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A standard problem in combinatorial theory is to characterize structures which satisfy a certain 
property by providing a minimum list of forbidden substructures, for example, Kuratowski's well 
known characterization of planar graphs. In this paper, we establish connections between 
characterization problems for interval graphs, circular arc graphs, comparability graphs, planar 
lattices, 0--1 matrices, interval orders, partially ordered sets with dimension at most two, partially 
ordered sets with interval dimension at most two, and related problems involving the representa- 
tion of families of finite sets by points or intervals of the real line. We use these connections to 
determine the collection of all 3-irreducible posets. We are then able to determine the collection 
of all 3-interval irreducible posets of height one and the set of all forbidden subgraphs with clique 
covering number two in the characterization of circular arc graphs. 

1. Introduction 

A frequently encountered problem in combinatorial theory is to characterize 
those structures which satisfy a certain property by providing a minimum list of 
"forbidden" substructures. In order for such a characterization to exist, it is 
necessary that all substructures of a structure satisfying the property also satisfy the 
property. In graph theory, the well known forbidden subgraph characterizations of 
planar graphs [22], outer planar graphs [6], and line graphs [2] illustrate this kind of 
characterization. 

In general, characterization problems tend to be quite difficult as the list of 
forbidden substructures may be extensive; it may even involve infinite families. For 
example, consider the list of forbidden substructures for the characterizations of 
graphs of genus at most one and graphs with chromatic number at most three. 
Furthermore, it is often the case that a tedious series of ad hoc arguments is 
required to solve a characterization problem; as a consequence, the solution of the 
problem, while interesting in its own right, may fail to provide any significant 
advancement in our understanding of the structures or properties under investiga- 
tion. 
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In this paper we will discuss a number of characterization problems involving 
interval graphs, comparability graphs, circular arc graphs, interval orders, planar 
lattices, the dimension of partially ordered sets, 0-1 matrices, and the representa- 
tion of families of sets by points or intervals of the real line. Despite their apparent 
diversity these characterization problems are intimately related. We intend to 
explain in detail how progress towards the solution of any of the unsolved 
characterization problems discussed in this paper will contribute to our understand- 
ing of a wide range of combinatorial structures and properties. 

2. Characterization problems 

In this section, we briefly describe a number of characterization problems, 
pausing only to provide the essential definitions. In some cases, the connections 
between the problems are obvious, but where they are not, we defer the 
explanations to the last section of the paper, where we will proceed along historical 
lines, detailing the connections between the characterization problems introduced 
here. 

In this paper, all graphs are finite and have no loops or multiple edges. We 
denote the vertex set and edge set of a graph G by V ( G )  and E ( G )  respectively. A 
graph G is called the intersection graph of a family ~ of sets when Ichere exists a 
bijection f : V(G)--~ .~ so that xy E E ( G )  iff f ( x )  f3 f (y )  fi 0. A graph G is called 
an intervalgraph when it is the intersection graph of a family of closed intervals (we 
adopt the convention of considering a point as a closed interval) of the real line E'. 
Lekkerkerker and Boland [24] characterized interval graphs by providing the 
minimum collection 5~ of graphs so that a graph G is an interval graph iff G does 
not contain a graph from 5~ as an induced subgraph. It is convenient to group the 
graphs in 5r into three infinite families {Cn : n ~> 4}, {K~ : n ~> 1}, and {L, : n ~> 1} 
with two "odd"  examples BI and B2 left over. These graphs are shown in Fig. 1. 

1 

c.; n ~4 

B~ 

1 2 3 "'" n + l  I 2 3 ""  n + l  

~ ; n ~ l  L~;n~l 

B2 
Fig. 1. 
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We consider partial orders as irreflexive and transitive binary relations and use 
the standard acronym poset for a partially ordered set. We also employ the 
standard notion of Hasse diagrams for posets. 

A collection of closed intervals of E 1 has a natural partial order, called 
domination and denoted <~, defined by A <a B if[ a < b in E 1 for all a E A and 
b ~ B. A poset (X, P) is called an interval order if there exists a function [ which 
assigns to each x E X a closed interval [(x) of E' so that xPy  if[ [(x) ,0 ]'(y) for all 
x, y ~ X. Fishburn [9] determined the list of forbidden subposets which character- 
izes interval orders. The list consists of a single poset! It is the free sum of two 
2-element chains (see Fig. 2). 

Fig. 2. 

A poset (or lattice) is said to be planar if it has a planar Hasse diagram. Since a 
subposet of a planar poset need not be planar, there is no characterization of planar 
posets by a list of forbidden subposets. However, if a planar poset is also a lattice, 
then any subposet which is also a lattice is also planar. Therefore, it is possible to 
characterize planar lattices by providing the minimum list ~ of lattices so that a 
poset X which is also a lattice is planar if[ it does not contain a lattice from Lt' as a 
subposet. Kelly and Rival [16] have determined .~'; in order to simplifY the listing of 
the lattices in ~ it is customary not to include both a lattice and its dual when they 
are nonisomorphic. With this convention, Le consists of t h r e e " o d d "  examples and 
five infinite families (see Fig. 3). 

,4, A~ 

d',; n ~>3 Fig. 3. 

