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Abstract
There is a natural way to associate with a poset P a hypergraph H, called the hypergraph
of critical pairs, so that the dimension of P is exactly equal to the chromatic number of
H. The edges of H have variable sizes, but it is of interest to consider the graph G formed
by the edges of H that have size 2. The chromatic number of G is less than or equal to
the dimension of P and the difference between the two values can be arbitrarily large.
Nevertheless, there are important instances where the two parameters are the same, and we
study one of these in this paper. Our focus is on a family {Sk

n : n ≥ 3, k ≥ 0} of height two
posets called crowns. We show that the chromatic number of the graph Gk

n of critical pairs of
the crown Sk

n is the same as the dimension of Sk
n , which is known to be �2(n+k)/(k+2)�. In

fact, this theorem follows as an immediate corollary to the stronger result: The independence
number of Gk

n is (k + 1)(k + 2)/2. We obtain this theorem as part of a comprehensive
analysis of independent sets in Gk

n including the determination of the second largest size
among the maximal independent sets, both the reversible and non-reversible types.

Keywords Dimension · Chromatic number · Critical pairs

1 Introduction

In this paper, we are concerned with a family of posets introduced in [14] called crowns.
For a pair (n, k) of integers with n ≥ 3 and k ≥ 0, the crown Sk

n is the height 2 poset
whose ground set1 is A ∪ B where A = Min(P ) = {a1, a2, . . . , an+k} and B = Max(P ) =
{b1, b2, . . . , bn+k}. Furthermore, ai is incomparable with bj when j belongs to the interval

1In the original paper [14], A is the set of maximal elements and B is the set of minimal elements. Here
these roles are reversed, a practice that is consistent with modern research papers in the area. Additionally,
we use an entirely equivalent, but slightly modified labeling in order to considerably simplify the arguments
to follow.
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{i, i + 1, i + 2, . . . , i + k} and ai < bj in Sk
n when j is not in this interval. Of course, this

definition must be interpreted cyclically, i.e., n + k + 1 = 1, n + k + 2 = 2, etc.
As will be detailed later, the critical pairs of Sk

n are precisely the incomparable pairs of
the form (ai, bj ). The associated graph of critical pairs, Gk

n, has a vertex for each critical
pair and an edge between (ai, bj ) and (ak, b�) if and only if ai < b� and ak < bj in Sk

n .
Originally, our goal was to prove the following theorem, a result that was conjectured by

Garcia, Harris, Kubik, and Talbott [9] and launched the research collaboration represented
by this manuscript.

Theorem 1.1 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0, and let Gk
n be the graph

of critical pairs associated with the crown Sk
n . Then the chromatic number of G

k
n is equal to

the dimension of Sk
n .

As we explain in the next section, the preceding theorem follows as an immediate
corollary to Theorem 1.2.

Theorem 1.2 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0, and let Gk
n be the graph

of critical pairs associated with the crown Sk
n . Then the maximum size of an independent set

in Gk
n is (k + 1)(k + 2)/2.

We first managed to prove Theorem 1.1 without resolving Theorem 1.2, and we explain
in Section 7 how this was achieved. However, in preparing early versions of this paper, we
continued to build on our understanding of the properties of independent sets in Gk

n, and as
a result, we were able to settle Theorem 1.2. In fact, this proof emerges as a minor detail
extracted from a comprehensive body of results concerning independent sets in Gk

n.
First, independent sets in Gk

n will be classified as being one of two types: reversible
or non-reversible. A reversible set is always independent, but in general, there are non-
reversible sets that are also independent. A subset of a reversible set is reversible, and a
subset of an independent set is independent, so there are natural notions of a maximal
reversible set and a maximal independent set. Among the reversible sets, a special family
is defined and members of this family are called canonical reversible sets. All canonical
reversible sets have size (k + 1)(k + 2)/2 which is the maximum size for a reversible set,
and the maximum size for an independent set. Here is the first of our three main theorems.

Theorem 1.3 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0. Then the following
statements hold.

(1) If S is a maximal reversible set in Gk
n, then S is a maximal independent set in Gk

n.
(2) If n > k and S is a maximal reversible set in Gk

n, then S is a canonical reversible set
in Gk

n.
(3) If S is a maximal reversible set in Gk

n and S is not a canonical reversible set, then
n ≤ k and

|S| ≤ (k + 1)(k + 2)

2
− n(n − 1)

2
+ 1.

Although it is possible to completely determine the family of all maximal reversible sets,
our focus is on finding the second largest size such sets can attain. This detail is critical to
subsequent arguments.

To set the stage for the study of independent, non-reversible sets, we prove the following
elementary lemma in Section 4.

Order (2019) 36:621–652622



Lemma 1.4 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0. Then there is an
independent non-reversible set in Gk

n if and only if n ≤ 2k.

As we begin to investigate independent, non-reversible sets, it will quickly become clear
that there is a natural division into two ranges: n ≤ k and k < n ≤ 2k. Independent, non-
reversible sets in the range k < n ≤ 2k are relatively simple, and we completely determine
the family of all maximal independent, non-reversible sets. Accordingly, we also establish
the following upper bound and show that it is best possible. This result is the second of our
three main theorems.

Theorem 1.5 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0. If k < n ≤ 2k and S is
an independent, non-reversible set in Gk

n, then

|S| ≤ 2 + (2k + 2 − n)(2k + 1 − n)

2
.

In particular, when k < n ≤ 2k, there is a unique (up to isomorphism) independent,
non-reversible set of size 2 + (2k + 2 − n)(2k + 1 − n)/2.

The situation when n ≤ k is considerably more complex, and we are unable to deter-
mine the family of all maximal independent, non-reversible sets. However, we provide the
following upper bound on their size in our third major theorem.

Theorem 1.6 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0. If n ≤ k and S is an
independent, non-reversible set in Gk

n, then

|S| ≤ (k + 1)(k + 2)

2
+ 2 − n.

We show that the inequality in Theorem 1.6 is best possible. In fact, we have been able to
completely characterize the family of all extremal examples. Due to the length of the details
for the proof, we have elected to present a single representative example in this paper.

It is worth noting that the inequality from Theorem 1.6 holds for all pairs (n, k), since
when k < n ≤ 2k we have:

2 + (2k + 2 − n)(2k + 1 − n)

2
= (k + 1)(k + 2)

2
+ 2 − n − (3k − n)(n − k − 1)

2

≤ (k + 1)(k + 2)

2
+ 2 − n.

However, this inequality is strict when n > k + 1.
Once these theorems have been proved, it is simply a remark that for all pairs (n, k) with

n ≥ 3 and k ≥ 0, the maximum size of an independent set in Gk
n is (k + 1)(k + 2)/2, an

observation which is enough to show that dim(Sk
n) = χ(Gk

n). However, we have proved
much more since we have identified the canonical reversible sets as the maximum size
independent sets, and we have found the maximum size for all other maximal independent
sets, for both the reversible and non-reversible cases.

The remainder of this paper is organized as follows. In the next section, we provide nota-
tion and terminology together with a concise summary of background material to motivate
this line of research. In Section 3, we study reversible sets and prove Theorem 1.3. Indepen-
dent, non-reversible sets are more complex and Section 4 is an introductory section in which
essential proof techniques are developed and the proof of Lemma 1.4 is given. Sections 5
and 6 are devoted to the proofs of the inequalities in Theorems 1.5 and 1.6, respectively.
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In Section 7, we provide details on how Theorem 1.1 can be proved directly without The-
orem 1.2. These techniques are of independent interest, even if the conclusion is attainable
by the results presented earlier in the paper.

We close in Section 7 with some comments on challenging open problems that remain.

2 Notation, Terminology, and BackgroundMaterial

We assume that the reader is familiar with basic notation and terminology for partially
ordered sets (here we use the short term poset), including: chains and antichains, mini-
mal and maximal elements, linear extensions, and comparability graphs. While we are also
assuming some level of familiarity with the concept of dimension for posets, there are a
number of recent papers, [5, 10, 19], each of which contains a more complete discussion of
the necessary background material. A comprehensive treatment is given in [15], and a sur-
vey of combinatorial aspects of posets is given in [17], so we include here only the essential
definitions.

A non-empty family F = {L1, L2, . . . , Ld} of linear extensions of a poset P is called
a realizer of P when x ≤ y in P if and only if x ≤ y in Li for each i ∈ {1, 2, . . . , d}.
As defined by Dushnik and Miller [3], the dimension of P , denoted dim(P ), is the least
positive integer d for which P has a realizer of size d.

When P is a poset, we let Inc(P ) be the set of all pairs (x, y) ∈ P × P with x incompa-
rable to y in P . Clearly, a non-empty family F of linear extensions of P is a realizer if and
only if for every (x, y) ∈ Inc(P ), x > y in L for some L ∈ F due to the symmetry of pairs
in Inc(P ).

A subset R ⊂ Inc(P ) is said to be reversible when there is a linear extension L of P

with x > y in L for all (x, y) ∈ R. Accordingly, when Inc(P ) 	= ∅, dim(P ) is the least
d for which there is a covering Inc(P ) = R1 ∪ R2 ∪ · · · ∪ Rd with Ri reversible for each
i ∈ {1, 2, . . . , d}.

An indexed set C = {(xα, yα) : 1 ≤ α ≤ m} ⊆ Inc(P ) of incomparable pairs in P

is called an alternating cycle of size m when2 xα ≤ yα−1 in P , for all α ∈ {1, 2, . . . , m}.
(Subscripts are interpreted cyclically so that x1 ≤ ym in P .) An alternating cycle is strict
when xα ≤ yβ if and only if β = α−1. In a strict alternating cycle, the set {xα : 1 ≤ α ≤ m}
is an m-element antichains in P as is {yα : 1 ≤ α ≤ m}.

Although the proof of the following lemma, first presented in [18], is elementary, the
basic ideas behind this result have proven over time to be very important.

Lemma 2.1 Let P be a poset and let S ⊆ Inc(P ). Then the following statements are
equivalent.

(1) S is not reversible.
(2) S contains an alternating cycle.
(3) S contains a strict alternating cycle.

We note the following property of alternating cycles: If C = {(xα, yα) : 1 ≤ α ≤ m}
is an alternating cycle, but is not strict, then there is a proper subset of the pairs in C which
(after a relabeling) forms a strict alternating cycle.

2Most authors require that xα ≤ yα+1 in P in defining an alternating cycle. Our equivalent formulation is
another choice that simplifies arguments to follow.
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A pair (x, y) ∈ Inc(P ) is called a critical pair if (1) z < y in P whenever z < x in P and
(2) w > x whenever w > y in P . We let Crit(P ) denote the set of all critical pairs. Interest
in critical pairs is rooted in the well known property that a non-empty family F of linear
extensions is a realizer if and only if for every pair (x, y) ∈ Crit(P ), there is some L ∈ F
with x > y in L. When Inc(P ) 	= ∅, dim(P ) is the least positive integer d for which there
is a covering Crit(P ) = R1 ∪ R2 ∪ · · · ∪ Rd with Ri reversible for each i ∈ {1, 2, . . . , d}.

Although the origins can be traced back to earlier papers, it seems that the first concrete
formulation of the following concept appears in [11]: Given a poset P for which Inc(P ) 	=
∅, we can associate with P a hypergraphH and a graph G of critical pairs defined as follows.
Both H and G have the set Crit(P ) of critical pairs as their vertex set. In H, a set E of
critical pairs is an edge when E is not reversible, but every proper subset of E is reversible.
The edge set of the graph G is just the set of all edges in H which have size 2. In view of
the remarks made immediately above, dim(P ) = χ(H) when Inc(P ) 	= ∅, where χ(H) is
the minimum k such that there is a k-coloring of the vertices of H with no monochromatic
edge. On the other hand, we only have the inequality dim(P ) ≥ χ(G).

In [5], an infinite sequence {Pn : n ≥ 1} of posets is constructed such that the dimension
of Pn grows exponentially with n while the chromatic number of the graph of critical pairs
grows linearly with n. Accordingly, the inequality dim(P ) ≥ χ(G) can be far from tight.
Nevertheless, it is of interest to investigate conditions which cause dim(P ) to be equal to
χ(G).

