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Abstract We develop some new inequalities for the dimension of a finite poset. These
inequalities are then used to bound dimension in terms of the maximum size of matchings.
We prove that if the dimension of P is d and d ≥ 3, then there is a matching of size d in
the comparability graph of P . There is no analogue of this result for cover graphs, as we
show that there is a poset P of dimension d for which the maximum matching in the cover
graph of P has size O(log d). On the other hand, there is a dual result in which the role of
chains and antichains is reversed, as we show that there is also a matching of size d in the
incomparability graph of P . The proof of the result for comparability graphs has elements in
common with Perles’ proof of Dilworth’s theorem. Either result has the following theorem
of Hiraguchi as an immediate corollary: dim(P ) ≤ |P |/2 when |P | ≥ 4.

Keywords Matching · Dimension

1 Introduction

We assume that the reader is familiar with basic notation and terminology for graphs. In
particular, amatchingM in a graphG is a set of edges inG no two of which have a common
endpoint. The size of a matching is the number of edges.

We also assume that the reader is familiar with basic notation and terminology for par-
tially ordered sets (here we use the short term poset), including: minimal and maximal
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elements; chains and antichains; height and width; linear extensions; and order dia-
grams. Trotter’s monograph [28] and survey article [29] remain good sources of addi-
tional background material, as are the recent papers [23], [9] and [15] on dimension
theory.

When P is a poset, the comparability graph GP of P is the graph whose vertex set is the
ground set of P with {u, v} an edge in GP if and only if u and v are distinct comparable
points in P . The incomparability graph HP of P is just the complement of GP , i.e. {x, y}
is an edge in HP if and only if x and y are distinct incomparable points in P .

The dimension of a poset P , denoted dim(P ), is the least positive integer d for which
there is a familyR = {L1, L2, . . . , Ld} of linear extensions of P so that x ≤ y in P if and
only if x ≤ y in Li for each i ∈ {1, 2, . . . , d}.

Our principal theorem bounds the dimension of a poset P by the maximum size of size
of matchings in GP and HP .

Theorem 1.1 Let P be a poset and letGP andHP be, respectively, the comparability graph
and the incomparability graph of P . If dim(P ) = d ≥ 3, then there is a matching of size d

in GP , and there is a matching of size d in HP .

As our primary focus is on the combinatorial properties of posets, we define a chain
matching in a poset P as a family of pairwise disjoint 2-element chains in P . Dually, an
antichain matching in P is a family of pairwise disjoint 2-element antichains in P . As the
statements require separate proofs, we elect to restate Theorem 1.1 as two theorems, one for
chain matchings and the other for antichain matchings.

Theorem 1.2 [Chain Matching Theorem] Let P be a poset. If dim(P ) = d ≥ 3, then P

has a chain matching of size d.

Theorem 1.3 [Antichain Matching Theorem] Let P be a poset. If dim(P ) = d ≥ 3, then
P has an antichain matching of size d.

Notice that these statements in Theorem 1.2 and Theorem 1.3 are not true when d ≤ 2.
We comment that there are other well-known instances of combinatorial problems with

analogous statements for chains and antichains. For starters, we have Dilworth’s classic
theorem [6] and the dual statement due to Mirsky [20].

Theorem 1.4 [Dilworth] A poset of width w can be partitioned into w chains.

Theorem 1.5 [Mirsky] A poset of height h can be partitioned into h antichains.

Second, we have the considerable strengthening of Dilworth’s theorem due to Greene
and Kleitman [11], with the dual result due to Greene [10].

Theorem 1.6 [Greene-Kleitman] Let P be a poset. Then for every k ≥ 1, there is a chain
partition P = C1 ∪ C2 ∪ · · · ∪ Ct so that for i = k and i = k + 1, the maximum size of a
subposet Q of P with height(Q) ≤ i is

∑t
j=1 Min{i, |Cj |}.

Theorem 1.7 [Greene] Let P be a poset. Then for every k ≥ 1, there is an antichain
partition P = A1 ∪ A2 ∪ · · · ∪ As so that for i = k and i = k + 1, the maximum size of a
subposet Q of P with width(Q) ≤ i is

∑s
j=1 Min{i, |Aj |}.
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More recently, we have the following theorem proved by Duffus and Sands [7], with the
dual result due to Howard and Trotter [14].

Theorem 1.8 [Duffus-Sands] Let n and k be integers with n ≥ k ≥ 3, and let P be a poset.
If n ≤ |C| ≤ n + (n − k)/(k − 2), for every maximal chain C in P , then P has k pairwise
disjoint maximal antichains.

Theorem 1.9 [Howard-Trotter] Let n and k be integers with n ≥ k ≥ 3, and let P be a
poset. If n ≤ |A| ≤ n + (n − k)/(k − 2) for every maximal antichain A in P , then P has k

pairwise disjoint maximal chains.

As is the case with Dilworth’s theorem and its dual, our theorem for chain matchings
is more challenging than the result for antichain matchings, and we do not know of any
“perfect graph” underpinning that makes the two results equivalent. We will also show that
our chain matching theorem cannot be extended to cover graphs by showing that there is
a d-dimensional poset for which the maximum size of a matching in the cover graph has
size O(log d).

The remainder of this paper is organized as follows. In the next section, we provide
essential notation, terminology and background material. Most of this will be familiar to
readers who have some experience with combinatorial problems for posets. In Section 3, we
provide a brief sketch of related work which serves to motivate the research reported here.
In Section 4, we prove three new inequalities for dimension. The first is elementary, but the
second and third are more substantive, and they are the key ingredients of the proofs for our
matching theorems. In Section 5, we discuss chain matchings and prove the chain matching
theorem. At the close of this section, we explain why there is no analogue for matchings
in the cover graph. In Section 6, we prove the antichain matching theorem, and we close in
Section 7 with a brief discussion of some open problems.