A, 

+2 

~ ; n ~ l  
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/~ . ;  n ~ > l  

1 1 

n + l  + 

3~/'~ ; n ~ > l  /Q~; n ~ > l  

Fig. 3. 

If S is an irreflexive binary relation on a set X, we may associate with S a graph 
G(S) whose vertex set is X with x and y adjacent in G(S) iff xSy or ySx. A graph 
G is called a comparability graph if there exists a partial order P so that G is 
isomorphic to G(P). Equivalently, a graph is a comparability graph if it admits a 
transitive orientation of its edges. Using the results of Lekkerkerker and Boland 
[24] on interval graphs and the work of Gilmore and Hoffman [12] and Ghoula- 
Houri [11] on comparability graphs, Gallai [10] has determined the minimum 
collection ~ of graphs so that a graph is a comparability graph if and only if it does 
not contain an induced subgraph isomorphic to a graph in ~. The collection cr 
consists of eight infinite families and ten odd examples. Following Gallai, we 
display the graphs in ~ in two parts. The graphs in Fig. 4(a) belong to cr and the 
complements of the graphs in Fig. 4(b) belong to ~. 
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Let ~ and 03 be finite families of finite sets. We say ,~ and 03 are isomorphic 
when there exists a bijection f :  U . ~  U03 so that i f =  {/-1(B): B E 03}. In this 
paper we do not distinguish between isomorphic families. We say /T is a derived 
subfamily of 03 when there exists an injection g:US~---~.U03 so that 9 ;C 
{g-~(B): B E 03}. For a finite set A belonging to a family ~T and a function 
h : U ~'---> E ~, we denote by [h(A)]  the smallest closed interval (possibly degener- 
ate) of E 1 containing {h(x): x ~ A } .  We then say that a family ,.~ is point- 
representable if there exists a function h : U if---> E ~ so that h (x) ~ [h (A)]  iff x (~ A 
for all A ~ ..~ and all x E A (see Eswaran [8] for an algorithm to determine if a 
family is point-representable). 

Since a derived subfamily of a point-representable family is also point- 
representable, it is possible to characterize point-representability by determining 
the minimum list i f /o f  families so that a family f f  is point-representable iff it does 
not have a family from ff~ as a derived subfamily. ~ contains three infinite families 
and two odd examples and is shown in Table 1. In the next section of the paper, we 
explain how ~ can be obtained from 5 r. 

Table  1 

~,={{1,2,3},{1,4},{2,5},{3,6}}, 
~2={{1,2},{3,4},{1,2,3,4},{2,3,5}}, 

q~3 ={{1,2},{Z,3},{3,1}}, 
~ ,  ={{1,2},{Z,3},{3,4},{4,1}}, 
~ ,  ={{1,2},{2,3},{3,4},{4,5},{5,1}}, 

YF, = {{1,2},{2,3},{2,4}}, 
~"2 = {{I, Z},{2, 3},{3, 4},{2,3,5}}, 
g{3 = {{I, 2}, {2, 3}, {3, 4}, {4,5}, {2, 3,4, 6}}, 

~ ,  = {{1,2},{2,3},{1,2,4},{2,3,4}}, 
.La2 = {{1,2},{2,3},{3,4},{1,2,3,5},{2,3,4,5}}, 
.Lej = {{1,2},{2,3},{3,4},{4,5},{1,2,3,4,6},{2,3,4,5,6}}, 

We say a family ~ is A-point-representable if the family ,~ U {A - B : A, B E if} 
is point-representable. Moore [25] determined the minimum list ~ a  so that a 
family f f  is A-point-representable iff .~ does not have a family from ~ a  as a 
derived subfamily, ff~a contains one infinite family {~, : n ~> 3} as defined in Table 1 
and the six " o d d "  families from Table 2. 

We next discuss a natural generalization of these results which involves the 
representation of finite families of finite sets by intervals of the real line. If F assigns 
to each element a of A a closed interval F(a) of E ~, we denote  by [F(A)] the 
smallest closed interval of E I containing each of the intervals F ( a )  where a ~ A. 
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Table 2 

~:, = {{i, 2, 3}, {l}, {2}, 13}}, 
~2 = {{1, 2}, {I, 3}, {1, 4}}, 
�9 ~3 = {{i, 2,3},{1, 2}, {i, 3},{i}}, 
,~, = {{1,2, 3, 4}, {1,2}, {1, 3}}, 
�9 ~5 = {{1,2,3}, {1,2}, {1},{2}}, 
~, = {{i, 2,3},{1,2, 4},{i}}. 

We then say a family ,~is interval-representable if there exists a function F which 

assigns to each element x of U ~  a closed interval F(x) of E 1 so that F(x) C [F(A)]  
iff x ~ A for all A E f f  and x E I...I ~'. We say that ~ is A-interval-representable if 

U {A - B  :A,  B E if} is interval-representable.  We then denote by ~1 and ~ a  
the minimum lists of families which characterize interval-representabili ty and A- 
interval-representabili ty respectively. In the next section of this paper,  we will 

determine both ~ and ~ .  
A graph G is called a circular arc graph if it is the intersection graph of a family 

of arcs of a circle. Tucker  [37, 38] provided a test for circular arc graphs involving 
the adjacency matrix (see also Klee [21]). Tucker  [39] also gave a characterization 
theorem for proper  circular arc graphs but the minimum list J of graphs so that a 
graph G is a circular arc graph iff it does not contain a graph f rom,ff  as an induced 
subgraph has not been determined.  However ,  we will determine the subcollection 
of ,ff consisting of those graphs in ,~ with clique covering number  2. 