The research we report concerns a well studied class of posets called crowns. The first
use of the term “crown” in reference to a class of posets is in [1], where it is applied only
to posets in the subfamily {Sk

3 : k ≥ 0}. These posets are all 3-irreducible, i.e., they have
dimension 3, but the removal of any point lowers the dimension to 2. This special case plays
an important role in the on-line notion of dimension (see [6] and [12]). Also, the family of
crowns includes the standard examples. These are the posets in the family {S0

n : n ≥ 3}. For
each n ≥ 3, the crown S0

n is n-irreducible, and in the literature, the notation for the standard
example S0

n is usually abbreviated as Sn.
The fact that dim(Sk

3 ) = 3 for all k ≥ 0 and dim(S0
n) = n for all n ≥ 3 suggests that there

may be a function f (d) such that if the maximum degree in the comparability graph of P is
d, then the dimension of P is at most f (d). In fact, these examples suggest that it might even
be true that f (d) = d + 1. But for many years, it was not even known whether the function
f (d) was well defined. However, Füredi and Kahn [8] proved that f (d) = O(d log2 d) and
Erdős, Kierstead and Trotter [4] proved that f (d) = �(d log d). Very recently, Scott and
Wood [13] significantly improved the upper bound using the notion of boxicity, showing
f (d) = O(d log1+o(1) d). So the original interest in the family of crowns was to see if
these posets shed further light on the problem of dimension versus maximum degree in the
comparability graph.

Most authors extend the notion of the standard example Sn to the value n = 2, i.e., S2
is the poset of height 2 with minimal elements {a1, a2}, maximal elements {b1, b2}, and
ai < bj in S2 if and only if i 	= j . The standard example S2 is just 2+2, the disjoint sum of
two 2-element chains, with all points of one chain incomparable with all points in the other.
Posets which exclude S2 = 2+ 2 are called interval orders, since if P is such a poset, there
is family F = {[cx, dx] : x ∈ P } of non-degenerate closed intervals of the real line so that
x < y in P if and only if dx < cy in the reals. The class of interval orders has been studied
extensively in the literature. See [7] and [16] for results and references. Note that S0

2 has
dimension 2, but it is not 2-irreducible.

Order (2019) 36:621–652 625



Based on the examples in the families {Sk
3 : k ≥ 0} and {S0

n : n ≥ 3}, it was originally
thought that it might be possible that dim(Sk

n) = n for all pairs (n, k) with n ≥ 3 and k ≥ 0.
Some small cases not belonging to these families were worked out by hand, leading first to
the conclusion that dim(S1

4 ) = 4 which fit the suspected pattern. But subsequently, it was
shown that dim(S2

4 ) = 3, so the pattern does not hold in general. These observations then
motivated an attack on finding the general form for the dimension of the crown Sk

n , which
led eventually to the following formula, given in [14].

Theorem 2.2 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0. Then dim(Sk
n) =

�2(n + k)/(k + 2)�.

Clearly, the critical pairs in the crown Sk
n are just the pairs (a, b) ∈ A × B with a

incomparable to b in Sk
n . We denote the set of such pairs by Inc(A,B). There are (n+k)(k+

1) critical pairs in Inc(A,B), so the inequality dim(Sk
n) ≥ 2(n+ k)/(k +2) is an immediate

consequence of the following lemma, which appears (with different notation) on page 92 in
[14].

Lemma 2.3 The maximum number of critical pairs that can be reversed by a linear
extension of the crown Sk

n is (k + 1)(k + 2)/2.

In retrospect, it is fair to say that the argument presented in [14] is incomplete. However,
the lemma also appears on pages 33 and 34 in [15], and the proof given there is complete
and correct. As it only takes a few lines and serves to set the stage for a more subtle result
to follow, we include an updated proof of Lemma 2.3 in Section 3.

Recall that when G is a graph, a subset S of the vertex set of G is called an independent
set when no two vertices in S are adjacent in G. The independence number of G, denoted
α(G), is then defined as the maximum cardinality of an independent set in G, and the
chromatic number of G, denoted χ(G), is the least positive integer t for which the vertex set
of G can be partitioned into t independent sets. If G has m vertices, then χ(G) ≥ m/α(G).
This implies dim(Sk

n) ≤ χ(Gk
n), since the graph Gk

n of critical pairs of the crown Sk
n has

(n + k)(k + 1) vertices and dim(Sk
n) = 2(n + k)/(k + 2). As the opposite inequality holds

for all graphs, Theorem 1.1 is now seen to be a corollary to Theorem 1.2.
A reversible set in Gk

n is an independent set, but in general there are independent sets
which are not reversible. These are sets of critical pairs that contain one or more alternating
cycles, but none of size 2. Lemma 2.3 asserts that the maximum size of a reversible set in Gk

n

is (k + 1)(k + 2)/2, leaving open the possibility that there are independent, non-reversible
sets which have size larger than (k + 1)(k + 2)/2. However, as is clear from our series of
main theorems, we show that this is not the case.

Convention For the remainder of the paper, the symbols n and k will only be used in
reference to the crown Sk

n and the associated graph Gk
n of critical pairs. Accordingly, we

always assume n ≥ 3 and k ≥ 0.

2.1 Canonical Reversible Sets

We say that a subset X of minimal elements A is contiguous when the elements of X form
a block of consecutive elements of A with indices interpreted cyclically. For example, the
set X = {a8, a1, a9, a2} is contiguous in S5

4 . Vacuously, both ∅ and A are contiguous.
Contiguous subsets of the maximal elements B are defined analogously.
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A sequence σ = (x1, x2, . . . , xr ) of distinct elements of A will be called an h-contiguous
sequence when Xi = {x1, x2, . . . , xi} is contiguous for all i ∈ {1, 2, . . . , r}. For example,
in the crown S5

4 , the sequence σ = (a8, a9, a7, a1, a6, a2) is h-contiguous. The letter h in
this notation stands for “hereditarily.”

When σ = (a1, a2, . . . , ar ) is an h-contiguous sequence, we let T (σ ) consist of all
pairs (a1, b) ∈ Inc(A,B) and, for each 1 ≤ i < r , we include (ai+1, b) in T (σ ) provided
(ai+1, b) ∈ Inc(A, B) and (ai, b) ∈ T (σ ).

The inequality in Lemma 2.3 is easily seen to be tight, as evidenced by the construction
in the following lemma, which is implicit in the results of [14].

Lemma 2.4 Let (n, k) be a pair of integers with n ≥ 3 and k ≥ 0. If σ = (x1, x2, . . . , xk+1)

is an h-contiguous sequence, then T (σ ) is reversible, T (σ ) is a maximal independent set in
Gk

n, and |T (σ )| = (k + 1)(k + 2)/2.

In the discussions to follow, we say that an independent set T in Gk
n is a canonical

reversible set when there is an h-contiguous sequence σ for which T = T (σ ).

Example 2.5 To illustrate the preceding lemma and the connection between h-
contiguous sequences and canonical reversible sets, consider the crown S5

4 . Then σ =
(a8, a9, a7, a1, a6, a2) is an h-contiguous sequence of length 6 = k + 1. The canonical
reversible set T = T (σ ) associated with σ is:

T = { (a8, b8), (a8, b9), (a8, b1), (a8, b2), (a8, b3), (a8, b4),

(a9, b9), (a9, b1), (a9, b2), (a9, b3), (a9, b4),

(a7, b9), (a7, b1), (a7, b2), (a7, b3),

(a1, b1), (a1, b2), (a1, b3),

(a6, b1), (a6, b2),

(a2, b2) }.

The linear extension of S5
4 represented by the following sequence, where the order is

increasing left to right, reverses the 6 · 7/2 = 21 pairs in T :

(a3, a4, a5, b2, a2, b1, a6, b3, a1, b9, a7, b4, a9, b8, a8, b5, b6, b7).

Previously, we observed that the inequality dim(Sk
n) ≥ �2(n + k)/(k + 2)� follows from

the fact that no linear extension of Sk
n can reverse more than (k + 1)(k + 2)/2 critical pairs.

In [14], the reverse inequality is proved by showing that the set of all critical pairs of Sk
n can

be covered by �2(n + k)/(k + 2)� canonical reversible sets. While a simple construction
shows dim(Sk

n) ≤ 2�(n + k)/(k + 2)�, the improvement to dim(Sk
n) ≤ �2(n + k)/(k + 2)�

takes a bit of work.

2.2 Special Notation and Terminology for Crowns

As sets A and B are the minimal elements and maximal elements, respectively, of Sk
n , the

letter a will always refers to a minimal element, while b is reserved for maximal elements.
In order to avoid confusion over subscripts, we also use the letters x and z, sometimes with
subscripts or primes, to denote elements of A, while the letters y and w always represent
elements of B. On the other hand, the letter v is used to represent an element of Sk

n which
may come from either A or B.
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Following the conventions of the presentation in [15], we consider a circle in the
Euclidean plane with n + k evenly spaced points on the circle labeled in clockwise order
(u1, u2, . . . , un+k). We then imagine the elements of the crown Sk

n placed on this circle with
ai and bi both positioned on the point ui .

If ui, uj ,and uk are distinct points on the circle, then we write ui ≺ uj ≺ uk to signify
that if we traverse the circle in a clockwise direction, starting from ui and stopping the first
time we encounter uk , then somewhere in between, we saw uj .3 This notation can be used
with inequalities which are not strict, so the statement ui ≺ uj  uk implies that ui 	= uj

and ui 	= uk while uj and uk could be the same.
We extend this definition to include all elements of Sk

n . In particular, for distinct elements
v, v′, and v′′ of Sk

n , we write v ≺ v′ ≺ v′′ if u ≺ u′ ≺ u′′ where v is positioned at point
u on the circle, v′ at u′ and v′′ at u′′. Recall the convention that a, x ∈ A and y ∈ B. So a
statement like x ≺ y  a includes the possibility that y = bi and a = ai for some i.

When v and v′ are elements of Sk
n , v located at position ui and v′ at uj , then we say the

size of (v, v′) is j − i + 1, modulo n + k. Note that this is simply the number of points
visited on the circle (including the beginning and ending points) when we travel from v to
v′ moving in a clockwise manner. For example, in S5

4 , the size of (a7, b1) is 4 and the size
of (b6, a8) is 3.

When v1, v2 ∈ A ∪ B, it is natural to say that (v1, v2) starts at v1 and ends at v2. For
v3, v4 ∈ A ∪ B, we say (v1, v2) starts in (v3, v4) if v3  v1  v4 and ends in (v3, v4) when
v3  v2  v4.

It is also natural to consider Inc(A,B) as an inclusion order, where we say that (a, b) is
contained in (x, y) if x  a  b  y. Further, (a, b) overlaps (x, y), if there is some point
u on the circle so that a  u  b and x  u  y. If (a, b) and (x, y) do not overlap, we
say they are disjoint. Note that (a, b) and (x, y) are adjacent in Gk

n if and only if they are
disjoint and both (b, x) and (y, a) have size at most n.

Throughout the paper, we use the now standard notation [m] to represent the set
{1, 2, . . . , m}.
2.3 Natural Symmetries of the Crown Sk

n

The crown Sk
n and the graph Gk

n have two kinds of natural symmetries. One of these captures
the notion of rotation. For each j , the map τj defined by setting τj (ai) = ai+j and τj (bi) =
bi+j is both an automorphism of the crown Sk

n and an automorphism of the graph Gk
n.

However, there is another natural symmetry that essentially results from interchanging
clockwise with counter-clockwise. In particular, the map φ : A ∪ B → A ∪ B defined
by φ(ai) = a−i and φ(bj ) = bk−j is both an automorphism of the crown Sk

n and an
automorphism of the graph Gk

n. To see this, we observe that (ai, bj ) ∈ Inc(A,B) if and
only if ui  uj  ui+k . Since u0 = un+k , we have the following string of equivalent
inequalities:

ui  uj  ui+k,

u0  uj−i  uk,

u0  uk−(j−i)  uk,

u−i  uk−j  u−i+k .

3When we write uj1 ≺ uj2 ≺ uj3 ≺ . . . ≺ uj�
, we intend that when traversing the circle in a clockwise

direction, starting from uj1 and stopping the first time we encounter uj�
, we visit uj2 , uj3 , . . . , uj�−1 in that

order.
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Moreover, if the size of the pair (a, b) is s, then the size of (φ(a), φ(b)) is k+2−s. As φ

induces a bijection on A × B, this implies (a, b) ∈ Inc(A,B) if and only if (φ(a), φ(b)) ∈
Inc(A,B). Also note that if (a, b), (x, y) ∈ Inc(A,B), then (a, b) is contained in (x, y) if
and only if (φ(x), φ(y)) is contained in (φ(a), φ(b)).