2 Notation, Terminology and Preliminary Material

When P is a poset, we use |P | to denote the number of elements in the ground set of P .
Subposets of P are identified just by specifying their ground sets. For example, if x and
y are distinct elements of P , P − {x, y} is just the subposet obtained when x and y are
removed from P . When S is a subposet of P and L is a linear extension of P , L(S) denotes
the restriction of L to S.

Define blocks to be disjoint subsets of vertex set of P . Blocks will be used to define a
linear extension of P . In Fig. 1, we show a poset P . For this poset, define blocks B1 =
{a, e, f, h, j}, B2 = {b, g, k}, B3 = {i, l} and B4 = {c, d}. Then set L2 = [j < a < b <

k < h < g] and L4 = [b < k < d < c]. In this paper, we use notation such as

L = [B1 < u1 < L2(B2) < u2 < B3 < u3 < L4(B4)]
to define a linear extension of P . Technically speaking, we have not precisely defined a
particular linear extension, since we intend that the choice of the extension on the blocks B1
and B3 is arbitrary.

When a linear extension L has been defined in this manner, and we subsequently specify
that L′ = L(S), we intend that suitable choices have been made for L. In particular, if A is
an antichain and we say that L′ = L∗(A), then for every distinct pair a, a′ ∈ A, if a < a′ in
L, then a′ < a in L′.
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Fig. 1 Defining Linear
Extensions Using Blocks
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The width of a poset P , denoted width(P ) is the maximum size of an antichain in P ,
while Min(P ) and Max(P ) denote, respectively, the set of minimal elements and the set of
maximal elements in P . When x ∈ P , we write D(x) for the set {y ∈ P : y < x in P }
while U(x) is the set {y ∈ P : y > x in P }. When A is a maximal antichain in P , D(A)

consists of all x ∈ P for which there is some a ∈ A with x < a in P . Dually, U(A) consists
of all x ∈ P for which there is some a ∈ A with x > a in P . Evidently, D(A) ∩ U(A) = ∅.

A non-empty subset D of a poset P is called a down set if x ∈ D whenever y ∈ D and
x < y in P . Dually, a subposet U of P is called an up set if y ∈ U whenever x ∈ U and
x < y in P . Note that D is a down set if and only if U = P − D is an upset. Also note that
when x ∈ P , D(x) is a down set and U(x) is an upset. Also, when A is a maximal antichain
in P , both D(A) and A ∪ D(A) are down sets, while U(A) and A ∪ U(A) are up sets.

A non-empty family F of linear extensions of a poset P is called a realizer of P when
x ≤ y in P if and only if x ≤ y in L for every L ∈ F . The notation u ‖ v in P means u

and v are incomparable points in P . Inc(P ) denotes the set of all ordered pairs (u, v) where
u ‖ v in P . Considered as a binary relation, Inc(P ) is symmetric. Accordingly, a non-empty
family F of linear extensions of P is a realizer if and only if for every (u, v) ∈ Inc(P ),
there is some L ∈ F with u > v in L.

An incomparable pair (u, v) ∈ Inc(P ) is called a critical pair if (1) z < v in P whenever
z < u in P ; and (2) w > u in P whenever w > v in P . We denote the set of all critical pairs
in P by Crit(P ). A non-empty family F of linear extensions of a poset P is a realizer of P

if and only if for every critical pair (u, v) ∈ Crit(P ), there is some L ∈ F with u > v in L.
It is clear that dimension is monotone, i.e., if Q is a subposet of P , then dim(Q) ≤

dim(P ). The next result, due to Hiraguchi [12], is fundamental to our subject. We include
the elementary proof as a precursor of arguments to follow.

Theorem 2.1 Let P be a poset with at least two points. If x ∈ P , then dim(P ) ≤ 1 +
dim(P − {x}).

Proof Let dim(P − {x}) = t and let {L1, L2, . . . , Lt } be a realizer of P − {x}. For each
i ∈ {1, 2, . . . , t −1}, let Ri be any linear extension of P so that Ri(P −{x}) = Li . Then set:

Rt = [Lt(D(x)) < x < Lt(P − D(x))] and

Rt+1 = [Lt(P − U(x)) < x < Lt(U(x))]. (1)

Clearly, {R1, R2, . . . , Rt+1} is a realizer of P .
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We view the preceding theorem as asserting that dimension is “continuous”, i.e., small
changes in the poset can only make small changes in dimension.

We use the notation P ∗ for the dual of P , i.e., P ∗ has the same ground set as P with
x > y in P ∗ if and only if x < y in P . Note that dim(P ) = dim(P ∗). Also note
that a chain matching in P is also a chain matching in P ∗. The same statement holds for
antichain matchings. So not surprisingly, duality will play an important role in arguments to
follow.

A poset P (with at least two points) is irreducible when dim(P − {x}) < dim(P ) for
every x in P . An irreducible poset P is d-irreducible if dim(P ) = d. The only 2-irreducible
poset is a 2-element antichain. A full listing of all 3-irreducible posets has been assembled
by Kelly [16] and by Trotter and Moore [33]. These posets are illustrated in Figs. 2 and 3.
The posets shown in the first figure constitute seven infinite families, while the posets shown
in the second figure are “miscellaneous” examples. In cases where a 3-irreducible poset is
not self-dual, only one of the two instances is included in these figures.

It is a straightforward exercise to show that every 3-irreducible poset has both a chain
matching of size 3 and an antichain matching of size 3. As a consequence, when presenting
the proofs1 of our two matching theorems, we will restrict our attention to posets with
dimension at least 4.

When n ≥ 8, inspection of the posets illustrated in Figs. 2 and 3 shows that the number
of 3-irreducible posets on n points is at most 7. On the other hand, for each d ≥ 4, Trotter
and Ross [34] showed that there is a constant cd > 1 and an integer nd so that for n ≥ nd ,
the number of d-irreducible posets on n points is more than cn2

d . As a consequence, it may
seem that we have not accomplished much by our short proofs of the Theorems 1.2 and 1.3
when dim(P ) = 3, as apparently this is just the easy case with the real work yet to be
done.