Dushnik and Miller [7] defined the dimension of a poset (X,P), denoted 
dim(X, P),  as the-smallest positive integer n for which there exist n linear orders 

L,, L2 . . . . .  L, on X so that P = L~ N L2 N . . .  rl L,. Equivalently (see Ore [26]), 
dim(X, P)  is the smallest positive integer n for which there exists a function/" from 
X to n-dimensional  Euclidean space E" so that x ~< y in P iff f (x ) ( i )~ f (y ) ( i )  in 
E t for 1 ~< i ~< n. We will sometimes abuse notation and use a single symbol (usually 
X)  to denote  a poset. In this case, we will write d im(X)  for the dimension of the 
poset X ;  we will also denote  the comparabil i ty graph of the poset X by G(X). If 
d im(X) = n ~> 2 and d i m ( X -  x) < n for all x E X, we say that X is n-irreducible. 
The only 2-irreducible poset is a two-element antichain. 

A poset has dimension one if[ it is a chain (linear order).  Dushnik and Miller [7] 
provided a test for posers with dimension at most two: the dimension of a poset is at 
most two if[ it is isomorphic to a collection of closed intervals of the real line 
ordered by inclusion. This test was generalized by Leclerc [23] and Trot ter  and 
Moore  [35]. In this paper, we will determine the minimum list ~ of posets so that a 

poset X has dimension at most two if[ it does not contain a poset from ~ as a 
subposet.  ~ is the collection of all 3-irreducible posets. 

Trot ter  and Bogart [32] introduced the concept of the interval dimension of a 
poset (X, P), denoted Idim(X, P), as the smallest positive integer n for which there 
exists a function F which assigns to each x E X a sequence {F(x)(i): 1 <~ i ~ n} of 
closed intervals of E ~ so that xPy  if[ F(x)(i),~ F ( y ) ( i )  for 1 ~< i ~< n. As before, we 
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will write Idim(X) for the interval dimension of the poset X. It is clear that 
Idim(X) <~ dim(X) for all X. 

If I d i m ( X ) = n ~ > 2  and I d i m ( X - x ) < n  for all x E X ,  we say that X is n- 
interval-irreducible. A poset X has interval dimension one iff it is an interval order; 
the only 2-interval-irreducible poset is shown in Fig. 2. 

We denote by ~ the minimum list of posets so that a poset has interval 
dimension at most two iff it does not contain a poset from ~,  as a subposet. ~,  is the 
collection of all 3-interval-irreducible posets. In the next section, we will determine 
the subcollection of ~ consisting of those posets of height one which are 
3-interval-irreducible. 

3. Combinatorial connections 

In the preceding sections, we have described a number of characterization 
problems but have made no attempt to motivate these problems or to explain any 
combinatorial connections between them. In this section, we intend to justify our 
claim tha t  these apparently diverse characterization problems are, in fact, inti- 
mately related. Because the authors' research efforts over the last few years have 
been concentrated on posets, we shall use these structures as a starting point. 

In [27] Trotter defined the crown S~ for n >I 3 and k >/0 as the poset of height 
one with maximal elements a~, a z , . . . ,  an§ and minimal e lements  b~, b2 . . . . .  bn.k. 
The partial order on S~ is defined by letting each b~ be incomparable with 
a,  a~§ . . . . .  a~.k (cyclically) and less than the remaining n -  1 maximal elements. 
The crown S ~ is isomorphic to the poset consisting of all one-element and 
(n - 1)-element subsets of an n-element set ordered by inclusion; Hiraguchi [14] 
noted that S ~ is: n-irreducible. Baker, et al. [1] and Kelly and  Rival [18] studied the 

S k family of crowns { 3: k ~> 0}; these posets are all 3-irreducible. Trotter 's formula 
giving the dimension of the crown S~ is dim(S~)= {2(n + k ) / ( k  +2)}. 

One of the best known results in dimension theory for posets is Hiraguchi's 
inequality (see [4, 13, 14, 29]), dim(X) <~ ~l X I when IX I ~> 4 (see [28] for a simple 
proof). Bogart and Trotter [5] gave a forbidden subposet characterization of 
Hiraguchi's inequality by determining for each n/> 2, the minimum collection Yt'n 
of posets so that if I xl  ~< 2n, then dim(X) < n unless X contains a poset from ~ ,  as 
a subposet. The determination of ~ is trivial; it contains only a two-element 
antichain. Y(3 contains the 3-irreducible crown S ~ the "chevron" shown in Fig. 5, 
and its dual. 