When S ⊆ Inc(A,B), we let φ(S) denote the set {(φ(x), φ(y)) : (x, y) ∈ S}. Clearly,
(1) |S| = |φ(S)|, (2) S is independent if and only φ(S) is independent and (3) S is reversible
if and only if φ(S) is reversible.

2.4 Types of Independent Sets

Recall that a reversible set is always an independent set. However, in general the inclusion
is strict as there may be independent sets that are not reversible. For the rest of the paper,
we follow the conventions that (1) the letter T is used for independent sets known to be
canonical reversible sets; (2) the letter R is used for independent sets known to be reversible
(such sets may or may not be canonical); and (3) the letter S is used for independent sets
when they are either non-reversible or the issue of whether they are reversible has not been
settled. To avoid possible confusion with crowns, we denote independent sets as S, S′ or S′′,
but we never use subscripts.

For a pair of integers (n, k) with n ≥ 3 and k ≥ 0, we use the following notation
concerning families of subsets of the pairs in Gk

n.

(1) I(n, k) is the family all independent sets.
(2) MI(n, k) is the family of all maximal independent sets.
(3) MSI(n, k) is the family of all maximum size independent sets.
(4) R(n, k) is the family of all reversible sets.
(5) MR(n, k) is the family of all maximal reversible sets.
(6) MSR(n, k) is the family of all maximum size reversible sets.
(7) INR(n, k) is the family of all independent, non-reversible sets.
(8) MINR(n, k) is the family of all maximal sets in INR(n, k).
(9) MSINR(n, k) is the family of all maximum size sets in INR(n, k).

When the pair (n, k) has been fixed, we abbreviate the names of the above sets by leaving
off the (n, k). For example, I(n, k) is abbreviated I.

Fix a pair (n, k). When S ∈ I, let A(S) consist of all elements a ∈ A for which there
is some b ∈ B with (a, b) ∈ S. The set B(S) is defined analogously. For each a ∈ A,
let B(a, S) denote the set of all b ∈ B for which (a, b) ∈ S. For b ∈ B, the set A(b, S)

is defined analogously. When S = Inc(A,B), set I (a) := B(a, S) and I (b) := A(b, S).
Of course, I (ai) = {bi, bi+1, . . . , bi+k} and I (bj ) = {aj , aj−1, . . . , aj−k}. Further, for
any S ∈ I, B(a, S) ⊆ I (a), A(b, S) ⊆ I (b). If a 	∈ A(S), then B(a, S) = ∅. Likewise
A(b, S) = ∅ when b 	∈ B(S).

3 Reversible Sets

This section is devoted to the study of reversible sets and includes the proof of Theorem 1.3,
the first of our three main theorems. As there are three statements in this theorem, we will
remind readers of the wording of the individual statements at the appropriate moment in the
argument.

Fix a pair (n, k). Let R ∈ MR and let L be a linear extension of Sk
n which reverses all

pairs in R. Scan L from bottom to top and note that L is a linear order on A ∪ B consisting
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of blocks of elements of A interspersed with blocks of elements of B. The bottom block is
A−A(R) while the top block is B−B(R). Accordingly, L has the following block-structure
form, where the order of the blocks is increasing left to right:

(As+1, Bs, As, Bs−1, As−1, Bs−2, . . . , A3, B2, A2, B1, A1, B0).

In particular, As+1 = A − A(R) and B0 = B − B(R).
It is easy to see that any linear extension L that reverses R has this form; furthermore,

the only allowable variation is the linear order imposed on elements within a block as R is
maximal. The set R determines the block structure triple (s,F ,G): the integer s and the two
set partitions F = {A1, A2, . . . , As+1} and G = {B0, B1, . . . , Bs} of A and B, respectively.

We note that since L is a linear extension of P , it satisfies the following condition.
Admissibility Condition. If x ∈ Ai , y ∈ Bj , and x < y in Sk

n , then 0 ≤ j < i ≤ s + 1.
Since R is maximal, L also satisfies the following condition.
Maximality Condition. For each i ∈ {0, 1, . . . , s} if x ∈ Ai+1 and y ∈ Bi , then x < y

in Sk
n .

To see that the Maximality Condition is satisfied, suppose there is some i and a pair
(x, y) ∈ Inc(A,B) with x ∈ Ai+1 and y ∈ Bi where it is possible that Ai+1 = {x}
or Bi = {y}. Then a linear extension with the following block form reverses all pairs in
R ∪ {(x, y)}, contradicting the assumption that R ∈ MR:

(As+1, Bs, As, . . . , Bi+1, Ai+1 − {x}, {y}, {x}, Bi − {y}, Ai, . . . , B1, A1, B0).

We pause here to prove the first statement of Theorem 1.3: If R ∈ MR, then R ∈ MI. Let
(x, y) ∈ Inc(A, B) − R be arbitrary. We argue that there exists (z, w) ∈ R such that (z, w)

is adjacent to (x, y) in Gk
n. Since R satisfies the maximality condition, there are integers i, j

with 0 ≤ i ≤ j − 2 ≤ s − 1 so that x ∈ Aj and y ∈ Bi . Let w be any element of Bj−1 and
let z be any element of Ai+1. It follows that the incomparable pair (z, w) is reversed and
thus is in R. By the maximality condition, x < w and z < y. Therefore, (x, y) and (z, w)

are adjacent in Gk
n. This completes the proof.

In some sense, we now have characterized the sets in MR, as they are exactly the sets R

associated with a block structure triple (s,F ,G) satisfying the admissibility and maximality
conditions. However, in the work to follow, we need to know the largest two sizes these sets
can have.

We note that when R is maximal reversible, if a, a′ ∈ A(R), then one of B(a,R) and
B(a′, R) is a subset of the other. Also, it may happen that B(a, R) = B(a′, R). Analogous
remarks apply when b, b′ ∈ B.

When R ∈ MR, it is easy to see that |As+1| = |B0| = n − 1, |A1| = |Bs | = 1, and
|A(R)| = |B(R)| = k + 1. Furthermore, R is a canonical reversible set if and only if
s = k + 2. In this case, |Ai | = |Bi+1| = 1 for all i ∈ [k + 1].

Again, let R ∈ MR. A labeling {x1, x2, . . . , xk+1} of A(R) is called a consistent labeling
if α < β whenever B(xβ, R) is a subset of B(xα, R). One such labeling can be obtained
from any ordering of A(R) with block structure (A1, A2, . . . , As, As+1) ordered left to
right. Here is an updated version of the proposition at the heart of the proof of Lemma 2.3,
as given in [15].

Proposition 3.1 Let R ∈ MR and let {x1, x2, . . . , xk+1} be a consistent labeling of A(R).
Then for each i ∈ [k + 1], |B(xi, R)| ≤ k + 2 − i.

Proof The inequality holds (and is tight) when i = 1, so we may assume that 1 < i ≤ k+1.
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Let bt be any element of B(xi, R). Then {x1, x2, . . . , xi} ⊆ A(bt , R) by definition
of a consistent labeling. Therefore, we can relabel the elements of {x1, x2, . . . , xi} as
{z1, z2, . . . , zi} so that at−k  z1 ≺ z2 ≺ · · · ≺ zi  bt . Again by the definition of a con-
sistent labeling, B(xi, R) ⊆ B(z1, R) ⊆ I (z1). Now we find i − 1 elements in I (z1) which
are not in B(xi, R) to bound the size of B(xi, R).

For each j ∈ {2, 3, . . . , i}, if zj = aβj
, then bβj −1 ∈ I (z1) because at−k  z1 ≺ aβj


bt . However, zj = aβj

< bβj −1 in Sk
n , which implies that bβj −1 	∈ B(xj , R). Because

B(zi, R) ⊆ B(zj , R), we have bβj −1 	∈ B(zi, R). Since bβj −1 ∈ I (z1) − B(zi, R) for
each j ∈ {2, 3, . . . , i} and B(xi, R) ⊆ I (z1), we have |B(xi, R)| ≤ (k + 1) − (i − 1) =
k + 2 − i.

Lemma 2.3 follows immediately from the preceding proposition since we have

|R| =
k+1∑

i=1

|B(xi, R)| ≤
k+1∑

i=1

k + 2 − i = (k + 1)(k + 2)

2
.

Although the inequality in Proposition 3.1 is tight for canonical reversible sets, if R ∈
MR and R is not canonical, it is not tight. For such sets, we have the following stronger
result.

Lemma 3.2 Let R be any set in MR which is not a canonical reversible set, and let
{x1, x2, . . . , xk+1} be a consistent labeling of A(R). Choose i to be the least positive integer
for which |B(xi, R)| 	= k + 2 − i. Then the following hold:

(1) i ≥ 2 and i ≤ k − n + 2;
(2) |B(xi, R)| = k + 4 − i − n; and
(3) For every j ∈ {i + 1, i + 2, . . . , k + 1}, |B(xj , R)| ≤ k + 3 − i − n.

Proof We have already noted |B(x1, R)| = k + 1, so i ≥ 2. The assumption that
|B(xj , R)| = k + 2 − j for each j ∈ [i − 1] implies that the sequence (x1, x2, . . . , xi−1)

is h-contiguous. The assumption |B(xi, R)| 	= k + 2 − i implies {x1, x2, . . . , xi} is not
contiguous. After relabeling, we may assume {x1, x2, . . . , xi−1} = {a1, a2, . . . , ai−1}, and
further xi 	∈ {an+k, ai}. By the definition of a consistent labeling, B(xi−1, R) ⊆ B(aj , R)

for each j ∈ [i − 1]. Therefore B(xi−1, R) ⊆ B(a1, R) ∩ B(ai−1, R) ⊆ {b1, . . . , bk+1} ∩
{bi−1, . . . , bi−1+k} = {bi−1, . . . , bk+1}. Since |B(xi−1, R)| = k − i + 3, we conclude that
B(xi−1, R) = {bi−1, bi , . . . , bk+1}.

Our aim is to show {bi−1, bk+1} ⊆ I (xi). By the consistent labeling, B(xi, R) ⊆
B(xi−1, R) = {bi−1, bi , . . . , bk+1} with B(xi, R) 	= ∅ as xi ∈ A(R).

For contradiction, first suppose xi < bi−1 and xi < bk+1. Therefore I (xi) ⊆
{bi, . . . , bk}. Thus |I (xi)| < k + 1,a contradiction. So at most one of xi < bk+1 and
xi < bi−1 is possible.

Toward a contradiction, suppose xi < bi−1 while bk+1 ∈ I (xi). Since xi 	∈
{a1, a2, . . . , ai} and bk+1 ∈ I (xi), then xi ∈ {ai+1, . . . , ak+1}. In particular, xi < bi . In the
block structure, xi ∈ Ai and {bi−1, bi} ⊆ Bi−1. Then (ai, bi) 	∈ R. Now if ai < bj then
either ai−1 < bj or bj = bi−1. So, even if ai is not in block Ai , we can replace the blocks
(Ai, Bi−1) with (Ai −{ai}, {bi}, {ai}, Bi−1 −{bi}),which implies R ∪ (ai, bi) is reversible,
contradicting the maximality of R. It can also be shown that xi < bk+1 and bi−1 ∈ I (xi)

cannot occur by a similar argument. In that case, we contradict the maximality of R by
showing that R ∪ (an+k, bk) is reversible.
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We now know that {bi−1, bk+1} ⊆ I (xi). Since B(xi, R) � {bi−1, bi , . . . , bk+1}, it
follows that the set of n− 1 elements, which xi is comparable to, is a subset of {bi, . . . , bk}.
Therefore n − 1 ≤ k + 1 − i,which is equivalent to the first statement of the lemma. In
particular, |B(xi, R)| = (k + 3 − i) − (n − 1), the second statement of the lemma.

For the third statement, suppose xi = am,fix j ∈ {i + 1, i + 2, . . . , k + 1}, and suppose
xj = ap . Note that B(xj , R) ⊆ B(xi, R). In each of three different cases based on the value
of p, we show that B(xi, R)−B(xj , R) 	= ∅. If i ≤ p ≤ m−n or m+1 ≤ p ≤ k +1, then
bp−1 ∈ B(xi, R)−B(xj , R). If m−n+1 ≤ p ≤ m−1 then bm−n ∈ B(xi, R)−B(xj , R). If
k+2 ≤ p ≤ n+k, then bk+1 ∈ B(xi, R)−B(xj , R). So in any case, B(xi, R)−B(xj , R) 	=
∅ and therefore |B(xj , R)| ≤ k + 3 − i − n.