A subposet Y of a poset P is said to be autonomous if for every u0 ∈ Y , the following
two statements hold:

(1) If v ∈ P − Y and v < u0, then v < u for every u ∈ Y ; and
(2) If v ∈ P − Y and v > u0, then v > u for every u ∈ Y .

Any singleton set {u} in P is autonomous, as is the entire poset P . Hiraguchi [12] noted
that if P is a poset and Y is an autonomous subposet of P with 2 ≤ |Y | < P and u0 ∈ Y ,
then dim(P ) = Max{dim(Y ), dim(P − (Y − {u0}))}. As a consequence such a poset is not
irreducible. We say a poset P is indecomposable when there is no autonomous subposet Y

of P with 2 ≤ |Y | < |P |, noting that irreducible posets are indecomposable.
The definition of dimension is due to Dushnik andMiller [8], who also gave the following

construction.
For each d ≥ 2, the standard example Sd is the poset of height 2 with minimal elements

{a1, a2, . . . , ad}, maximal elements {b1, b2, . . . , bd} and ordering ai < bj in Sd if and only
if 1 ≤ i, j ≤ d and i �= j . We claim that dim(Sd) = d for all d ≥ 2. To see this, first
note that Crit(P ) = {(ai, bi) : 1 ≤ i ≤ d}. The fact that dim(Sd) ≥ d follows from the
simple fact that if L is a linear extension of Sd , there can be at most one value of i for which
ai > bi in L. This shows dim(Sd) ≥ d.

1It is of course possible to handle the case of 3-dimensional posets directly—without full knowledge of the
list of 3-irreducible posets using the arguments for the general case we present here coupled with structural
results developed in [19] and [27]. However, this approach still requires some work and we do not see much
gain to the effort.
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Fig. 2 Families of 3-Irreducible Posets

On the other hand, for each i ∈ {1, 2, . . . , d}, there is a linear extension Li of Sd with
ai > bi in Li . This shows dim(Sd) ≤ d. Trivially, Sd has both a chain matching of size d

and an antichain matching of size d.

3 Motivation

3.1 Hiraguchi’s Inequality

In 1951, Hiraguchi [12] proved the following key lemma. A proof is provided here as the
basic idea is essential for several of our proofs to follow.

Lemma 3.1 If C is a chain in a poset P , then there exists a linear extension L of P so that
u > v in L for every (u, v) ∈ Inc(P ) with u ∈ C.

Proof Label the points in the chain C as u1 < u2 < · · · < us . Then partition the points
in P − C into blocks B1, B2, . . . , Bs+1 where an element v from P − C belongs to B1 if
v �> u1; otherwise v belongs to Bj+1 where j is the largest integer so that v > uj . Then set

L = [B1 < u1 < B2 < u2 < B3 < · · · < Bs < us < Bs+1].
It is clear that L satisfies the requirement of the lemma.

Returning to the poset shown in Fig. 1, we see that the previous discussion regarding
this poset serves to illustrate the application of Lemma 3.1 to the chain C = {u1, u2, u3}.
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Fig. 3 Miscellaneous Examples of 3-Irreducible Posets

However, as we will use this technique later, we elected to also specify how the linear
extension L would order blocks B2 and B4.

It is useful to view the construction in Lemma 3.1 as pushing the chain C “up” while
forcing all elements of P − C “down” as low as possible relative to C, so we say that the
resulting linear extension puts C “over” P − C. Also, we comment that there is a dual form
of this lemma, i.e., there is a linear extension L with u > v in L whenever (u, v) ∈ Inc(P )

and v ∈ C. This extension puts P − C “over” C.
Hiraguchi noted in [12] that when Lemma 3.1 is used for each chain in a minimum chain

cover provided by Dilworth’s theorem, we have the following upper bound.

Lemma 3.2 If P is a poset, then dim(P ) ≤ width(P ).

The principal result in [12] is the following upper bound.

Theorem 3.3 [Hiraguchi’s Inequality] If P is a poset, then dim(P ) ≤ |P |/2, when |P | ≥
4.

Hiraguchi’s original 1951 proof of this inequality was relatively complicated. In 1955,
he gave an updated and somewhat streamlined proof [13], and in 1974, Bogart gave a more
polished version [1]. Subsequently, Kimble [19] and Trotter [25] discovered the follow-
ing inequality, and this result in combination with Lemma 3.2 yields an elegant proof of
Hiraguchi’s theorem.

Theorem 3.4 If A is an antichain in a poset P , then dim(P ) ≤ Max{2, |P − A|}.

We comment that there is an elementary inductive proof of Theorem 3.4 with the base
case being |P − A| = 2. Here, if the inequality fails, there is a 3-irreducible (and therefore
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indecomposable) poset, having width at least 3 and consisting of an antichain plus at most 2
other points. However, it is an easy exercise to show that there are only two (up to duality)
posets satisfying these requirements. These two posets are shown in Fig. 4. A second ele-
mentary exercise is to show that both of these posets have dimension 2. The theorem then
follows by induction, using Theorem 2.1 to show that the dimension decreases by at most
one each time an element of P − A is removed.

Although this was not the primary motivation for our research, we note that Hiraguchi’s
inequality is an immediate corollary of both our chain matching and our antichain matching
theorems.

3.2 The Removable Pair Conjecture

When |P | ≥ 3, a distinct pair {x, y} is called a removable pair if dim(P ) ≤ 1 + dim(P −
{x, y}). When dim(P ) ≤ 3, every distinct pair of points is a removable pair. However, when
dim(P ) ≥ 4, no comparable pair in the standard example Sd is a removable pair. Also,
among the incomparable pairs, only the critical pairs are removable.

Conjecture 3.5 [The Removable Pair Conjecture] If P is a poset and |P | ≥ 3, then P

has a removable pair, i.e., there exist distinct elements x and y in P so that dim(P ) ≤
1 + dim(P − {x, y}).