Fig. 5. 
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For n />  4, ~ ,  contains a single poset, the crown S ~ 

Trot ter  I extended this characterization by determining for each n 3 2 ,  the 
minimum list ~ "  of posets so that if I X l ~ 2 n  + 1, then d i m ( X ) < n  unless X 
contains a poset from ~ ' .  If n > 3 ,  ~ ' ,  = ~ ' ,  but ~/~ contains no less than 
twenty-three posets. ~ contains the posets which belong to ~3 as well as the posets 
in Fig. 6. As in Section 2, we adopt the convention of not drawing both a poset and 
its dual when they are nonisomorphic.  

Most of the difficulty encountered in proving that ~ "  = {S ~ when n />  4 occurs 
when n = 4. The  problem is to show that, while there are twenty 3-irreducible 
posets on 7 points, there are no 4-irreducible posets on 9 points. 

X, X, X, 

X, X~ X, X, X~ 

X~ X~o X.  X~2 X~ 

Fig. 6. 

The existence of a large number  of " o d d "  examples of 3-irreducible posets 
suggested quite naturally the problem of determining ~,  the collection of all 
3-irreducible posets. The fact that ~ "  = {S ~ for n ~> 4 suggested strongly that the 

posets in ~ were pathological examples of the type frequently encountered in the 
first case of combinatorial  problems.  This conjecture was supported by the fact that 
some of the posets in Fig. 6 also occur as pathology in another  characterization 
problem [30]. 

The  determinat ion of ~ '  s was simplified by the following practical test for 
dimension at most two. For each point x E X, choose a point p~ in the plane so that 
x < y in X iff Pr is above and to the right of p~. If a satisfactory choice can be made 

t Kimble [19[ independently established this characterization lheorem in a much more compact 
fashion. Kimble's proof contains some interesting lemmas which have been applied to other character- 
ization problems (see [30, 33]). His research on this problem also produced the notion of the split of a 
poset, a concept of great importance. 
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for each point in X, we conclude by Ore's definition of dimension that dim(X) ~< 2. 
The choice of points in the plane is simplified by drawing horizontal and vertical 
rays in the positive directions from each point chosen. For example the "quarter- 
planes" in Fig. 7(b) show that the poset in Fig. 7(a) has dimension at most two. 

1 2 

7 

314 
5 1 12 

6 
8 

Fig. 7(a). Fig. 7(b). 

When dim(X)/> 3, an elementary argument to establish this fact can often be 
constructed using the geometric implications of these quarter-plane drawings. First 
we note that an antichain appears as a "saw-tooth" configuration in a drawing of a 
poset with dimension at most two; e.g., consider the antichain {3, 4, 5, 6} in Fig. 7(b). 
If A is an antichain, b ~ A , b  is comparable with the points in A ' C A  and 
incomparable with the points in A - A' ,  then the corners corresponding to points 
in A '  must be " together"  in the saw-tooth configuration. For example, consider the 
antichain A = {3, 4, 5, 6} and the point 2 ~ A. The point 2 requires that the corners 
for 5 and 6 be together in Fig. 7(b). 

If A, A '  and b have been chosen as in the preceding paragraph, and we choose 
c ~ A so that c is comparable with all points in A"  C A '  but incomparable with b 
and all points in A - A " ,  then the corners corresponding to points in A ' -  A" must 
also be together. In Fig. 8, we show two subposets which would require that the 
corners corresponding to 1 and 3 in the antichain {1,2,3} be together. Note that the 
duals of these subposets will also force 1 and 3 to be together. 

I 2 3 1 2 3 

Fig. 8. 

In Fig. 9 we show three 3-irreducible posets. The first of these is S ~ The 
dimension of $3 ~ must clearly be at least three for if dim(S3 ~ ~< 2, then each pair of 
elements in the antichain {a~, a2, a3} would necessarily be together in a quarter- 
plane drawing, which is clearly impossible. The second poset in Fig. 9 is the chevron 
of Fig. 5; it is obtained by flipping a minimal element in S ~ above the antichain of 
maximal elements so that the geometric force it imposes on a~,a2, a3 in a 
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quarter-plane drawing is preserved. The third poset is obtained in a similar fashion 
from the second. It is the poset X7 in Fig. 6. 

b, b2 b~ 

Fig. 9. 

It is straightforward to construct all of the posets in ~ in this fashion. We note 
however that while dimension at least three is preserved, irreducibility may not be 
preserved. 

The qtiarter-plane drawings used to test a poset for dimension at most two 
provided a method for determining the collection of all 3-irreducible posets of 
height one. Given a poset X of height one, label the maximal elements 
a~, as . . . . .  a,, and the nonmaximal elements b~,b2 . . . . .  b,. Then define a family 
~ x = { A i : l < ~ i < ~ n }  of subsets of {1,2,3 . . . .  , m }  by ]EA~  iff b,'<aj in X. 
Consideration of the saw-tooth configuration determined by the corners corre- 
sponding to elements of the antichain A ={a~,a2 . . . . .  a,,} in a q u a r t e r - p l a n e  
drawing of X shows immediately that dim(X) ~< 2 iff fix is A-point-representable. 
Furthermore,  deleting a maximal element of X corresponds to restricting fix to a 
proper  subset of U ~'x while deleting a nonmaximal element of X corresponds to 
deleting a set from o~x. Therefore  we see that X is a 3-irreducible poset of height 
one iff ~,~ E 9~ a. 