The first statement of Lemma 3.2 yields the proof of the second statement in Theorem
1.3, i.e., if n > k and S ∈ MR, then S is a canonical reversible set.

Lemma 3.2 also supplies the proof of the inequality in the third statement of Theorem
1.3: If R ∈ MR and R is not a canonical reversible set, then |R| ≤ (k+1)(k+2)/2−n(n−
1)/2 + 1. To see this, let {x1, x2, . . . , xk+1} be a consistent labeling of A(R). As Lemma
3.2, let i be the least integer for which |B(xi, R)| 	= k + 2 − i. The lemma then supplies the
exact size of B(xj , R) when 1 ≤ j ≤ i. When i + 1 ≤ j ≤ k + 1, the lemma only tells us
that |B(xj , R)| ≤ k +3− i −n. However, from Proposition 3.1, we also have the inequality
|B(xj , R)| ≤ k + 2 − j . It follows that

|R| ≤ ∑i−1
j=1(k + 2−j)+(k + 4 − i − n)+(n − 1)(k+3 − i − n) + ∑k+1

j=i+n(k + 2 − j)

= (k+1)(k+2)
2 − n(n−1)

2 + 1.

This completes the proof of Theorem 1.3.
The next example shows that the inequality in the third statement of Theorem 1.3 is tight.

Example 3.3 Let (n, k) be a pair with 3 ≤ n ≤ k. We start with the canonical reversible
set T = T (σ ) consisting of all pairs associated with the h-contiguous sequence σ =
(a1, a2, . . . , ak+1). Let i be any integer with 1 ≤ i ≤ k+1−n. Then u1  ui ≺ ui+n  uk+1
where (ai+n, bi) belongs to Inc(A,B) but not to T .

A pair (a, b) ∈ T is adjacent to (ai+n, bi) in Gk
n if and only if ui ≺ a  b ≺ ui+n, so

the pair (ai+n, bi) has n(n−1)/2 neighbors in T . If we remove these neighbors from T and
then add (ai+n, bi), we have an independent set R of size (k+1)(k+2)/2−n(n−1)/2+1.
This set is easily seen to belong to MR.

4 Independent, Non-reversible Sets: Part 1

In some sense, independent, reversible sets are relatively simple objects. To our taste, inde-
pendent, non-reversible sets are much more interesting, and this is the first of three sections
devoted to such sets.

For a pair (n, k), recall that INR(n, k) denotes the family of all independent, non-
reversible sets in Gk

n. In this section, we prove Lemma 1.4: INR(n, k) is non-empty if and
only if n ≤ 2k.

We begin by reminding readers that independent, non-reversible sets in Gk
n contain

alternating cycles. In fact, they contain strict alternating cycles. However, since they are
independent, any alternating cycle they contain has size at least 3. The following straight-
forward proposition is essentially a restatement of the basic properties of a strict alternating
cycle.
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Proposition 4.1 Let S be a non-reversible set inGk
n. Then letm ≥ 2 and letC = {(xα, yα) :

α ∈ [m]} be an alternating cycle contained in S. Then for each α ∈ [m], we have xα 
yα ≺ xα+1. Furthermore, if S is strict, there is no v ∈ A(C) ∪ B(C) with yα ≺ v ≺ xα+1.

As a result, when m ≥ 2 and C = {(xα, yα) : α ∈ [m]} is a strict alternating cycle, there
are (m−1)! different orders in which the elements of A(C)∪B(C) can appear on the circle.
For example, when m = 7, one of these possibilities is:

x1  y3 ≺ x4  y6 ≺ x7  y4 ≺ x5  y2 ≺ x3  y1 ≺ x2  y5 ≺ x6  y7.

Furthermore, for every such arrangement, there is a strict alternating cycle of this form
in Inc(A,B), when k is sufficiently large relative to n.

Lemma 4.2 Let m ≥ 2 and let C = {(xα, yα) : α ∈ [m]} be a strict alternating cycle in
Inc(A,B). Then mn ≤ 2(n + k).

Proof The conclusion of the lemma holds trivially if m = 2, so we assume m ≥ 3.
For each α ∈ [m], let Dα be the down set of yα in Sk

n . If yα = bj , then Dα =
{aj−1, aj−2, . . . , aj−n+1} which is a set of size n − 1.

Since C is a strict alternating cycle, it follows that for each a ∈ A(C), there is exactly
one α ∈ [m] with a ∈ Dα . Provided each element a ∈ A − A(C) belongs to at most two
of the sets in {Dα : α ∈ [m]}, then m(n − 1) = ∑

α∈[m] |Dα| ≤ 2(n + k − m) + m which
implies mn ≤ 2(n + k) as claimed.

It remains to see that each a ∈ A − A(C) belongs to at most two downsets in {Dα : α ∈
[m]}. Suppose to the contrary that there is some a ∈ A − A(C) such that a ∈ Dα ∩ Dβ ∩
Dγ for three distinct elements α, β, γ ∈ [m]. Without loss of generality, we may assume
that yα ≺ yβ ≺ yγ ≺ a. Since Dα , Dβ and Dγ have the same size, Dβ ⊆ Dα ∪ Dγ .
Recall xβ+1 < yβ in the cycle C, so xβ+1 ∈ Dβ . Therefore, xβ+1 ∈ Dα or xβ+1 ∈ Dγ ,
which implies xβ+1 < yα or xβ+1 < yγ , contradicting the assumption that C was a strict
alternating cycle. So, each element a ∈ A − A(C) belongs to at most two of the sets in
{Dα : α ∈ [m]}, as needed to complete the proof.

We are now ready to prove the first half of Lemma 1.4: If INR 	= ∅, then n ≤ 2k. Let
S ∈ INR. Then S contains a strict alternating cycle C of size m for some m ≥ 3. Lemma
4.2 implies 3n ≤ mn ≤ 2(n + k), and therefore n ≤ 2k.

For the converse, we simply show that when n ≤ 2k, there is a strict alternating cycle of
size 3 in Inc(A,B). Two suitable examples are provided here.

Example 4.3 If n ≤ k, then

C = {(a1, b1), (a2, bk+1), (ak+2, bk+2)}
is a strict alternating cycle of size 3 in Gk

n. Accordingly, C ∈ INR(n, k).

Example 4.4 If k < n ≤ 2k, then

C = {(a1, b2k+1−n), (ak+1, bk+1), (a2k+1, b2k+1)}
is a strict alternating cycle of size 3 in Gk

n. Accordingly, C ∈ INR(n, k).

In time, it will become clear why these last two examples are presented in terms of the
separate ranges: (i) n ≤ k and (ii) k < n ≤ 2k. We also alert readers that the strict alternating
cycles in these examples will resurface later in this paper.
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Even though there can be arbitrarily complex strict alternating cycles in Inc(A,B) when
k is sufficiently large relative to n, the following lemma asserts that there is always one of
small size in a maximal independent, non-reversible set.

Lemma 4.5 If S ∈ MINR(n, k), then S contains a strict alternating cycle of size 3.

Proof As S is non-reversible, we can choose a strict alternating cycle C = {(xα, yα) : α ∈
[m]} in S of smallest size. Of course, m ≥ 3 since S is independent. Toward a contradiction,
suppose m ≥ 4. Then (x1, y2) ∈ Inc(A,B). If (x1, y2) ∈ S, then we may delete (x1, y1) and
(x2, y2) from C and add (x1, y2) to obtain a strict alternating cycle of size m − 1 contained
in S. The contradiction shows that (x1, y2) 	∈ S.

Since S is maximal, it follows that there is some (a, b) ∈ S with (a, b) adjacent to
(x1, y2) in Gk

n. Therefore, a < y2 and x1 < b. Thus C′ = {(x1, y1), (x2, y2), (a, b)} is a
strict alternating cycle in S of size 3, another contradiction.

As this detail is essential to future arguments, we note that when C = {(xα, yα) : α ∈
[3]} is a strict alternating cycle of size 3, there are only two different ways the points of
A(C) ∪ B(C) can appear:

(1) x1  y1 ≺ x2  y2 ≺ x3  y3 or
(2) x1  y2 ≺ x3  y1 ≺ x2  y3.

Considering our conventions about placing points of Sk
n on a circle, it is natural to say

that C satisfies the Disjoint Property when the first of these two orders holds. Similarly, C

satisfies the Overlap Property when the second order holds. Clearly, if C is a strict alternat-
ing cycle of size 3, then C satisfies the Disjoint Property if and only if its image under the
automorphism φ (see Section 2.3) satisfies the Overlap Property.

Strict alternating cycles of size 3 play a vital role in the arguments to follow.
Accordingly, let CD3 denote the family of all strict alternating cycles of size 3 in
Inc(A,B) that satisfy the Disjoint Property while CO3 consists of those with the Overlap
Property.

For a fixed pair (n, k) with INR 	= ∅, we use the notation MINRD3 for the family of sets
in MINR which contain a strict alternating cycle C from CD3. The family MSINRD3 is
defined similarly. Analogously, define the families MINRO3 and MSINRO3 in terms of the
Overlap Property. In view of our remarks about the automorphism φ, we state the following
elementary proposition for emphasis.

Proposition 4.6 Let (n, k) be a pair for which INR 	= ∅. Then
(1) MINRO3 = {φ(S) : S ∈ MINRD3} andMINR = MINRD3 ∪ MINRO3;
(2) MSINRO3 = {φ(S) : S ∈ MSINRD3} andMSINR = MSINRD3 ∪ MSINRO3.

In carrying out the research for this paper, we found it more intuitive to work with the
families MINRD3 and MSINRD3, but as reflected by Proposition 4.6, if we understand
these families, we really understand MINR and MSINR.

4.1 The Contraction and Expansion Lemmas

Fix a pair (n, k) and recall I is the family of all independent sets in Gk
n. Let S ∈ I and i ∈

[n+k]. An ordered pair ((a, b), (x, y)) of critical pairs belonging to S is called a contraction
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blocking pair at i if a = ai , y = bi and x < b in Sk
n . To explain this terminology, we

observe that both (ai+1, b) and (x, bi−1) are in Inc(A,B), and they represent “contractions”
of the pairs (a, b) and (x, y), respectively. However, S does not contain either as (ai+1, b)

is adjacent to (x, y) and (x, bi−1) is adjacent to (a, b).
We then let FCBP(i, S), for “first in a contraction blocking pair” at i, denote the set of

all (a, b) ∈ S for which there is some (x, y) ∈ S such that ((a, b), (x, y)) is a contraction
blocking pair at i. Also, we let LCBP(i, S), for “last in a contraction blocking pair” at i,
denote the set of all (x, y) ∈ S for which there is some (a, b) ∈ S such that ((a, b), (x, y))

is a contraction blocking pair at i. It follows from the definition that FCBP(i, S) 	= ∅ if and
only if LCBP(i, S) 	= ∅.

We need two more definitions that transform an independent set via a contraction. In
particular, the notation DFCL is an abbreviation for “delete first, contract last,” while DLCF
is an abbreviation for “delete last, contract first.” Set

DFCL(i, S) := (S − FCBP(i, S)) ∪ {(x, bi−1) : (x, y) ∈ LCBP(i, S)},
DLCF(i, S) := (S − LCBP(i, S)) ∪ {(ai+1, b) : (a, b) ∈ FCBP(i, S)}.

Lemma 4.7 (Contraction Lemma) Fix (n, k). Let S ∈ I and i ∈ [n + k].
(1) DFCL(i, S) ∈ I.
(2) DLCF(i, S) ∈ I.
(3) | DFCL(i, S)| + | DLCF(i, S)| = 2|S|.

Proof The conclusions of the lemma hold trivially if FCBP(i, S) and LCBP(i, S) are empty.
Now suppose that both of these sets are non-empty. We show that DFCL(i, S) ∈ I, noting
that the argument for showing DLCF(i, S) ∈ I is symmetric.

The subset S ∩ DFCL(i, S) is independent because S is independent. Also, no two ele-
ments of DFCL(i, S)−S can be adjacent since they all end at bi−1. Toward a contradiction,
suppose there is some (z, w) ∈ S ∩ DFCL(i, S) and some (x, bi−1) ∈ DFCL(i, S) − S

with (z, w) adjacent to (x, bi−1). This requires x < w and z < bi−1 in Sk
n . Since

(x, bi) ∈ S, we know that (z, w) is not adjacent to (x, bi). This forces z = ai . As x < w,
then ((z, w), (x, bi)) is a contraction blocking pair at i so that (z, w) ∈ FCBP(i, S) and
(z, w) 	∈ DFCL(i, S), a contradiction. Thus DFCL(i, S) ∈ I.