Although its origins have been obscured with the passage of time, the Removable Pair
Conjecture (RPC) has been investigated by researchers for more than 60 years. Anyone
reading Hiraguchi’s early 1951 and 1955 papers will certainly be convinced that he tried
hard to prove the RPC, even though it is not stated explicitly as a problem or conjecture in
either of these papers. Nevertheless, the first published reference to the RPC seems to be in a
1975 paper of Trotter [25]. We also note that the RPC was one of the “Unsolved Problems,”
assembled by the Editorial Board of Order and appearing for more than 10 years in each
issue of the journal (see [17]).

If the RPC holds, then a simple inductive proof of Hiraguchi’s theorem could be obtained
just by establishing the base case: dim(P ) ≤ 2 when |P | ≤ 5. This is an easy exercise, as
a counterexample would have to be an indecomposable poset with width at least 3. This is
essentially the same exercise discussed previously, as there are only two such posets, the
ones shown in Fig. 4, and both have dimension 2.

Here are two of many conditions which guarantee that a pair is removable. The first result
is due to Hiraguchi [12] while the second is part of the folklore of the subject, although it is
implicit in Theorem 7.4 as presented in [30]. We provide a short proof since this result will
be quite useful to us in proving our main theorem for antichain matchings.

Theorem 3.6 Let P be a poset with |P | ≥ 3, let a and b be distinct points in P with
a ∈ Min(P ) and b ∈ Max(P ). If a ‖ b in P , then {a, b} is a removable pair.

Fig. 4 Two Small
Indecomposable Posets with
Width at least 3
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Theorem 3.7 Let P be a poset with |P | ≥ 3 and let a and a′ be distinct minimal elements
in P , If U(a) ⊆ U(a′), then {a, a′} is a removable pair.

Proof Let Q = P − {a, a′}, let t = dim(Q) and let F = {L1, L2, . . . , Lt } be a realizer of
Q. For each i ∈ {1, 2, . . . , t}, let Ri = [a < a′ < Li]. Then set

Rt+1 = [Q − U(a′) < a′ < U(a′) − U(a) < a < U(a)].

Evidently, {R1, R2, . . . , Rt , Rt+1} is a realizer of P so that dim(P ) ≤ 1 + dim(Q).

Several strong versions of the RPC conjecture have been offered, and some of these have
been disproved. Bogart [2] suggested that a removable pair {x, y} could always be found
among the elements of Max(P ) ∪Min(P ). This was disproved by Trotter and Monroe [32]
who constructed for each t ≥ 1, a poset Pt so that |P | = (3t+1)2+(6t+2), dim(P ) = 4t+
2, and dim(P −{x, y}) = 4t for every distinct pair x, y ∈ Max(P )∪Min(P ). Subsequently,
Bogart and Trotter conjectured [31] that every critical pair was removable, a result motivated
by their work on interval dimension. However, this form of the RPC was disproved by
Reuter [22].

Historically, it should be noted that in [22], Reuter gives a diagram for his counterexam-
ple, a 4-dimensional poset with 14 points. Reuter also remarks that Trotter relayed to him
that his counterexample is not minimal and that a smaller counterexample can be obtained.
Subsequently, Kierstead and Trotter [18] gave a general construction which shows that for
every d ≥ 5, there is a poset Pd containing a critical pair (x, y) so that dim(P ) = d and
dim(P − {x, y}) = d − 2. In [18], Kierstead and Trotter referenced Reuter and provided
a diagram intended to be the appropriate 12-element poset extracted from Reuter’s original
counterexample. Inexplicably the diagram is incorrectly drawn in [18]. Subsequently, the
incorrect figure also appears in Trotter’s monograph [28] and at least two journal papers.
A corrected drawing is given here in Fig. 5 alongside the more general construction given
in [18].

We should comment that it is still open to determine whether every poset P with |P | ≥ 3
contains some critical pair which is removable. Were this to be true, then a simple proof of
our main result for antichain matchings would be produced. On the other hand, it is easy
to construct examples (not just the standard examples) of posets where some comparable
pairs are not removable, e.g., the max-min pairs in the examples given in [32]. So it will be
a much greater challenge to prove our chain matching theorem with this approach.

Although the RPC remains open, there are some useful removal theorems which are
more general. We say that two pairwise disjoint chains C and C′ in a poset P are incom-
parable when x ‖ y in P for every x ∈ C and y ∈ C′. The following results are

Fig. 5 Critical Pairs Need Not be Removable
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due to Hiraguchi [12]. The first is a straightforward generalization of Lemma 3.1 to two
incomparable chains. The second is an immediate corollary of the first.

Lemma 3.8 Let C1 and C2 be non-empty incomparable chains in a poset P . Then there
exist linear extensions L and L′ of P so that

(1) C1 is over P − C1 and P − C2 is over C2 in L, and
(2) C2 is over P − C2 and P − C1 is over C1 in L′.

Lemma 3.9 LetC1 andC2 be non-empty incomparable chains in a poset P . If there is some
point of P which does not belong to either chain, then dim(P ) ≤ 2+ dim(P − (C1 ∪ C2)).

3.3 Related Inequalities

In [25], Trotter proved the following inequality.

Theorem 3.10 Let P be a poset which is not an antichain, and letw = width(P−Max(P )).
Then dim(P ) ≤ w + 1.

This inequality is tight for all w ≥ 1, and we refer the reader to [25] for details. In this
same paper, Trotter also proved the following inequality.

Theorem 3.11 Let A be a maximal antichain in a poset P which is not a chain, and let
w = width(P − A). Then dim(P ) ≤ 2w + 1.

It is more complicated to show that this inequality is tight, and the argument is deferred
to a separate paper [24]. In the next section, we will provide strengthenings of both
results.

4 Three New Inequalities for Dimension

4.1 New Inequalities for Dimension

In this paper, we will need a straightforward extension of Theorem 3.11.

Theorem 4.1 Let D be a non-empty down set in a poset P such that the up set U = P −D

is also non-empty. If dim(D) = t and width(U) = w, then dim(P ) ≤ t + w.