Theorem 1. If  X is a poset of height one, then X E ~ iff .~x E ~a.  

The solution of the characterization problem for Hiraguchi's inequality provided 
Moore with the correct conjecture for the posets in ~ a  (see Table 2). From this list 
we conclude that the only 3-irreducible posets of height one are the crowns 
{S~: k ~> 0} and the first three posets (and their duals) of Fig. 6. We have listed the 
six families in Table 2 so that ff~_~ and ff2i are dual, and ~2~-~ = ~x, for i = 1, 2, 3. 
We note, however, that there is no notion of duality for point-respresentability. 

Moore 's  determination of ~ a  was preceded by the determination of ~ .  Eswaran 
[8] gave an algorithm for determining whether a family is point-representable but 
did not establish the immediate connection between point-representable families 
and interval graphs. We will now sketch a simple method used by Trot ter  for 
determining 9't. 

For a family .~, we denote the augmented family o ~ U {{x}: x E N o  ~} by o ~*.  The 
following theorems involving .~* are elementary. 
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Theorem 2. f f  is point-representable iff the intersection graph of ,~* is an interval 
graph. 

Theorem 3. If  the intersection graph of ~* contains the graph L~ from Fig. 1, then 
%'3 = {{1,2},{2,3},{3, 1}} is a derived s,tbfamily of ,~. 

Eswaran [8] observed that if ,~ is point-representable and every pair of sets from 
.~ has nonempty intersection, then n f f ~  ~. For each graph G in ~ - {Lt}, label the 
nonsimplicial vertices v~, v2 . . . . .  v,, and the cliques nt , /- /2 . . . . .  H,. Then construct 
a family ,~c = {A~, A2 . . . . .  A,, } of subsets of {1,2, 3 . . . . .  n} by the rule / E A~ iff v, 
is a vertex in Hi. In view of Theorems 2, 3, and Eswaran's observation, it is easy to 
see that if G ~ ff - {L,} and G is an induced subgraph of the intersection graph of 
i f* ,  then .~c is a derived subfamily of ,~. Therefore  each family ,~ 6~ ~ with ,~'~ ~3 
is of the form ,~ = ~'6 for some G E ~. It is trivial to verify .that the converse also 
holds. We conclude that ~ = {ff~: G ~ or G ~  Lt} U {~3}. 

Alterna[ely, ~ can be determined from the work of Tucker  [40] on 0-1 matrices. 
Tucker  defined a 0-1 matrix to have the consecutive ones property when it is possible 
to permute the rows so that the ones in each column appear  consecutively. If a 
matrix M has the consecutive ones property,  then any submatrix obtained from M 
by deleting a row or a column also has the consecutive ones property.  Tucker 
determined the minimum list dl of 0-1 matrices so that a matrix has the consecutive 
ones property iff it does not contain a matrix from //~ as a submatrix. ~ 

With an m • n 0-1 matrix M, we may associate a family ,~.,f = {Aj: 1 ~<j ~< n} of 
subsets of {1 ,2 ,3 , . . . ,  m} defined by i ~ A i  iff m~j = 1. It is easy to see that M has 
the consecutive ones property iff ffM is point-representable. Therefore  ~ = 
{~..~,: M E e t t } .  It should be noted that Tucker  did not use the 
Lekkerkerker -Boland  characterization of interval graphs to determine ~/~ al- 
though his development  proceeds along parallel lines. 

In 1972 Kimble [20] suggested a powerful method for converting an arbitrary 
dimension theory problem to a problem involving only posets of height one. First 
he defined the split of a point x in a poset X, denoted S(x, X),  as the poset obtained 
by adding to the subposet X - x a maximal element x '  and a minimal element x" 
with x '  > x", x '  > y in S(x, X)  iff x > y in X, and y > x" in S(x, X)  iff y > x in X. It 
is easy to establish the following result. 

Theorem 4 (Kimble [20]). For every poset X and every x E X, 

dim(X) <~ dim S(x, X)  ~< 1 + dim(X). 

Kimble applied this technique to construct a 3-irreducible poset on 8 points. He 
split the point labeled x in X9 as shown in Fig. 6 to obtain the poset in Fig. 10. 

Kimble also defined the split of a poset X, which we denote  S(X). It is the poset 
(of height one) obtained from X by splitting consecutively each point in X exactly 
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X n 

Fig. 10. 

once. If X is a poset and C is a chain containing 2 I X  I points, then Kimble noted 
that S(X) is a subposet of the cartesian product X • C. We have then the following 
result. 

Theorem 5 (Kimble [20]). For every poset X, dim(X)~< dim S(X)~< 1 + dim(X). 

We pause to mention that Trot ter  and Moore [34] have proved that repeated 
splitting of a poset can increase the dimension at most twice; however it is an open 
problem to determine conditions on X which guarantee that d i m S ( X ) =  
1 + dim(X). 