From their definitions, it follows that

| DFCL(i, S)| = |S| − | FCBP(i, S)| + | LCBP(i, S)| and

| DLCF(i, S)| = |S| − | LCBP(i, S)| + | FCBP(i, S)|.
Adding these two identities yields | DFCL(i, S)| + | DLCF(i, S)| = 2|S|.

Similar to contraction blocking pairs, we also have expansion blocking pairs. An ordered
pair ((a, b), (x, y)) of critical pairs belonging to S is called an expansion blocking pair at i
when a = ai , y = bi+k , and x < b in Sk

n . Note that S does not contain either (ai−1, b) or
(x, bi+k+1).

Let FEBP(i, S) denote the set of all (a, b) ∈ S for which there is some (x, y) ∈ S such
that ((a, b), (x, y)) is an expansion blocking pair at i. Also, let LEBP(i, S) denote the set of
all (x, y) ∈ S for which there is some (a, b) in S such that ((a, b), (x, y)) is an expansion
blocking pair at i. As before, FEBP(i, S) 	= ∅ if and only if LEBP(i, S) 	= ∅.
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As with contractions, we define two sets which transform an independent set via an
expansion: “delete first, expand last” and “delete last, expand first.” Set

DFEL(i, S) := (S − FEBP(i, S)) ∪ {(x, bi+k+1) : (x, bi+k) ∈ LEBP(i, S)},
DLEF(i, S) := (S − LEBP(i, S)) ∪ {(ai−1, b) : (ai, b) ∈ FEBP(i, S)}.

The proof of the following lemma is essentially the same as for Lemma 4.7.

Lemma 4.8 (Expansion Lemma) Fix (n, k). Let S ∈ I(n, k) and i ∈ [n + k].
(1) DFEL(i, S) ∈ I.
(2) DLEF(i, S) ∈ I.
(3) | DFEL(i, S)| + | DLEF(i, S)| = 2|S|.

As this detail will be important later, we note that if | FCBP(i, S)| 	= | LCBP(i, S)|,
then one of | DFCL(i, S)| and | DLCF(i, S)| is larger than |S|, while the other is smaller.
An analogous statement holds for expansions. Furthermore, if S ∈ MSI, then DFCL(i, S),
DLCF(i, S), DFEL(i, S), and DLEF(i, S) are in MSI.

While the transformations in the contraction and expansion lemmas preserve member-
ship in MSI, they may not preserve membership in MI, as the following two examples
show. Also, they may transform a non-reversible set into a reversible set. We encourage the
reader to work through the claims of these two examples in preparation for the arguments
to follow in the next two sections.

Example 4.9 Let (n, k) be a pair with k < n ≤ 2k. Recall the following strict alternating
cycle, first introduced in Example 4.3:

C = {(a1, b2k+1−n), (ak+1, bk+1), (a2k+1, b2k+1)}.
Set

S := {(x, y) : a  x  y  b for some(a, b) ∈ C}.
Then the following statements hold.

(1) S ∈ MINR(n, k) and |S| = 2 + (2k + 2 − n)(2k + 1 − n)/2.
(2) FEBP(1, S) = {(a1, y) : b1  y  b2k+1−n} so | FEBP(1, S)| = 2k + 1 − n.
(3) LEBP(1, S) = {(ak+1, bk+1)} so | LEBP(1, S)| = 1.
(4) When n < 2k, DFEL(1, S) is a maximal non-reversible set which is smaller than S.

Also, DLEF(1, S) is a non-maximal reversible set.
(5) When n = 2k, both DFEL(1, S) and DLEF(1, S) are non-maximal reversible sets.

Example 4.10 Let (n, k) be a pair with n ≤ k. Set

S := {(x, y) : a  x  y  b for some(a, b) ∈ Max(S)},
where

Max(S) = {(a2, bk+1), (a1, bk+2−n), (ak+2, bk+2)}.
The set S is non-reversible as it contains the strict alternating cycle

C∗ = {(a1, b1), (a2, bk+1), (ak+2, bk+2)},
first introduced in Example 4.3. Then the following statements hold.

(1) S ∈ MINR(n, k) and |S| = (k + 1)(k + 2)/2 + 2 − n.
(2) FEBP(2, S) = {(a2, w) : bk+3−n  w  bk+1} so | FEBP(1, S)| = n − 1.
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(3) LEBP(2, S) = {(ak+2, bk+2} so | LEBP(k + 2, S)| = 1.
(4) The set DLEF(2, S) is the canonical reversible set consisting of all (x, y) ∈ Inc(A,B)

with a1  x  y  bk+1. In particular, DLEF(2, S) is the canonical reversible set
associated with the h-contiguous sequence (a1, a2, . . . , ak+1).

The notions of a contraction blocking pair and an expansion blocking pair are dual in the
natural symmetry on the crown, i.e., if φ is the automorphism of the crown Sk

n discussed
in Section 2.3, then ((a, b), (x, y)) is a contraction blocking pair at i in an independent set
S if and only if ((φ(a), φ(b)), (φ(x), φ(y))) is an expansion blocking pair at −i in φ(S).
Accordingly, the pitfalls identified for expansions in the preceding examples can also occur
for contractions.

5 Independent, Non-Reversible Sets: k < n ≤ 2k

This is the second of three sections devoted to the study of independent, non-reversible sets.
However, in this section, we only consider pairs (n, k) with k < n ≤ 2k and prove the
inequality in Theorem 1.5: when k < n ≤ 2k, if S ∈ INR(n, k), then |S| ≤ 2 + (2k −
n + 2)(2k − n + 1)/2. In fact, we do much more. We completely determine the family
MINR(n, k) of all maximal independent, non-reversible sets. Consequently, we know all
their possible sizes. Theorem 1.5 simply extracts the largest value among them.

For the remainder of this section, fix a pair (n, k) with k < n ≤ 2k and use the
abbreviations MINR = MINR(n, k), MSINR = MSINR(n, k) and INR = INR(n, k).

From Lemma 4.5, we know that every set S ∈ MINR contains a strict alternating cycle
of size 3. In the range k < n ≤ 2k, we can say more.

Proposition 5.1 If S ∈ INR, then every strict alternating cycle contained in S has size 3.

Proof Fix a set S ∈ INR and a strict alternating cycle C of size m in S. Since S is indepen-
dent, m 	= 2. Toward a contradiction, suppose m ≥ 4. By applying Lemma 4.2 to the pair
(S, C), we conclude that 4n ≤ mn ≤ 2(n + k). This implies n ≤ k, a contradiction.

From Proposition 4.5, we know that MINR = MINRD3 ∪ MINRO3. Furthermore,
Proposition 4.6 implies MINRO3 = {φ(S) : S ∈ MINRD3}, so both MINRD3 and
MINRO3 are non-empty when n ≤ 2k. However, it is not clear from their definitions that
MINRD3 and MINRO3 are disjoint. This is a detail we will discover.

Recall that for any (a, b), (x, y) ∈ Inc(A,B),we say (x, y) is contained in (a, b) pro-
vided a  x  y  b. The result is an inclusion order on Inc(A,B). In the descriptions to
follow, we will reference down sets and up sets in this poset on Inc(A,B).

We show that every set S ∈ MINRD3 is a down set in Inc(A,B). Using duality, every
set in MINRO3 is an up set in Inc(A,B). In contrast, there are canonical reversible sets
which are neither up sets nor down sets in Inc(A,B). To see this, consider the crown S5

4 and
the canonical reversible set in Example 2.5. The set contains (a7, b9) but does not contain
either (a7, b8) or (a6, b9). In the next section, when n ≤ k, the analysis of maximal, non-
reversible sets is considerably more complex as they too may be neither down sets nor up
sets in Inc(A,B).

If we fully understand either of the two subfamilies MINRD3 and MINRO3, then we
have all information for MINR. So, for the remainder of this subsection, we focus on
MINRD3 and emphasize our restriction to the case k < n ≤ 2k.
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At several steps in the discussion to follow, we will need the next proposition.

Proposition 5.2 There do not exist pairs (v1, v2) and (v3, v4) of points on the circle, each
of size at most k+1, so that (1) v1  v3  v2 and v1  v4  v2 and (2) for each i ∈ [n+k],
ui is in (v1, v2) or ui is in (v3, v4).

Proof Suppose to the contrary that two such pairs exist. By (1), (v1, v2) and (v3, v4) share
at least 2 points. Since each has size at most k + 1, (2) yields the inequality n + k ≤
2(k + 1) − 2 = 2k. However, this implies n ≤ k, a contradiction.

Next, we give a construction for sets belonging to MINRD3. Fix a positive integer t and
let C0 = {(xα, yα) : α ∈ [2t +1]} be an alternating cycle (in general, not strict) in Inc(A,B)

such that the following two conditions are satisfied:

(1) x1  y1 ≺ x2  y2 ≺ . . . ≺ x2t+1  y2t+1 ≺ x1; and
(2) for each α ∈ [2t + 1], the size of (xα, yα+t ) is k + 1.

In the discussion to follow, we refer to these two conditions as the Matching Conditions.
Given an alternating cycle C0 satisfying the Matching Conditions, we then let D(C0) be the
down set of C0, i.e. all pairs (x, y) ∈ Inc(A,B) for which there is an α ∈ [2t +1] with xα 
x  y  yα . If we let sα denote the size of (xα, yα), then |D(C0)| = ∑2t+1

α=1 sα(sα + 1)/2.

Example 5.3 When n = 47 and k = 42, the following incomparable pairs form an
alternating cycle C0 of size 7 satisfying the Matching Conditions for t = 3:

C0 = {(a1, b4), (a13, b20), (a25, b31), (a37, b43), (a51, b55), (a67, b67), (a78, b79)}.
It follows that

|D(C0)| =
(

5

2

)
+

(
9

2

)
+

(
8

2

)
+

(
8

2

)
+

(
6

2

)
+

(
2

2

)
+

(
3

2

)
.

These next two exercises are left for the reader. For the first, one may consider the 2t + 1
pairs (yα+t+1, xα) of length n with the property that, for any point u on the circle, there are
at most t + 1 values α for which yα+t+1  u  xα .

Exercise 5.4 If k < n ≤ 2k and t is a positive integer, then there is an alternating cycle C0 in
Inc(A,B) of size 2t +1 which satisfies the Matching Conditions if and only if t (n−k) ≤ k.

Exercise 5.5 If k < n ≤ 2k, t (n − k) ≤ k, and (s1, s2, . . . , s2t+1) is a sequence of positive
integers, then there is an alternating cycle C0 = {(xα, yα) : α ∈ [2t + 1]} satisfying the
Matching Conditions with the size of (xα, yα) equal to sα for each α ∈ [2t + 1] if and only
if

∑2t+1
α=1 sα = k + 2t + 1 − t (n − k).

As an illustration of the preceding exercise, we note that in Example 5.3, n = 47 and
k = 42 so that the maximum value of t is 8. We chose t = 3 in which case the sum of the
sizes of the seven pairs in C0 was 42 + 6 + 1 − 3 · 5 = 34. Note that when n = 2k, the
maximum value of t is 1 and all pairs must have size 1 as illustrated in Example 4.4.

Lemma 5.6 Let t ≥ 1 and let C0 = {(xα, yα) : α ∈ [2t + 1]} be an alternating cycle
satisfying the Matching Conditions. Then the down set D(C0) is in MINRD3.
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Proof Any two distinct pairs (x, y) and (x′, y′) in D(C0) are non-adjacent since there is
some α ∈ [2t + 1] so that both (x, y) and (x′, y′) are contained in (xα, yα+t ) which has
size k + 1. Also, S is non-reversible as it contains the alternating cycle C0. So D(C0) ∈
INR. Since there is a subset of C0 which constitutes a strict alternating cycle of size 3
by Proposition 5.1. Further, it is clear that this strict alternating cycle satisfies the Disjoint
Property.

To complete the proof, we need only show that D(C0) is a maximal independent set. Let
(a, b) be a pair in Inc(A,B) which does not belong to D(C0). We show there is some (x, y)

in D(C0) which is adjacent to (a, b) in Gk
n.