Proof Let width(U) = w and let U = C1 ∪ C2 ∪ · · · ∪ Cw . Let dim(D) = t and let
F = {L1, L2, . . . , Lt } be a realizer of D. For each i ∈ {1, 2, . . . , t}, let Ri = [Li < U ].
Then for each j ∈ {1, 2, . . . , w}, let Rt+j be a linear extension which puts P −Cj over Cj .
Clearly, the family {R1, R2, . . . , Rt+w} of linear extensions of P is a realizer.

Of course, there is a dual version of the preceding theorem in which the roles of U and
D are reversed. In either case, it is straightforward to modify the arguments given in [24] to
show that the inequality is tight.

The next theorem provides a condition under which the inequality dim(P ) ≤ 1 +
width(P − Max(P )) in Theorem 3.10 can be improved. Although this result is somewhat
technical, it is an essential ingredient of proofs to follow.
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Theorem 4.2 Let P be a poset and let Q = P −Max(P ). If width(Q) = w ≥ 2, and there
is a point x ∈ Q so that width(Q − {x}) = w − 1, then dim(P ) ≤ w.

Proof We argue by contradiction and assume that P is a counterexample of minimum size.
Then P is (w + 1)-irreducible.

Let C1∪C2∪· · ·∪Cw−1∪{x} be a chain cover of Q = P −Max(P ). Setting Cw = {x},
we apply Lemma 3.1 to choose for each i ∈ {1, 2, . . . , w}, a linear extension Li which puts
Ci over P − Ci . We then modify Lw−1 and Lw to form L′

w−1 and L′
w and show that the

family F ′ = {L1, L2, . . . , Lw−2, L
′
w−1, L

′
w} must be a realizer of P .

Let Cw−1 = {u1 < u2 < · · · < us}. The point x must be incomparable with at least one
point of Cw−1; else Cw−1 ∪ {x} is a chain, width(Q) ≤ w − 1 and dim(P ) ≤ w.

Then let A1 = Max(P ) ∩ U(x) and A2 = Max(P ) − A1. Then set

L′
w−1 = [Lw−1(P − A2) < L∗

w−1(A2)].
Now in forming the linear extension Lw , there are only two blocks, and to distinguish

these from the blocks appearing in Lw−1, we denote these as S1 and S2. Let S1 = P −
U(x) − {x}, and S2 = U(x). Now set

L′
w = [Lw−1(S1) < x < Lw−1(S2 − A1) < L∗

w−1(A1)].
Since the family F ′ = {L1, L2, . . . , Lw−2, L

′
w−1, L

′
w} cannot be a realizer of P , there

is some critical pair (u, v) ∈ Crit(P ) with u < v in each of the w linear extensions in F ′.
Clearly, there is no i with 1 ≤ i < w − 2 for which u ∈ Ci . Now suppose that u ∈ Cw−1.
Since u > v in Lw−1, we must have v ∈ A2. This implies that v ‖ x in P , so that v belongs
to block S1 in Lw . It follows that u > v in L′

w .
If u = x, then u > v in L′

w .
Finally, suppose that u ∈ Max(P ). If u ∈ A1 and u < v in L′

w−1, then u > v in L′
w . If

u ∈ A2 and u < v in L′
w , then u > v in L′

w−1.

4.2 The Inequality of Theorem 4.2 is Tight

We show in Fig. 6 a family {Pd : d ≥ 3} of posets. Observe that the following properties
hold:

(1) Max(Pd) = {a0, a1, a2, . . . , ad}.
(2) width(Pd − Max(Pd)) = d − 1.
(3) M = {{xi < yi} : 1 ≤ i ≤ d − 1} is a chain matching in P , but it is not maximum.

Fig. 6 Witnessing that the
Inequality is Tight
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We now show that dim(Pd) = d for all d ≥ 3. Accordingly, this shows that the inequality
dim(P ) ≤ 1+width(P −Max(P )) is best possible. However, it also shows that the condition
of Theorem 4.2 cannot be weakened, since the chains covering Pd − Max(Pd) have size 2.

Suppose to the contrary that dim(P ) ≤ d−1. We note that the subposet of Pd determined
by the points in {xi : 1 ≤ i ≤ d − 1} ∪ {ai : 1 ≤ i ≤ d − 1} is isomorphic to the standard
example Sd−1, so we must then have dim(Pd) = d−1. Now letF = {L1, L2, . . . , Ld−1} be
a realizer of Pd . We may assume that the extensions in F have been labeled so that xi > ai

in Li for each i ∈ {1, 2, . . . , d−1}. Then for all i, j ∈ {1, 2, . . . , d−1} with i �= j , we have

xj < yj < ai < xi < yi < a0 in Li .

Since ad ‖ yj for j ∈ {1, 2, . . . , d − 1} and ad > xi for each i ∈ {1, 2, . . . , d − 1}, we
must therefore have xi < ad < yi < a0 in Li for each i ∈ {1, 2, . . . , d − 1}. This is a
contradiction since F does not reverse the critical pair (ad, a0).

We leave it as an exercise to show that for each d ≥ 4, the poset Pd is d-irreducible.
However, P3 is not irreducible, as P3 − {a1, a2} is isomorphic to the dual of the poset C

shown in Fig. 3. This poset is traditionally called the “chevron”.
The reader may note that for this family, we have {(ai, a0) : 1 ≤ i ≤ d − 1} ⊂ Crit(Pd).

Furthermore, for each j ∈ {1, 2, . . . , d − 1}, if we add the comparabilities a0 > ai for
1 ≤ i ≤ j to Pd , we obtain a height four poset with Max(P ) = {a0, ad}, which also shows
that the inequality in Theorem 3.10 is tight. The case when j = d−1 is just the construction
given in [25]. We leave it as an exercise to show that all such posets are d-irreducible when
d ≥ 4.

4.3 An Inequality Involving Matchings

Here is another result which gives a condition under which the the inequality dim(P ) ≤
1 + width(P − Max(P )) of Theorem 3.10 can be tightened. The reader may note that this
theorem does the lion’s share of the work in proving that a 3-dimensional poset has a chain
matching of size 3, without appeal to the list of 3-irreducible posets.

