show that the girth of H is at least g. Consider a cycle C in H. If there
is an edge E of H so that C is contained entirely within the cover graph of P(E),
then it has size at least g. So we may assume that C involves vertices from copies
of P associated with two or more edges in E . Now the fact that the covering edges
between Y and each P(E) are formed using a bijection means that once the cycle
enters some P(E), it must pass through at least two vertices before leaving. So the
girth requirement is satisfied (generously) be the fact that the girth of H is at least g.
In this detail, we point out that we are using essentially the same idea as in [9].

Now we turn our attention to the eye parameter. To complete the proof, we must
construct two linear extensions M1 and M2 of Q witnessing that eye(H) ≤ 2. As we
remarked previously, there is considerable flexibility in how this is done.

For each b ∈ Y, let N(b) denote the set of all elements (E, a) from Z such that
b covers (E, a) in Q, i.e., N(b) is just the neighborhood of b in the cover graph H.
Note that N(b) is an antichain in the poset Q.

Let L(E) be an arbitrary linear order on E . We define linear extensions M1 and
M2 by the following rules (starting with the rules for M2):

(1) The restriction of M2 to B is an arbitrary linear order. In M2 all elements of
Z are below all elements of Y. Furthermore, if (E, a) and (E′, a′) are distinct
elements of Z , then (E, a) < (E′, a′) in M2 if and only if either E < E′ in L(E)

or E = E′ and a < a′ in L2.
(2) The restriction of M1 to B is the linear order L(B). In M1, for each b ∈ B, all

elements of N(b) will be placed in the gap immediately under b and above all
other elements (if any) of B which are under b in L(B). The restriction of M1

to N(b) will be the dual of the restriction of M2 to N(b).

We pause to show that M1 and M2 are linear extensions of Q, and we remark
that it is enough to show that they both respect the covering relations in Q. First, we
note that for each i = 1, 2, and for each E ∈ E , if a and a′ are distinct elements of A,
then (E, a) < (E, a′) in Mi if and only if a < a′ in Li. On the other hand, if b ∈ B,
(E, a) ∈ Z and b covers (E, a) in Q, then (E, a) ∈ N(b) so it is placed below b in
M1. Finally, we note that all elements of Z are below all elements of B in M2. We
conclude that M1 and M2 are linear extensions of Q, as desired.
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Finally, we explain why M1 and M2 witness that eye(H) ≤ 2. Consider how an
edge might possibly trap a vertex in both M1 and M2. If the edge is an edge in the
cover graph of some P(E), then the linear extension M2 forces the vertex to also
belong to P(E). But the restriction of M1 and M2 to P(E) are just like L1 and L2 for
G, so this situation cannot lead to a problem.

Similarly, if the edge joins some b ∈ Y to a vertex (E, a) in N(b), then the
only potential problem is a vertex (E′, a′) ∈ N(b) with (E, a) < (E′, a′) < y in M1.
However, the rules for M1 and M2 imply that (E′, a′) < (E, a) < b in M2. This
completes the proof of Theorem 2.7.

5 Conjectures and Questions

We have made some effort, without success, to construct a poset P with cover graph
G so that the dimension of P is small; the girth of G is large; and the chromatic
number of G is large. Accordingly, we believe it reasonable to make the following
conjecture.

Conjecture 5.1 For every pair (g, d) of integers, with g ≥ 5 and d ≥ 1, there is an
integer r = r(g, d) so that if G is the cover graph of a poset P, dim(P) ≤ d and
girth(G) ≥ g, then χ(G) ≤ r.

In another direction, we return to Proposition 1.2 and make the following
conjectures.

Conjecture 5.2 For every t ≥ 1, there is a graph G so that if PG is the incidence poset
of G, then eye(G) = dim(PG).

Conjecture 5.3 For every t ≥ 1, there is a graph H so that if PH is the incidence poset
of H, then dim(PH) = 2 eye(H).

A similar analysis of Lemma 3.1 leads to the following conjectures.

Conjecture 5.4 For every t ≥ 1, there exists a poset P so that if G is the cover graph
of P and Q is the incidence poset of G, then dim(Q) = 2 dim(P).

Clearly, Conjecture 5.4 holds when t ≤ 2, but we have not been able to settle the
issue for larger values of t. However, our preliminary thoughts on this conjecture
suggest a more extensive line of research. For a poset P, we call a family R =
{L1, L2, . . . , Lt} of linear extensions of P an upper-cover realizer of P provided that
whenever (z, x, y) is an ordered triple of distinct points in P with z covering both
x and y, there is some i with x > y in Li. The upper cover dimension of P, denoted
dimuc(P), would then be the minimum size of an upper-cover realizer of P.

Lower-cover realizers and the lower cover dimension of P, denoted dimlc(P),
would then be defined dually. Clearly, dimuc(P) ≤ dim(P) and dimlc(P) ≤ dim(P).

An attractive feature of these new parameters is that they are monotonic on
subdiagrams of the order diagram of P, i.e., if we consider the diagram D of P as
an acyclic orientaton of the cover graph G, and D′ is a subdiagram of D, then D′
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determines a poset P′ which is a suborder of P. On the one hand, P′ is not necessarily
a subposet of P and it is clear that dim(P′) may be the same as dim(P) or arbitrarily
smaller or larger. On the other hand, dimuc(P′) ≤ dimuc(P) and dimlc(P′) ≤ dimlc(P).

We make the following conjecture, which is easily seen to be stronger than
Conjecture 5.4.

Conjecture 5.5 For every pair (d, r) of positive integers, there is a poset P with
dim(P) = d so that if D is the order diagram of P, E is the edge set of D and φ : E →
{1, 2, . . . , r} is an r coloring of the edges of D, then there is some α ∈ {1, 2, . . . , r} so
that if we take D′ as the subdiagram of D with edge set {e ∈ E : φ(e) = α} and set P′
as the suborder of P determined by D′, then dimuc(D′) = dimlc(D′) = dim(P).
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9. Nešetřil, J., Rödl, V.: A short proof of the existence of highly chromatic graphs without short

cycles. J. Comb. Theory B 27, 225–227 (1979)
10. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)
11. Streib, N., Trotter, W.T.: Hamiltonian cycles and symmetric chains in boolean lattices. Graphs

and Combinatorics (2013). doi:10.1007/s00373-013-1350-8

Author's personal copy

http://dx.doi.org/10.1007/s00373-013-1350-8

	Incidence Posets and Cover Graphs
	Abstract
	Introduction
	Mathematical Preliminaries

	Dimension and Chromatic Number
	Cover Graphs

	Proof of the First Main Theorem
	Proof of the Second Main Theorem
	Conjectures and Questions
	References