Suppose first that there is some α ∈ [2t + 1] with xα  a  yα . Since (a, b) 	∈ D(C0),
we have a  yα ≺ b. If a  yα ≺ xα+t+1  b, then (a, b) and (xα+t+1, yα) violate
Proposition 5.2. If a  yα ≺ b ≺ xα+t+1, then (a, b) is adjacent to (xα+t+1, yα+t+1).

So we may assume that there is some α where yα ≺ a ≺ xα+1. If a  b ≺ xα+t+1,
then (a, b) is adjacent to (xα+t+1, yα+t+1). If xα+t+1  b ≺ xα , then (a, b) is adjacent to
(xα, yα). These observations complete the proof of the lemma.

The next result asserts that the construction we have just presented actually defines the
family MINRD3.

Theorem 5.7 If k < n ≤ 2k and S ∈ MINRD3, then there is some t ≥ 1 and an alternating
cycle C0 of size 2t + 1 which satisfies the Matching Conditions and has the property that
S = D(C0).

Proof Fix S ∈ MINRD3. The span of a strict alternating cycle is the sum of the sizes of
the incomparable pairs which define the cycle. Of all the strict alternating cycles of size
3 contained in S which satisfy the Disjoint Property, we choose one with maximum span.
Call this cycle C := {(x1, y1), (x2, y2), (x3, y3)}. We now establish three claims needed to
complete the proof of Theorem 5.7.

Claim For each α ∈ {1, 2, 3}, the following two statements hold:

(1) x < yα in Sk
n for all x with yα ≺ x  yα+1; and

(2) xα < y in Sk
n for all y with xα+2  y ≺ xα .

Proof Fix x with yα ≺ x  yα+1 and suppose, toward a contradiction, that (x, yα) ∈
Inc(A,B). Since (xα, yα+1) ∈ Inc(A,B), both (x, yα) and (xα, yα+1) have size at most
k + 1. Because C satisfies the Disjoint Property, we have xα  yα ≺ yα+1. As a result,
(x, yα) and (xα, yα+1) violate Proposition 5.2.

For the second statement, suppose (xα, y) ∈ Inc(A,B). A similar contradiction is
reached by considering the pairs (xα, y) and (xα+2, yα).

Considering S as a subposet of Inc(A,B) ordered by inclusion, let Max(S) denote the
maximal elements of S.

Claim The pairs in C belong to Max(S). Furthermore, if (x, y) and (x′, y′) are distinct
pairs in Max(S), then they are disjoint.

Proof We first show that any pair (x, y) ∈ Max(S) overlaps at most one of the pairs in C.
If (x, y) ∈ Max(S) and (x, y) overlaps all three pairs in C, then there is some α for which
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(yα, xα+2) is contained in (x, y). However, (xα+2, yα) and (x, y) then violate Proposition
5.2.

Now suppose that there is a pair (x, y) ∈ Max(S) that overlaps (xα, yα) and (xα+1, yα+1)

but not (xα+2, yα+2). Using the previous claim, this implies that (x, y) is adjacent to
(xα+2, yα+2) in Gk

n. The contradiction completes the proof that a pair (x, y) ∈ Max(S)

overlaps at most one pair in C.
Now suppose that some (xα, yα) is not in Max(S). Then there is a pair (x, y) ∈ Max(S)

so that (xα, yα) is properly contained in (x, y). Because (x, y) does not overlap any other
pairs in C, it follows that we can replace (xα, yα) in C with (x, y) and obtain a strict alter-
nating cycle C′ whose span is larger than the span of C. The contradiction shows that the
pairs of C belong to Max(S).

We now show that all pairs in Max(S) are disjoint. To do this, we first show that no pair
in Max(S) − C overlaps a pair in C. Toward a contradiction, suppose (x, y) ∈ Max(S) − C

overlaps (x1, y1) ∈ C. Thus far we know that either x1 ≺ x  y1 ≺ y or x ≺ x1  y ≺ y1.
We supply the argument only for the first, as a similar proof holds for the second. Because
(x, y) overlaps at most one pair in C, we have x1 ≺ x  y1 ≺ y ≺ x2  y2. Since the size
of (x1, y) is less than the size of incomparable pair (x1, y2), we have (x1, y) ∈ Inc(A,B).
However, (x, y) and (x1, y1) are both in Max(S) so (x1, y) 	∈ S. Since S is a maximal
independent set, it follows that there is some (a, b) ∈ S with (a, b) adjacent to (x1, y) in
Gk

n. Then we must have (a, y1) ∈ Inc(A,B); otherwise (a, b) is adjacent to (x1, y1) in
Gk

n. Similarly, we must have (x, b) ∈ Inc(A,B); otherwise (a, b) is adjacent to (x, y). As
a result, the intervals (a, y1) and (x, b) violate Proposition 5.2, a contradiction. Therefore,
the intervals in Max(S) − C are disjoint from the intervals in C.

Finally, we consider two distinct pairs (x, y) and (x′, y′) in Max(S) − C. Toward a
contradiction, suppose that they overlap with x ≺ x ′  y ≺ y′. We have already established
that neither overlaps a pair in C. So we may assume x1  y1 ≺ x ≺ x′  y ≺ y′ ≺ x2 
y2. Because (x1, y2) ∈ Inc(A,B), we may conclude (x, y′) ∈ Inc(A,B). Furthermore,
(x, y′) 	∈ S because (x, y) ∈ Max(S). As before, this implies there exists (a, b) ∈ S with
(x, y′) adjacent to (a, b) in Gk

n. The same argument yields a violation of Proposition 5.2, a
contradiction. Thus all pairs in Max(S) are disjoint, completing the proof of the claim.

Claim The pairs in S form a downset in Inc(A,B).

Proof Let (x, y) ∈ Max(S) and let (x′, y′) be any pair from Inc(A,B) contained in (x, y).
Toward a contradiction, suppose (x′, y′) is not in S. Then there is some (a, b) ∈ S with
(a, b) adjacent to (x ′, y′) in Gk

n.
Choose a maximal element (z, w) ∈ Max(S) with (a, b) ⊆ (z, w). Since (x, y) ∈

Inc(A,B) while (a, b) and (x′, y′) are adjacent, we do not have (z, w) = (x, y). So (z, w)

and (x, y) are disjoint by the previous claim. This, together with the fact that x′ < b and
a < y′, implies that (x, y) and (z, w) are adjacent, a contradiction to the fact that S is an
independent set.

Let m = | Max(S)| and label the elements of Max(S) as {(zβ,wβ) : 1 ≤ β ≤ m} so that

z1  w1 ≺ z2  w2 ≺ z3  w3 ≺ · · · ≺ zm  wm ≺ z1.

Let α ∈ [m] and let (zα,wα) = (ai, bj ). Then we must have (ai, bj ) ∈ FEBP(i, S) ∩
LEBP(j − k, S). It follows immediately that there are distinct integers β, γ ∈ [m] so
that ((zα, wα), (zβ,wβ)) is an expansion blocking pair at i and ((zγ , wγ ), (zα,wα)) is an

Order (2019) 36:621–652640



expansion blocking pair at j −k. Furthermore, we may conclude that γ = β+1 since other-
wise (zβ+1, wβ+1) is adjacent to (zα,wα). Each pair in Max(S) participates in two blocking
pairs like this, so we may deduce that there is some t for which β = α + t and γ + t = α

wherein m = 2t + 1 and the size of (zα,wα+t ) is k + 1. This implies that C0 := Max(S) is
indeed a cycle which satisfies the Matching Conditions and S = D(C0). These observations
complete the proof of Theorem 5.7.

Having established the form of all sets in MINRD3, we proceed with the task of analyz-
ing the possible sizes. Let t be a positive integer and let C0 = {(xα, yα) : α ∈ [2t + 1]} be
an alternating cycle of size 2t + 1 satisfying the Matching Conditions. As we have already
noted,

|D(C0)| =
2t+1∑

α=1

(sα + 1)sα

2
.

Because Exercise 5.5 shows
∑2t+1

α=1 sα = k + 2t + 1 − t (n − k), a simple calculation
shows that |D(C0)| is maximized when there is at most one value of sα that is larger than
1. Accordingly, when t is fixed, the maximum value of |D(C0)| is attained when (1) xα =
aαk+1 and yα = bαk+1 for all α ∈ [2t] and (2) x2t+1 = a1 and y2t+1 = bk+1−t (n−k).
(Note that 1 ≤ k + 1 − t (n − k) ≤ k.) With these values, sα = 1 for all α ∈ [2t], while
s2t+1 = k +1− t (n−k). This yields |D(C0)| = 2t + (k +1− t (n−k))(k +2− t (n−k))/2
which is maximized when t = 1, resulting in the value 2 + (2k + 1 − n)(2k + 2 − n)/2.
With this observation, the proof of Theorem 1.5 is complete.

We comment that when k < n ≤ 2k, there is essentially only one extremal example. To
be more precise, for

C0 = {(a1, b2k−n+1), (ak+1, bk+1), (a2k+1, b2k+1)},
each set in MSINR is obtained from D(C0) via the natural symmetries φ and τ .

6 Independent, Non-Reversible Sets: n ≤ k

This is the third and last of the sections devoted to the study of independent, non-reversible
sets. Here, we will prove Theorem 1.6: if n ≤ k and S is an independent, non-reversible
set in Gk

n, then |S| ≤ (k + 1)(k + 2)/2 + 2 − n. With the construction given in Example
4.10, this inequality is best possible. As noted previously, we are actually able to determine
the entire family MSINR(n, k) of all maximum size independent, non-reversible sets, but
due to space limitations, we restrict our discussion to determining the common size of the
posets in this family.

We consider Theorem 1.6 to be our capstone result, with the difficulty rooted in the
fact that the family MINR(n, k) of maximal independent, non-reversible sets is much more
complicated when n ≤ k. To illustrate this complexity, the following anomaly shows the
existence of sets in MINR(n, k) which are neither up sets nor down sets in Inc(A,B) as
opposed to the structure found when k < n ≤ 2k in the previous section. (The proof of this
result is left as an exercise.)

Proposition 6.1 Let m be a positive integer and let J ⊆ [m] be arbitrary. Then there are
pairs (n, k) with n ≤ k, a set S ∈ MINR(n, k), and a set {(xi, yi) : 1 ≤ i ≤ m} ⊆
Inc(A,B) such that (1) (xi, yi) is contained in (xi+1, yi+1) for all i ∈ [m − 1] and (2)
(xi, yi) ∈ S if and only if i ∈ J .
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6.1 Further Details on Canonical Reversible Sets

Ironically, in order to prove a result about independent, non-reversible sets, we must first go
back and study canonical reversible sets in greater detail.

The results of this subsection apply to any pair (n, k). Let T be a canonical reversible
set. Then there is a uniquely determined h-contiguous sequence σ = (x1, x2, . . . , xk+1)

for which T = T (σ ). We refer to x1 as the base element of σ . When i ≥ 2, an ele-
ment xi is called a leading element of σ when xi is the first element in the contiguous
set {x1, x2, . . . , xi}. Dually, xi is referred to as a trailing element of σ when xi is the last
element of the contiguous set {x1, x2, . . . , xi}.

It is worth noting that that there are (n + k)2k canonical reversible sets in Gk
n since there

are n + k choices for the base element of σ . Then, for each i ≥ 2, there are two choices:
either xi is leading or trailing.

Recall that for each ai ∈ A, we have I (ai) = {bi, bi+1, . . . , bi+k}. Respecting their
appearance on the circle, bi is the first element of I (ai) and bi+k is the last. Dually, ai−k is
the first element of I (bi) and ai is the last. In the same sense, when 0 ≤ r ≤ k, a subset of
the form {bi, bi+1, . . . , bi+r } is an initial portion of I (ai) while {bi+r , bi+r+1, . . . , bi+k} is
a terminal portion. Analogously, an initial portion of I (bi) = {ai−k, . . . , ai} has the form
{ai−k, . . . , ai−r } while a terminal portion is of the form {ai−r , . . . , ai}, where 0 ≤ r ≤ k.

The following proposition is an easy exercise, following essentially from the definition
of a canonical reversible set.

Proposition 6.2 Let σ = (x1, x2, . . . , xk+1) be an h-contiguous sequence and let T =
T (σ ) be the canonical reversible set associated with σ . Then the following statements hold.

(1) B(x1, T ) = I (x1).
(2) If i ≥ 2 and xi is a leading element of σ , then B(xi, T ) is the initial portion of I (xi)

with k + 2 − i elements.
(3) If i ≥ 2 and xi is a trailing element of σ , then B(xi, T ) is the terminal portion of I (xi)

with k + 2 − i elements.