WhenM is a maximum chain matching in a poset P , we let A(M) denote the set of all
points in P which are not covered by the chains inM. Evidently, A(M) is an antichain.

Theorem 4.3 Let P be a poset which is not an antichain, and let M be a maximum chain
matching in P . IfM has size m and A(M) ⊆ Max(P ), then dim(P ) ≤ Max{2,m}.

Proof We argue by contradiction. We assume the conclusion of the theorem is false and
choose a counterexample P with |P | minimum. Let d = dim(P ), noting that d ≥ 3. Set
m = |M|. Since P is not an antichain, m ≥ 1.

Let Q = P − Max(P ). Then 1 ≤ width(Q) ≤ m < d . By Theorem 3.10, we conclude
m = width(Q) = d − 1, which forces m ≥ 2.

Claim 1. A(M) = Max(P ).

Proof Suppose to the contrary that there is a maximal element y so that y belongs to a chain
C in the matchingM. Let x be the other point in C. It follows that P −Max(P ) is covered
by m chains, with one of the chains being the single point {x}. Now Theorem 4.2 implies
that dim(P ) ≤ m. The contradiction completes the proof of the Claim 1.

Claim 2. dim(P − {u}) = d − 1 for every u ∈ Max(P ).



Order (2016) 33:101–119 113

Proof Let u ∈ Max(P ) and assume that dim(P − {u}) = d. Then M is also a maximum
matching in P − {u}, so P − {u} would be a counterexample, contradicting our choice of
P . The contradiction completes the proof of Claim 2.

Label the chains in M as {Ci = {xi < yi} : 1 ≤ i ≤ m}. Apply Lemma 3.1 for
each chain Ci to obtain a linear extension Li which puts Ci over P − Ci . Note that in the
construction of Li , there are three blocks which we denote Bi,1, Bi,2 and Bi,3. For each
i ∈ {1, 2, . . . , m − 1}, we then modify Li to form L′

i by altering the order on the three
blocks as follows:

L′
i (Bi,j ) = [Bi,j − Max(P ) < L∗

m(Bi,j ∩ Max(P ))] for j ∈ {1, 2, 3}.
Finally, we modify Lm to form L′

m by setting:

L′
m(Bm,j ) = [Bm,j − Max(P ) < Lm(Bm,j ∩ Max(P ))] for j ∈ {1, 2, 3}.

Note that elements always remain in the same block. We simply pull the maximal ele-
ments to the top of the block and then order them in a manner that is dual to how they are
ordered elsewhere.

Since P is a counterexample, the family F = {L′
i : 1 ≤ i ≤ m} cannot be a realizer of

P , so there is a critical pair (u, v) ∈ Crit(P ) for which u < v in L′
i for all i ∈ {1, 2, . . . , m}.

Since L′
i puts Ci over P − Ci , this clearly forces u ∈ Max(P ), and in turn this forces

v ∈ Max(P ).
Since dim(P − {u}) = d − 1, we know that the maximal element u is not a minimal

element of P , so u > xi in P for all i ∈ {1, 2, . . . , m}. Since (u, v) ∈ Crit(P ), we know
that v > xi for all i ∈ {1, 2, . . . , m}.

For every i ∈ {1, 2, . . . , m}, since u, v > xi in P , we know that u, v belong to one of Bi,2
and Bi,3. However, if u and v are in the same block in each L′

i , then in L′
1 they are ordered

in reverse order to how they are ordered in L′
m. So there must exist a j ∈ {1, 2, ..., m}

such that we have u ∈ Bj,2 and v ∈ Bj,3. This implies that v > yj . However, this implies
that the chain matching M is not maximum, since we could replace Cj = {xj < yj }
with C′ = {xj < u} and C′′ = {yj < v}. The contradiction completes the proof of the
theorem.

Again, the example illustrated in Fig. 6 shows that the inequality in Theorem 3.10 is tight.

5 Chain Matchings

5.1 Existence of Pure Maximum Chain Matchings

Let M be a maximum chain matching in a poset P . As in the preceding section, we let
A(M) denote the antichain consisting of the points in P which are not covered by chains
in M. If A(M) = ∅, then dim(P ) ≤ width(P ) ≤ m, so our focus in this section will be
on posets for which A(M) is a non-empty antichain. In this case, we then let U(M) denote
the set of all chains C ∈ M for which there is an element a ∈ A(M), an integer s ≥ 1 and
a sequence {Ci = {xi < yi} : 1 ≤ i ≤ s} of distinct chains in M so that (1) y1 > a in P ,
(2) yi+1 > xi in P whenever 1 ≤ i < s and (3) C = Cs . Dually, D(M) denotes the set
of all chains C′ ∈ M for which there is an element a′ ∈ A(M), an integer s′ ≥ 1 and a
sequence {C′

i = {x′
i < y′

i} : 1 ≤ i ≤ s′} of distinct chains in M so that (1) x′
1 < a′ in P ,

(2) x′
i+1 < y′

i in P whenever 1 ≤ i < s′ and (3) C′ = Cs′ .
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In Fig. 7, we show a poset P and a maximum chain matching M = {{xi < yi} : 1 ≤
i ≤ 6}. It is easy to see that:

(1) The chains {x1 < y1}, {x2 < y2}, {x3 < y3} and {x4 < y4} belong to U(M) ∩D(M).
(2) The chain {x5 < y5} belongs to U(M) but not to D(M).
(3) The chain {x6 < y6} belongs to D(M) but not to U(M).
(4) The chain {x7 < y7} does not belong to U(M) or to D(M).

We say that a maximum chain matching M in P is pure if U(M) ∩ D(M) = ∅. A
maximum chain matching M with A(M) ⊆ Max(P ) is pure since U(M) = ∅. Dually,
a maximum chain matching M with A(M) ⊆ Min(P ) is pure. On the other hand, there
are posets having no maximum chain matchingM for which A(M) is a subset of Max(P )

or Min(P ). Nevertheless, all posets have pure maximum chain matchings, as evidenced by
the following Lemma, first exploited by Trotter in [26]. For the sake of completeness, the
elementary argument for this fact is included here.