As stated previously,, Kelly and Rival [16] determined the collection ~ of lattices 
which characterize planar lattices. It is an easy exercise in Birkhotl [3] to show that 
a lattice is planar iff its dimension as a poset is at most two. Therefore  all of the 
lattices in ~ are three dimensional! Furthermore for each lattice L • ~,  it is easy to 

extract a 3-irreducible subposet of L. Simply removing the universal bounds from 

the first three infinite families in Fig. 3 produces3-irreducible posers which we will 
denote by{C, :n  ~> 3}, { T , : n / >  1} and {D, :11 >t 1} respectively. Note that C~ = S~ -3 
for all i ~> 3. Kelly and Rival [17] showed that removing the universal bounds and 
the doubly reducible elements from the last two infinite families produces 3- 
irreducible posets which we denote by {M,: n t> 1} and {N,: n t> 1} respectively. 
These families are shown in Fig. 11. Note that M1 and NI appear in Fig. 6 as X9 and 
Xio respectively. 

I 

2 

3 

n + l  

n + 2  

1 

! 
n + l  

M'.; n ~> l N , ; n > ~ l  

Fig. 11. 
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In view of Kimble's example (Fig. 10), Trot ter  suggested that splitting the point x 
in each poset in the first family in Fig. 11 might produce another family of 
3-irreducible posets; this conjecture may be easily verified using quarter-plane 
arguments (Fig. 12). 

1 

3 

n + l  

n+2 
P~;n>~l 

Fig. 12. 

We define the vertical 2 split of a point, denoted VS(x, X),  in a poset X as the 
poset obtained from X by adding a point x" to X with x > x" in VS(x, X),  x " >  y in 
VS(x, X)  if[ x > y in X, and y > x" in VS(x, X)  iff y > x. Similarly we define the 
vertical split ofa posetX, VS(X), as the poser obtained from X by vertically splitting 

each point in X exactly one time. It is then trivial to establish the following result 
which gives an immediate connection between dimension, interval dimension, and 
splits. 

Theorem 6. 

dim(X) = dim VS(X), 

d im(X) = Idim S(X) = Idim VS(X). 

At this point we establish the connection with the concepts of interval dimension, 
interval representability, and circular arc graphs. These connections are based on a 
test for interval dimension at most two. Suppose X is a poset with interval 
dimension at most two and let F be a function which assigns to each x E X a pair 
F(x)(1) ,  F(x) (2)  of closed intervals of the real line so that x < y  in X iff 
F(x)(1)<F(y)(1)  and F(x)(2)<~F(y)(2). Without loss of generality we may 
assume 1 < F(x)(i)<~2 for all x @ X and i = 1,2. Now suppose further that X is a 
poset of height one. We produce a new interval representation of X by assigning to 
each minimal element b the intervals G(b)(i)=[O, max F(b)(i)] and to each 
maximal element a the interval G(a)(i)  = [min F(a)(i), 3]. Now consider the lines 
1, and 12 in the plane through (1, 1) and (2, 2) respectively with slope - 1. For each 
maximal element a, the rectangle as determined by G intersects 12 in a closed 

It is natural to view the Kimble split of a poset as a "horizontal" split. 
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interval which we denote G(a). Similarly a rectangle for a minimal element b 
intersects l~ in a closed interval G(b). Note that each interval G(a) contains (2,2) 
and each G(b) contains (I, 1). If we construct the family ,~x as defined earlier in 
this section, we then see clearly that ,~x is interval-representable. As before we 
may conclude the following result. 

Theorem 7. If  X is a poset of height one, then X is 3-interval irreducible iff ~x E gtz. 

We now turn our attention to the list ~q of forbidden graphs in the characteriza- 
tion of circular arc graphs. Some information about  ,~ (including a listing of all the 
disconnected graphs ins4) can be obtained from Lekkerkerker  and Boland's list of 
or the list of forbidden graphs in the characterization of interval graphs. If G E ,~ 
and G is not a circular arc graph, then G E,.q. On the other  hand if G ~ 5 ~ and G is 
a circular arc graph, then the free sum of G and a trivial graph is in ,r Furthermore 
every disconnected graph in ,ff is obtained in this manner; thus we may restrict our 
attention to those connected graphs in sr which are not in 5~. Some of these graphs 
are shown in Fig. 13. 

Fig. 13. 

The clique covering number of a graph G, denoted CCN(G),  is the smallest 
positive integer n for which the vertex set of G can be partitioned into n subsets so 
that each subset induces a complete subgraph of G. In what follows we will be 
concerned primarily with grapks with clique covering number two. We denote by 
o42 the set {G E .r CCN(G)  = 2}. We also denote  by (~ the Complement of graph G 
and for a poset X, we denote  by G,(X) the complement of the comparability graph 
of X. Now suppose X is a poset of height one for which Idim(X) ~< 2. Then W'x is 
interval representable so we may choose a representation of ~x  by intervals (arcs) 
on the upper semicircle of the unit circle. By using the representation described 
earlier in this section we may further assume that all of the arcs chosen contain the 
point (0, 1). Now to each minimal element b in X we associate an arc containing 
(0,-1) which intersects each of the arcs corresponding to a maximal element a for 
which b;~ a. The collection of arcs determined by this process shows that the 
complement of the comparability graph of X is a circular arc graph. The following 
result follows immediately. 

Theorem 8. Let X be a poset of height one. Then the foUowing statements are 
equivalent. 

(a) X ~ ~,, 
(b) ,~x ~ ~,, 
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(c) d (x)  e s~. 