By symmetry, it follows that for each y ∈ B(T ), the set A(y, T ) is either an initial or
terminal portion of I (y).

Below are two elementary exercises. The first is a consequence of the order of x and x′
in the associated h-contiguous sequence.

Proposition 6.3 Let T be a canonical reversible set, and let (x, y), (x′, y′) ∈ T . If x 
y ≺ x ′  y′ and x′ < y in Sk

n , then (x, y′) ∈ T .

Proposition 6.4 Let T be a canonical reversible set, and let (ai, bj ) be a pair in T . Then
the following statements hold.

(1) If (ai, bj ) ∈ FEBP(i, T ), then (aj+1, bi+k) ∈ LEBP(i, T ).
(2) If (ai, bj ) ∈ LEBP(j, T ), then (aj−k, bi−1) ∈ FEBP(j, T ).
(3) If (ai, bj ) ∈ FCBP(i, T ), then (aj+n−1, bi) ∈ LCBP(i, T ).
(4) If (ai, bj ) ∈ LCBP(j, T ), then (aj , bi−n+1) ∈ FCBP(j, T ).

The next result will be quite useful in upcoming proofs.
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Lemma 6.5 Let C = {(xα, yα) : α ∈ [3]} be a strict alternating cycle in Inc(A,B) that
satisfies the Disjoint Property. If T is a canonical reversible set containing (x2, y2) and
(x3, y3), then there are integers m, p ∈ [n + k] so that the following statements hold.

(1) A(y2, T ) is a terminal portion of I (y2) starting at am.
(2) B(x3, T ) is an initial portion of I (x3) ending at bp.
(3) ap−k  am  x2  y2 ≺ x3  y3  bp  bm+k .
(4) (z, w) ∈ T whenever am  z  y2  w  bm+k .
(5) (z, w) ∈ T whenever ap−k  z  x3  w  bp.

Proof First we claim that A(y2, T ) is a terminal portion of I (y2). If instead A(y2, T ) were
an initial portion of I (y2), then (x1, y2) ∈ T because x1 is incomparable to y2 and x1 ≺
x2  y2. But (x1, y2) is adjacent to (x3, y3), a contradiction. A symmetric argument shows
that B(x3, T ) is an initial portion of I (x3).

Choose m, p ∈ [n + k] so that A(y2, T ) starts at am and B(x3, T ) ends at bp. The first
two statements of the lemma simply reflect these choices. Furthermore, since (am, y2) ∈ T

and (x3, bp) ∈ T , Proposition 6.3 implies (am, bp) ∈ T . The fact that am is incomparable
to bp yields the ordering in the third statement of the lemma.

By the choice of m, it follows that (am, y2) ∈ FEBP(m, T ). If y2 = br , then Propo-
sition 6.4 implies (ar+1, bm+k) ∈ LEBP(m, T ). Clearly, B(ar+1, T ) is an initial portion
of I (ar+1) ending at bm+k because of the blocking pair. Analogously, if x3 = as , then
A(bs−1, T ) is a terminal portion of I (bs−1) starting at ap−k .

Now, let (z, w) be a pair with am  z  y2  w  bm+k . We claim that (z, w) ∈ T .
This claim holds trivially if w = y2. When y2 ≺ w  bm+k , the claim is true by Proposition
6.3 because T contains both (z, br ) and (ar+1, w). The fifth statement of the lemma follows
from a similar argument.

Before turning to the main body of the proof for Theorem 1.6, we require one more result
that holds for any independent set. In particular, if S ∈ I, then we have the trivial inequality
|B(a1, S)| + |A(bk+2, S)| ≤ k + 1. But there are circumstances in which we can sharpen
this inequality.

Lemma 6.6 Let S ∈ I. If S contains pairs (a1, y), (x, bk+2) with a1  y ≺ x  bk+2, then
|B(a1, S)| + |A(bk+2, S)| ≤ k + 3 − n.

Proof Define a 3-coloring of [k + 1] as follows. Color i red if (a1, bi) ∈ S; blue if
(ai+1, bk+2) ∈ S; and green if neither (a1, bi) nor (ai+1, bk+2) are in S. The coloring is
well-defined as (a1, bi) and (ai+1, bk+2) are adjacent and cannot both belong to S.

With these definitions, it is clear that |B(a1, S)| + |A(bk+2, S)| is just the number of
integers in [k + 1] which have been colored red or blue. In the assumption of the lemma,
if y = bi and x = aj+1, then i is colored red, j is colored blue, and i < j . Let m

be the largest integer for which m is red and there exists j , m < j ≤ k + 1, such
that j is blue. Then let p be the least integer with m < p such that p is blue. Clearly,
all integers r with m < r < p are green. However, it is clear that p ≥ m + n − 1;
otherwise (a1, bm) is adjacent to (ap+1, bk+2). So there are at least n − 2 elements of
[k + 1] which are green. In turn, at most (k + 1) − (n − 2) = k + 3 − n are red or
blue.
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6.2 TheMain Body of the Proof of Theorem 1.6

Fix a pair (n, k) with n ≤ k. Since MSINRD3 and MSINRO3 are both non-empty (Lemma
1.4 and Proposition 4.6), we choose to focus on a set S ∈ MSINRD3. Toward a contra-
diction, assume that |S| > (k + 1)(k + 2)/2 + 2 − n. First we provide an outline of the
proof.

Recall that MSINRD3 is the family of all maximum size, independent, non-reversible
sets in Gk

n that contain a strict alternating cycle of size 3 which has the Disjoint Property.
For each S ∈ MSINRD3, let CD3(S) denote the family of strict alternating cycles of size 3
in S that have the Disjoint Property. Define CD3 to be the union of CD3(S) taken over all
S ∈ MSINRD3. Analogously, for each C ∈ CD3, we let MSINRD3(C) denote the family
of all S ∈ MSINRD3 with C ∈ CD3(S).

After establishing some tools, we show that the following strict alternating cycle (first
introduced in Examples 4.3 and 4.10) is in CD3:

C∗ = {(a1, b1), (a2, bk+1), (ak+2, bk+2)}.
We then find a set in MSINRD3(C

∗) such that, for each (x, y) in the family, both a1  x 
ak+2 and b1  y  bk+2. Once this is accomplished, the following lemma gives the final
contradiction.

Lemma 6.7 Consider a set S ∈ INR which contains a strict alternating cycle {(xα, yα) :
α ∈ [3]} in CD3 with x1 = a1 and y3 = bk+2. If A(S) ⊆ {a1, a2, . . . , ak+2} and B(S) ⊆
{b1, b2, . . . , bk+2}, then |S| ≤ (k + 1)(k + 2)/2 + 2 − n.

Proof Partition S as M1 ∪ M2 ∪ M3, where M1 consists of all (a, b) ∈ S with a = a1 or
b = bk+2, M2 consists of all (a, b) ∈ S with a2  a  b  bk+1, and M3 = S−(M1 ∪M2).
From Lemma 6.6, |M1| = |B(a1, S)| + |A(bk+2, S)| ≤ k + 3 − n.

To prove |M2| + |M3| ≤ k(k + 1)/2, we will define a 1–1 map f which assigns to each
(a, b) ∈ M3 a pair f (a, b) satisfying the following two conditions: (1) f (a, b) is contained
in (a2, bk+1) and (2) f (a, b) is adjacent to (a, b) (so f (a, b) 	∈ M2). Since the number of
pairs in Inc(A,B) which are contained in (a2, bk+1) is exactly k(k + 1)/2, the inequality
|M2| + |M3| ≤ k(k + 1)/2 follows.

If (a, b) ∈ M3, then there are integers i, j with 1 ≤ i < j ≤ k + 2 so that (a, b) =
(aj , bi) by the hypothesis of the lemma. Note i < j −2 as n ≥ 3. We then define f (a, b) =
f (aj , bi) = (ai+1, bj−1). It is easy to see that all requirements are met by this map.

The proof of the lemma is now complete since

|S| = |M1| + (|M2| + |M3|) ≤ (k + 3 − n) + k(k + 1)

2
= (k + 1)(k + 2)

2
+ 2 − n.

Now that we have an outline of the proof of Theorem 1.6, we begin with a lemma which
gives flexibility in applying the contraction lemma (Lemma 4.7). This is the first step as we
steer toward finding a set in MSINRD3 which contains cycle C∗.

Lemma 6.8 Let S ∈ MSINRD3 and i ∈ [n + k]. Under the assumption that |S| > (k +
1)(k + 2)/2 + 2 − n, both DFCL(i, S) and DLCF(i, S) belong to MSINR.
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Proof First note that if FCBP(i, S) = ∅, then DFCL(i, S) = DLCF(i, S) = S. If
both DFCL(i, S) and DLCF(i, S) are non-reversible, then the fact that | DFCL(i, S)| +
| DLCF(i, S)| = 2|S| forces both to belong to MSINR. So if the lemma fails, one or both
of DFCL(i, S) and DLCF(i, S) must be reversible. In this case, one of the following two
statements must apply:

(1) DFCL(i, S) is reversible and | DFCL(i, S)| ≥ |S|, or
(2) DLCF(i, S) is reversible and | DLCF(i, S)| ≥ |S|.

We assume the first statement applies and argue to a contradiction. From the details of
the argument, the proof for when the second statement holds is symmetric.

After a relabeling, we may assume i = 1. Let R denote the reversible set DFCL(1, S)

and let C = {(xα, yα) : α ∈ [3]} be any member of CD3(S). Clearly, one of the pairs
in C belongs to FEBP(1, S) because R is reversible. Then relabel the pairs in C so that
(x1, y1) ∈ FEBP(1, S) and x1 = a1.

Let T ∈ MR with R ⊆ T so that |S| ≤ |R| ≤ |T |. Since |S| > (k + 1)(k + 2)/2 + 2 −n,
it follows that |T −R| < n−2. We emphasize this inequality as many of our contradictions
result from this fact.

If T is not a canonical reversible set, then Theorem 1.3 implies |T | ≤ (k + 1)(k +
2)/2 − n(n − 1)/2 + 1. As |T | ≥ |S|, this contradicts our assumption about the size of S.
It follows that T is a canonical reversible set. As T contains the pairs (x2, y2) and (x3, y3),
let m, p ∈ [n + k] be the integers specified by Lemma 6.5. We now break our analysis into
two cases based upon the location of bp .
Case 1: Suppose y3  bp ≺ bn+k . Say y1 = bj . Since C is a strict alternating cycle,
we have (x3, y1) ∈ Inc(A,B). Therefore aj ≺ aj+n−1 ≺ x3. We further divide this case
according to the location of ap−k .

First suppose ap−k  aj+1  x2. By Lemma 6.5, it follows that T contains all n − 1
pairs in the following set:

N = {(aj+γ , bp) : γ ∈ [n − 1]}.
All pairs in N are adjacent to (x1, y1), so N ⊂ T − S. Furthermore, since bp 	= bn+k , we
know that N ∩ R = ∅ as all pairs in R − S end at bn+k . However, this would imply that
|T − R| ≥ n − 1, which contradicts the inequality |T − R| < n − 2.

Therefore, it must be the case that aj+1 ≺ ap−k  x2. Let t3 count the number of points
uδ on the circle with bp ≺ uδ ≺ a1 and t1 the number of points uδ with y1 ≺ uδ ≺ ap−k .
Because bp ≺ bn+k ≺ a1, we have t3 > 0. Similarly, t1 > 0. Now let s1 be the size of
(x1, y1). Then s1 > 0. Since s1 + t1 + t3 counts the number of points uδ on the circle with
bp ≺ uδ ≺ ap−k , we know that s1 + t1 + t3 = n − 1.

Now consider the pairs in the following set which are contained in T :

N ′ = {(am, bp+1−β : β ∈ [s1 + t1]} ∪ {(ap−k−1+γ , bp) : γ ∈ [s1 + t3]}.
Clearly, |N ′| = 2s1 + t1 + t3 − 1 ≥ s1 + t1 + t3 = n − 1. Furthermore, all pairs in N ′
are adjacent to (x1, y1) so N ′ ⊆ T − S. Since no pair in N ′ ends at bn+k , we conclude that
N ′ ∩ R = ∅. As before, this implies |T − R| ≥ n − 1, a contradiction.
Case 2: Suppose y3  bn+k  bp. Since C is a strict alternating cycle, we know (x1, y2) ∈
Inc(A,B). Then for every β ∈ [n−1], we have y2 ≺ b1−β  bn+k . It follows from Lemma
6.5 that all n − 1 pairs in the following set belong to T :

N ′′ = {(x2, b1−β) : β ∈ [n − 1]}.
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All pairs in N ′′ are adjacent to (x1, y1), so N ′′ ⊆ T − S. Furthermore, at most one pair
from N ′′ is in R as all pairs in R − S end at bn+k . This implies that |T − R| ≥ n − 2, a
contradiction.