Lemma 5.1 Every poset has a pure maximum chain matching.

Proof Let P be a poset. Choose a maximum chain matchingM in P which maximizes the
quantity q(M) defined by:

q(M) =
∑

a∈A(M)

|D(a)| (2)

We claim thatM is pure. To see this, suppose that there is a chain C ∈ U(M) ∩D(M).
Then after a suitable relabeling of the chains in M, there are elements a, a′ ∈ A(M) (not
necessarily distinct), a positive integer r and a sequence {Ci = {xi < yi} : 1 ≤ i ≤ r} of
distinct chains from M so that y1 > a in P , xr < a′ in P and yi+1 > xi in P whenever
1 ≤ i < r .

If a �= a′, we could remove the r chains in the sequence from M and replace them by
the following set of r + 1 chains:

{a < y1}, {xr < a′}, {{xi < yi+1} : 1 ≤ i < r}
This would contradict the assumption that M is a maximum chain matching in P . We

conclude that a = a′. In this case, we form a maximum chain matching M′ from M by
replacing the chains in the sequence by the following set:

{xr < a}, {{xi < yi+1} : 1 ≤ i < r}
Now the antichain A(M′) is obtained from A(M) by replacing a by y1. Since a < y1, we
conclude that q(M ′) ≥ q(M)+1. The contradiction completes the proof of the lemma.

Fig. 7 Characterizing Chains in
a Maximum Matching
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5.2 The Proof of the Chain Matching Theorem

We are now ready to prove that a poset P with dim(P ) = d ≥ 4 has a chain matching
of size d. We argue by contradiction. Suppose this assertion is false and choose a coun-
terexample P with |P | minimum. Let u be any element of P . If dim(P − {u}) = dim(P ),
then P − {u} is also a counterexample, contradicting our choice of P . We conclude that
dim(P − {u}) = dim(P ) − 1. Since u was arbitrary, it follows that P is d-irreducible.

Let m be the maximum size of a chain matching in P . Clearly, m = d − 1; else P is not
a minimum counterexample. Also, we note that P ∗, the dual of P , is a counterexample of
minimum size. This observation allows us to take advantage of duality in the arguments to
follow.

Again, let M be any pure maximum chain matching in P . If A(M) ⊆ Max(P ), then
Theorem 4.3 implies that dim(P ) ≤ m. The contradiction shows that A(M) � Max(P ).
By duality, we also know that A(M) � Min(P ). This implies that U(M) �= ∅ �= D(M).
Set

I(M) = M − (D(M) ∪ U(M)).

Taking advantage of duality, we can assume that |U(M)| ≤ |D(M)|. Since m = d−1 ≥
3, it follows that m0 = |D(M) ∪ I(M)| ≥ 2. Then let U be the subposet of P consisting
of those points of P covered by chains in U(M). Let D = P − U . Since M is pure, it
follows that U is an up set in P , D is a down set and both are non-empty. Furthermore, the
maximum size of a chain matching in D is m0. Also, the chains in D(M) ∪ I(M) cover all
points of D except the points in A(M) which belong to Max(D). Then dim(D) ≤ m0 by
Theorem 4.3.

On the other hand, the m − m0 chains in U(M) cover U , so width(U) ≤ m − m0. Now
Theorem 4.1 implies that dim(P ) ≤ dim(D) + width(U) ≤ m0 + (m − m0) = m. The
contradiction completes the proof.

We comment further that if one seeks to prove that a 3-dimensional poset has a chain
matching of size 3 without using the knowledge about the full list of 3-irreducible posets,
then the only remaining detail is the case of a 3-irreducible poset P in which whenever
M is a pure maximum chain matching in P , the sets U(M) and D(M) both consist of a
single 2-element chain. This case requires only a few minutes work, but we elect to omit the
details.

5.3 Matchings in Cover Graphs

It is tempting to believe that our chain matching theorem can be strengthened by requiring
that the chains in the matching be covers. In this setting, a chain matchingM can be viewed
as a matching in the cover graph. However, we will now show that no such extension is
possible.

Let k ≥ 2, and set d = (2k
k

)
. We construct a height 3 poset Pk which contains the standard

example Sd as a subposet, yet the largest matching in the cover graph of Pk has size 2k. The
minimal elements of Pk are labeled as a(S) where S is a k-element subset of {1, 2, . . . , 2k}.
Similarly, the maximal elements of Pk are labeled as b(T ) where T is a k-element subset of
{1, 2, . . . , 2k}. There are 2k other elements of Pk and these are labeled as m1,m2, . . . , m2k .
For each k-element subset S of {1, 2, . . . , 2k} and each integer i with 1 ≤ i ≤ 2k, we have
a(S) < mi andmi < b(S) if and only if i ∈ S. It follows that that a(S) < b(T ) unless S and
T are complementary subsets of {1, 2, . . . , 2k}. This shows that Pk contains the standard
example Sd as a subposet. On the other hand, there are no covers between minimal and
maximal elements, so a matching in the cover graph of Pk has size at most |M| = 2k.
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Inverting parameters, it is clear that for large d, there is a poset P for which the dimension
of P is d, yet the largest matching in the cover graph of P has size O(log d). The next
theorem says that this bound is tight up to a multiplicative constant.

Theorem 5.2 For every m ≥ 1, if P is a poset and the maximum size of a matching in the
cover graph of P is m, then the dimension of P is at most (5m + 2m)/2.

Proof We argue by contradiction. Suppose the inequality fails for some m ≥ 1 and let P

be a counterexample of minimum size. Then let M be a maximum matching in the cover
graph of P . We label the edges in M as {Ci = {xi < yi} : 1 ≤ i ≤ m}. Now yi covers xi

in P for all i ∈ {1, 2, . . . , m}.
Let X(M) denote the elements of P which are not covered by edges in M. Unlike

the case for matchings in the comparability graph, we no longer know that X(M) is an
antichain. Nevertheless, we know that for each x ∈ X(M) any edges in the cover graph
incident with x have their other end point in one of the covers inM. It follows that for each
x ∈ X(M) and each i ∈ {1, 2, . . . , m}, there are five possibilities:
(1) There are no edges in the cover graph with x as one endpoint and the other in Ci .
(2) x covers yi .
(3) x covers xi .
(4) yi covers x.
(5) xi covers x.