3-interval irreducible posets of height one can be obtained by taking the Kimble 
split of the 3-irreducible posets presented earlier and then extracting 3-interval 
irreducible posets. Some pathology is encountered in the posets of small order but 
the process smoothes out for the larger examples. Other families can be obtained 
by starting with the families in ~ and asking whether they are interval representa- 
ble. For example, it is easy to see that although each Y(. is interval representable, 
Y/', U {{n + 3}} is not; similarly each ~ ,  is interval representable but Lr U {{n + 3}} 
is not. In Table 3 we list all families that may be obtained in this fashion. In view of 
Theorems 7 and 8, duality is present in interval representation so we do not include 
both a family and its dual when they are nonisomorphic. 

Table 3 

~ ,  = {{1,2}, {2, 3}, 13, 1}}, 
~., = {{1,2}, {2,3}, {3,4},{4, 1}}, 
~'5 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, 15, 1}}, 

J~ = 111,2}, {2, 3}, {3, 4}, {2, 3, 5}, {5}}, 
9-2 = 11 i, 2}, 12, 3}, 13, 4}, {4, 5}, {2, 3, 4, 6}, {6}}, 
5r,  = 1 1 1 , 2 } , { 2 , 3 } , { 3 , 4 } , { 4 , 5 } , { 5 , 6 } , { 2 , 3 , 4 , 5 , 7 } , { 7 } } ,  

"/~ = 1{1,2}, {2, 3}, {1, 2, 4}, {2,3,4}, {4}}, 
1r = {{1,2}, {2, 3}, {3, 4}, { I ,  2, 3,5},{2, 3,4, 5}, {5}}, 
'~45 = {{I ,  2}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3, 4, 6}, {2, 3, 4, 5, 6}, {6}}, 

~, = {{1,2,5},{2,3,5},{3},{4,5},{2,3,4,5}}, 
~2 = {{I, 2, 6}, {2, 8, 6}, {3,4, 6}, {4}, {5, 6}, {2, 3,4, 5,6}}, 
5~3 = {{1, 2, 7}, {2, 3,7}, {3,4, 7}, {4,5, 7},{5}, {6, 7},{2, 3,4, 5, 6,7}}, 

. l l ,  = {{I ,  2, 3,4,5} , {1,2,3} ,  {1}, {1 ,2,4,6} , {2,4} ,  {2,5}}, 

.llz = {{1,2,3,4,5,6,7},{1,2,3,4,5},{1,2,3},{1},{1,2,3,4,6,8}, 
{ I, 2, 4, 6}, {2, 4}, {2, 7}}, 

. t t ,  = {{1,2,3,4, 5,6,7,8, 9}, {1, 2, 3, 4, 5,6, 7}, {1, 2,3, 4,5}, {1,2, 3}, {1}, 
{1,2,3,4,5,6,8, I0}, {1,2, 3, 4, 6, 8}, {1,2, 4, 6}, {2, 4}, {2, 9}}, 

Y, = {{1,2,3},{I},{1,2,4,6},{2,4}, {2,5},{6}}, 
~,~ = {{1,2, 3,4, 5}, {1,2,3}, {I}, {1, 2,3, 4, 6, 8},{1, 2,4, 6}, {2, 4},{2,7}, {8}}, 
~'3 = {{I,2,3,4,5,6,7},{1,2,3,4,5},{1,2,3},{1},{1,2,3,4,5,6,8, 10}, 

{1, 2, 3, 4, 6, 8},{1, 2, 4, 6},{2, 4}, {2, 9}, {10}l, 

~J, = {{1,3,5},{1,2},{3,4},15,6}}, 
q32 = 111}, 11,2,3,4}, {2, 4,5},{2, 3, 6}}, 
q3,= {{I, 2}, 13,4}, {5}, {1,2, 3}, {1, 3, 5}}. 
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We may use the families compiled in Table 3 to check for new 3-irreducible 
posets by asking if S(X) contains a poser Y.for which .~r is given in Table 3, then 
what can we say about X. Again, some pathology is encountered when IxI is small, 
but in general there is a great deal of regularity involved and it is straightforward 
(although tedious) to associate the 3-irreducible posets described earlier with the 
proper families in Table 3. However, one new family of 3-irreducible posets is 
obtained in the process. This family is associated with {~r i n ~ 2} (see Fig. 14). 

~'~;  n ~ 2  

Fig. 14. 

At this time, the authors conjectured that all 3-irreducible posets, all 3-interval 
irreducible posets of height one, and all graphs in .r clique covering number 
two were known. We now describe a combinatorial connection between compara- 
bility graphs and dimension theory which has allowed us to completely, determine 
the collection ~ of all 3-irreducible posets and to subsequently Confirm our 
conjectures. The connection is based on another test given by Dushnik and Miller 
[7] for posets with dimension at most two: dim(X) ~< 2 iff tT(X) is a comparability 
graph. It follows that if X is a 3-irreducible poset, then t~(X) is not a comparability 
graph and that every proper induced subgraph of t~ (X) is a comparability graph. 

Theorem 9. {t~(X): X E ~} C cr 

We may then proceed to examine the graphs in ~ to see which ones have the 
property that their complements are comparability graphs. This process is simp- 
lified considerably since we have a reasonable conjecture for ~ and since an 
irreducible poset is determined (up to duality) by its comparability graph [36]. We 
conclude that ~ consists of seven infinite families: {C,: n~3} ,  {T,: n~>l}, 
{Dr: n >1 1},{M, : n I> 1}, {N,: n 1> 1}, {Pn: n/> 1}, {W,: n >~2}, and ten odd exam- 
ples: X~, X2, X3, Xs, X6, XT, X8, X , ,  X~2, and the chevron. 

It is interesting to note that Kelly [15] has simultaneously and independently 
determined ~ by lattice theoretic methods. Since the completion by cuts of a poset 
of dimension t also has dimension t, Kelly determined ~ by finding the minimum 
collection of posets each of whose completion by cuts contains a lattice from ~. 

Conversely it is very easy to determine ~ starting from ~ since the completions 
of the posets in ~ are easily describable. It should be noted that Kelly and Rival's 
determination of ~ does not depend on prior knowledge of ~. 
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We return now to the characterization problem for 3-interval irreducible posets. 
Although we have not been able to settle the general question, we have been able 
to use ~ to determine the subcollection of ~ ,  consisting of all 3-interval irreducible 
posets of height one. Our work is based on the following theorem. 

Theorem 10. Every  t-interval irreducible poset o f  height one is a subposet o f  the split 

o f  a t-irreducible poset. 

Using this theorem we can announce the following result which confirms that fi,  
consists precisely of the families listed in Table 3. Consequently, the determination 
of M2 is also complete. 

Theorem 11. 

of s ( x ) .  
(1) / f  ~v  -- 
(2) 

(3) f f  ~ , .  = 

(4) f f  ~ , ,  = 

(5) f f  .,%, = 
(6) f f  ~ , ,  = 
(7) / f  f ly = 
(8) f f  ~ , .  = 
(9) / f  f ly = 

Let  X be a 3-irreducible poset and  Y a 3-interval-irreducible subposet 

~ for some i >I 3, then X = C~ = S~ -~. 
f i t ,  then X is either X3 or T, .  

~ ,  for some i >t 2, then X = T,  
7C,, then X is either the chevron (Fig. 5) or )(6. 

7~ for some i >~ 2, then X = W ,  

~ ,  then X is either )(7, )(8, or D1. 

~ ,  for some i >~ 2, then X = D,. 

d[~ for some i >~ 2, then X is either M,  or P,. 

for some i >! 1, then X = 1V~. 
~ , ,  then X = X , .  

~ ,  then X is either )(2, X , , ,  or X=.  
~g~, then X = X~. 

Moore's original determination of f ia  was considerably more involved than the 
determination of fit. On the other hand, the determination of f i f  is relatively 
simple. For a family ~, we denote f f  LI {A - B : A, B E .~} by ,4 (.~). 

Theorem 12. f i l  ~= f i" .  

Proof. Let f f ~  f i l  ~. Since ,~ is not ,4-interval-representable, it cannot be ,4-point- 
representable either. Choose a derived subfamily ~3 of f f  with ~3 E f ia .  Now every 
proper derived subfamily of ~3 is point-representable and therefore interval 
representable. It remains only to show that ,4 (~) is not interval-representable for 
this implies .~ = ~3. 

If ~ = ~ for some i/> 3, then ,4 (~3) also contains ~ .  If ~ is oj,, if3, ..~ then .4 (~) 
contains ~3. If ~d is ~4, then ,4 (~) contains ~4. If ~d is .,~, then ,4 (q3) contains ~3~. 
Finally, if ~3 is ~-~, then ,4 (~)  contains gV,. 

It should be clear that Gallai's determination of ~ is a very powerful result since 
from it we can derive ~ , f i ' ~ , f i , , f i a ,  M2, and ~.  Furthermore it is possible to 
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d e t e r m i n e  .,~ (and thus ~ )  f rom ~ via the  fo l lowing e l e m e n t a r y  reasoning .  Let  G 

be  an in te rva l  g raph ;  then (3 is the  c o m p a r a b i l i t y  g raph  of  an in te rva l  o rde r .  

F u r t h e r m o r e ,  if G E ,9 - {C4}, then  t3 is not  a c o m p a r a b i l i t y  g raph .  F o r  if (3 is the  

c o m p a r a b i l i t y  g raph  of a pose t  X, s ince G does  not  conta in  C4, we conclude ,  in 

view of  F i s h b u r n ' s  cha rac t e r i za t ion  of in te rva l  o rde r s ,  that  X is an in te rva l  o rde r ;  

but  this wou ld  imply  that  G is an in terva l  g raph .  

Theorem 13. {(~: GES, G / G } C ~ .  

W e  s u m m a r i z e  our  resul ts  by r e m a r k i n g  that  of  the  cha rac t e r i za t i on  p r o b l e m s  

discussed in this  pape r ,  only  the  c i rcu la r  arc  g raph  and  3- in terva l  i r r educ ib le  pose t  

p r o b l e m s  r e m a i n  unsolved ,  but  we feel that  the  t echn iques  and  concep t s  d e v e l o p e d  

he re  may  well  p r o v e  essent ia l  to  the i r  so lu t ion .  
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