Accordingly, we may assign to each point x ∈ X(M) a vector of length m with coordi-
nate i being an integer from {1, 2, 3, 4, 5} reflecting which of these possibilities holds for x

and Ci .
Now suppose that x and y are distinct elements of X(M) and they are both assigned to

the same vector. Clearly, this implies that the subposet Y = {x, y} is an autonomous subset
in P . It follows that dim(P − {x}) = dim(P ). However, since D(x) = D(y) and U(x) =
U(y), the cover graph of the subposet P − {x} is obtained from the cover graph for P just
by deleting x and the edges incident with x. It follows that P − {x} is a counterexample of
smaller size.

The contradiction shows that distinct points of X(M) must be assigned to distinct vec-
tors, so |X(M)| ≤ 5m. So altogether, P has at most 5m+2m points, and since 5m+2m ≥ 7,
the conclusion of the theorem holds by appeal to Hiraguchi’s inequality.

6 Antichain Matchings

We are now ready to present the proof of our main theorem for antichain matchings by
showing that if dim(P ) = d ≥ 3, then P has an antichain matching of size d. Again,
we proceed by contradiction and choose a counterexample P of minimum size. As in the
preceding section, we use our knowledge concerning the list of 3-irreducible posets and
note that P must therefore be a d-irreducible for some d ≥ 4. Furthermore, the maximum
size m of an antichain matching in P is d − 1.

Claim 1. There do not exist distinct minimal elements a and a′ in P with U(a) ⊆ U(a′).

Proof If such a pair could be found in P , set Q = P − {a, a′} and note that dim(Q) =
d −1 ≥ 3 by Theorem 3.7. This implies that there is an antichain matchingM of size d −1
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in Q. It follows that {a, a′} ∪M is an antichain matching of size d in P . The contradiction
completes the proof of Claim 1.

Claim 2. d ≥ 5.

Proof Suppose to the contrary that dim(P ) = 4. Then width(P ) ≥ 4. We consider a
maximum antichain A in P . Suppose first that A ⊆ Min(P ). Choose four distinct elements
of A and label them as a1, a2, a3 and a4. By Claim 1, we may choose elements x1 and x2
from U(A) so that x1 > a1, x2 > a2, x1 ‖ a2 and x2 ‖ a1.

Since {a1, a2}, {x1, x2} and {a3, a4} is an antichain matching of size 3, we know that
C = P − (A ∪ {x1, x2}) is a chain. But then P − A can be covered by three chains and one
of them (actually two of them) consists of a single point. It follows from Theorem 4.2 that
dim(P ) ≤ 3.

Using duality, we may assume that U(A) �= ∅ �= D(A). Since |A| ≥ 4, it follows that
at least one of U(A) or D(A) is a chain. Without loss of generality, we assume D(A) is a
chain. Let u1 be the least element of D(A). Then choose a1 ∈ A with u1 < a1. Since u1
cannot be the only minimal element of P , there exists an element a2 ∈ A with a2 ‖ u1.
Then a2 is a minimal element in P , and by Claim 1, there is an element x2 ∈ U(A) with
x2 > a2 and x2 ‖ u1. Since {x2, u1}, {a1, a2} are antichains and |A| ≥ 4, it follows that
U(A) − {x2} has width 1. So U(A) is covered by two chains, and one of them has size 1.
Now Theorem 4.2 implies that dim(P − D(A)) ≤ 2. In turn, Theorem 4.1 implies that
dim(P ) ≤ 3. The contradiction completes the proof of Claim 2.

We now know that dim(P ) ≥ 5. Choose distinct minimal elements a1 and a2 in P . By
Claim 1, there are points x1 and x2 so that x1 > a1, x1 ‖ a2, x2 > a2 and x2 ‖ a1. ThenC1 =
{a1 < x1} and C2 = {a2 < x2} are disjoint incomparable chains. Set Q = P − (C1 ∪ C2).
Then Lemma 3.9 implies that dim(Q) ≥ d − 2 ≥ 3, so Q has an antichain matchingM of
size d − 2. It follows that M ∪ {{a1, a2}, {x1, x2}} is an antichain matching of size d in P .
The contradiction completes the proof of our antichain matching theorem.

7 Open Problems

First, it would be of interest to characterize posets for which the dimension is exactly equal
to the size of a maximum chain (or antichain) matching.

Second, we see some hope of extending the ideas in this paper to finding a compact proof
of a “true” theorem for which no complete proof has ever been published:

Theorem 7.1 Let d ≥ 4, and let P be a poset with |P | ≤ 2d + 1. Then dim(P ) < d unless
P contains the standard example Sd .

As our bounds regarding matchings in the cover graph are relatively tight, it may be
possible to determine for each m ≥ 1, the maximum dimension dm of a poset P where the
maximum size of a matching in the cover graph of P has size m. It may even be the case
that the example presented is extremal.

One of the referees raised the following question. Is it true that if P is a poset and
dim(P ) = d ≥ 3, then there is a matching of size d in the incomparability graph of P in
which each pair in the matching is a critical pair in P ? We were aware of this question, but
recognized that the techniques developed here will not settle this question, at least without
significant modification. The difficulty we see is that the concept of being a critical pair
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becomes weaker in subposets, i.e, when Q is a subposet of P , a critical pair in Q will be an
incomparable pair in P although not necessarily a critical pair. Still our intuition is that the
referee’s question has an affirmative answer.

Finally, there may be some insights here which could be applied to the Removable Pair
Conjecture, which has proven to be a considerable challenge for more than 60 years, and
that was our real goal in working on these topics.
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