With contradictions in all cases, this completes the proof when the first of the two state-
ments applies. By reviewing the steps in the argument, the proof when the second of the two
statements holds is symmetric. This completes the proof of the lemma.

The natural next step is to include an analogous result for expansions. This would require
a separate proof as we are working only with sets in MSINRD3. However, such a result is
not so straightforward. The following lemma for expansions shows that MSINRD3 is closed
under expansions with one possible exception. Although there is one new wrinkle in the
argument, many elements are quite similar to the preceding proof and, in those situations,
we will be brief.

Lemma 6.9 Let S ∈ MSINRD3 and i ∈ [n + k]. Under the assumption that |S| > (k +
1)(k + 2)/2 + 2 − n, either DFEL(i, S) and DLEF(i, S) are both in MSINR or one of the
following holds:

• DFEL(i, S) is reversible with | DFEL(i, S)| ≥ |S| and each strict alternating cycle
{(xα, yα) : α ∈ [3]} in CD3(S) has an α ∈ [3] such that xα = ai and yα+2 = bi+k+1.
Furthermore, each of these cycles C has a corresponding cycle C′ also in S where
C′ = (C − {(xα+1, yα+1)}) ∪ {(xα+1, y)} where the size of (y, xα+2) is 2.

• DLEF(i, S) is reversible with | DLEF(i, S)| ≥ |S| and each strict alternating cycle
{(xα, yα) : α ∈ [3]} in CD3(S) has an α ∈ [3] such that xα = ai−1 and yα+2 = bk+i .
Furthermore, each of these cycles C has a corresponding cycle C′ also in S where
C′ = (C − {(xα+1, yα+1)}) ∪ {(x, yα+1)} where the size of (yα, x) is 2.

Proof If DFEL(i, S) or DLEF(i, S) does not belong to MSINR, then one of the following
two statements applies:

(1) DFEL(i, S) is reversible and | DFEL(i, S)| ≥ |S|, or
(2) DLEF(i, S) is reversible and | DLEF(i, S)| ≥ |S|.

We show that if the first of these two statements holds, then we either obtain a contradic-
tion or we discover the structure of the alternating cycles described in the first statement of
the lemma. The proof for the second statement is analogous.

After a relabeling, we may assume i = 1. If DFEL(1, S) is reversible, then every strict
alternating cycle {(xα, yα) : α ∈ [3]} in CD3(S) must have xα = a1 for some α ∈ [3].
Arbitrarily fix a cycle C ∈ CD3(S) and relabel its pairs so that x1 = a1.

Let R denote the reversible set DFEL(1, S) where (x1, y1) ∈ FEBP(1, S). Choose T ∈
MR with R ⊆ T . Then T contains the pairs (x2, y2) and (x3, y3). Based on the size of S

and the relationship |S| ≤ |R| ≤ |T |, we conclude T must be a canonical reversible set
wherein |T − R| < n − 2. Let m, p ∈ [n + k] be the integers specified by Lemma 6.5.

We pause to note that if (x, y) ∈ R − S, then y = bk+2. As S was maximal, then
there must also be some (a, b) ∈ S − R which is adjacent to (x, y). Clearly, this requires
(a, b) ∈ FEBP(1, S), so a = a1.

We proceed by breaking the argument into cases based on the location of bm+k .
Case 1: Suppose y3  bn+k  bm+k . It follows that all n − 1 pairs in the following set

belong to T :
M = {(x2, b1−β) : β ∈ [n − 1]}.
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All pairs in M are adjacent to (x1, y1), so M ⊆ T − S. However, at most one pair from M

belongs to R − S since all pairs in R − S end at bk+2. This implies |T − R| ≥ n − 2, a
contradiction.

Case 2: Suppose y3  bm+k ≺ bn+k . Let y1 = bj . We further subdivide this case based
on the location of ap−k .

First suppose aj+1 ≺ ap−k  am. Using the same definitions and notation from the
proof of Lemma 6.8, it follows that T − S contains all pairs in the following set:

N ′ = {(am, bp+1−β : β ∈ [s1 + t1]} ∪ {(ap−k−1+γ , bp) : γ ∈ [s1 + t3]}.
Because a1  aj ≺ aj+1 ≺ ap−k , we conclude bp 	= bk+2. So at most 1 pair in N ′ belongs
to R. Since |N ′| ≥ n − 1, this implies that |T − R| ≥ n − 2, a contradiction.

Next consider the case where ap−k  aj+1  x2. Observe that T − S contains all n − 1
pairs in the following set:

M ′ = {(aj+γ , bp) : γ ∈ [n − 1]}.
Because x1 < y3 in Sk

n and x1 = a1, we have bk+2  y3  bp ≺ x1. If bp 	= bk+2, then
M ′ 	⊆ R which implies |T − R| ≥ n − 1, a contradiction.

Therefore, we may assume y3 = bk+2 = bp . Recall the original choice of C was arbitrary
with pairs relabeled so that x1 = a1. If DFEL(1, S) is not in MSINR, we explore the
characteristics of cycles in S. Furthermore, if x3 = a�, then (x2, b�−1) is in T by Lemma 6.5.
As (x2, b�−1) is not adjacent to any pair of the form (a1, y), we may conclude (x2, b�−1) ∈
S. Thus S contains the cycle {(a1, y1), (x2, b�−1), (a�, bk+2)}. A similar argument holds if
DFEL(1, S) is not in MSINR.

Fix a cycle C = {(xα, yα) : α ∈ [3]} in CD3. For each α ∈ [3], the set {(xα,w) : xα 
w  yα} is called the forward α-fan for C. Analogously, the set {(z, yα) ∈ Inc(A,B) : xα 
z  yα} is the backward α-fan for C. In general, when S ∈ MSINRD3(C) and α ∈ [3],
there is no reason that S should contain either the forward α-fan or the backward α-fan
for C. However, Lemma 6.10, which follows from Lemma 6.8, guarantees that MSINRD3
contains sets with fans.

Lemma 6.10 LetC ∈ CD3, and let f : [3] → {f,b}. Then there is a set S ∈ MSINRD3(C)

such that for each α ∈ [3], S contains the forward α-fan for C if f (α) = f and S contains
the backward α-fan for C if f (α) = b.

Proof We simply start with any set S ∈ MSINRD3(C) and repeatedly apply the contrac-
tion lemma, retaining the cycle C at each step. By Lemma 6.8, the result is another set
in MSINRD3(C). For example, say we desire a set with the forward 1-fan for C. Clearly
(x1, y1) ∈ S. Of all points ui on the circle with (1) x1  ui  y1 and (2) (x1, w) ∈ S for
all w with ui  w  y1, choose um as the unique one for which the size of (x1, um) is
minimum.

If x1 = am, then S contains the required forward 1-fan and we move on to other values
of α. If instead x1 	= am, then (x1, bm) ∈ LCBP(m, S). Furthermore, S′ = DFCL(m, S)

contains C, all pairs (x1, w) with um−1  w  y1, and all pairs belonging to the other two
fans. We can repeatedly apply these modifications until the desired set is obtained.

With Lemmas 6.8, 6.9, and 6.10 in hand, we proceed to show C∗ ∈ CD3. For each
C ∈ CD3 with C = {(xα, yα) : α ∈ [3]}, the pairs {(yα, xα+1) : α ∈ [3]} are considered the

Order (2019) 36:621–652 647



“gaps” of C. Define gα(C) to be the size of the gap (yα, xα+1) and define the spread of C

to be the quantity

max{gα(C) − gα+1(C) − gα+2(C) : α ∈ [3]}.
In turn, we let maxspread be the maximum value of the spread of C taken over all C ∈

CD3. Since 2 ≤ gα(C) ≤ n for all C ∈ CD3 and all α ∈ [3], then maxspread is at most
n − 4. Note that if C∗ ∈ CD3, then maxspread = n − 4, but to establish this will take some
work. First we find a cycle C ∈ CD3 with spread n − 4.

Claim 1 There is some C ∈ CD3 whose spread is n − 4. i.e. maxspread = n − 4.

Proof Among all cycles in CD3, let C be one with maximum spread. Fix S ∈
MSINRD3(C). Toward a contradiction, suppose the spread of C is less than n − 4. Label
the pairs in C so that the spread is g3(C) − g1(C) − g2(C).

If g3(C) < n, then use Lemma 6.10 to obtain a set S′ ∈ MSINRD3(C) which contains
the forward 3-fan for C and the backward 1-fan for C. If (x1, y1) = (ai, bj ) with i 	= j ,
then S′ also contains the cycle {(ai+1, y1), (x2, y2), (x3, y3)} which has larger spread than
C, a contradiction. So we may assume (x1, y1) = (ai, bi) and, similarly, we may assume
(x3, y3) = (ar , br ).

With g3(C) < n, (x1, y1) = (ai, bi), and (x3, y3) = (ar , br ), it must be the case that
g1(C) > 2. Otherwise x2 < y3 in Sk

n , which is not possible because C is a strict alternating
cycle. Likewise, we may conclude g2(C) > 2.

Because C has maximum spread, we see (ai, bi+1) 	∈ S. This implies (x1, y1) ∈
LEBP(i − k, S). As g3(C) < n ≤ k and (x3, y3) = (ar , br ), we conclude x3 	= ai−k .
Furthermore, x2 < y1, so x2 	= ai−k . Therefore, DFEL(i − k, S) contains the strict alter-
nating cycle {(x1, bi+1), (x2, y2), (x3, y3)} with spread larger than that of C. Therefore,
DFEL(i−k, S) 	∈ MSINR. The only alternative, according to Lemma 6.9, is that each cycle
in CD3(S) has a gap of size n. However, C has no such gap, a contradiction.

Lastly, suppose g3(C) = n and relabel the circle so x1 = a1 and y3 = bk+2. Because the
spread of C is less than n − 4, either g1(C) > 2 or g2(C) > 2. First suppose g1(C) > 2.
(An analogous argument holds if g2(C) > 2.) Because C has maximum spread, (x2, y2) =
(a�, y2) ∈ S but (a�−1, y2) 	∈ S. Therefore, (x2, y2) ∈ FEBP(�, S). Now observe that
a2 ≺ a� ≺ ak+2 and x2 = a� < y1 in Sk

n imply bk+2 ≺ bk+� ≺ y1. Thus y3 = bk+2 	= b�+k

and y1 	= b�+k . Therefore, DLEF(�, S) contains the cycle {(x1, y1), (a�−1, y2), (x3, y3)}
which has spread larger than that of C. By the choice of C, this implies DLEF(�, S) is not
in MSINR. As DLEF(�, S) ∈ INR, the first bullet point of Lemma 6.9 must apply. So
g1(C) = n. Furthermore, there is another cycle C′ in S with g3(C

′) = 2 and g2(C
′) =

g2(C). Thus the spread of C is n − g1(C) − g2(C) while the spread of C′ is n − 2 − g2(C),
which is larger as g1(C) > 2. This contradicts the choice of C.

With a contradiction in every case, we may conclude that maxspread = n − 4.

Let Csp denote the family of all C ∈ CD3 which have spread n − 4. For each C ∈ Csp ,
we may assume that the pairs in C have been labeled so that a1 = x1 and y3 = bk+2. Let
MSINRsp consist of all S ∈ MSINRD3 for which there is some C ∈ Csp with C contained
in S.

Claim 2 The strict alternating cycle C∗ = {(a1, b1), (a2, bk+1), (ak+2, bk+2)} is in Csp .
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Proof Choose C ∈ Csp for which the sum of the sizes of (x1, y1) and (x3, y3) is minimum.
Note that C = C∗ if this sum is 2, so we assume the sum is larger than 2 and argue to a
contradiction. We assume first that the size of (x1, y1) is at least 2. Let S ∈ MSINRsp(C)

contain the forward 1-fan for C.
Let y1 = bj . Then (x1, bj−1) ∈ S. If (aj , y2) ∈ S, we get an immediate contradiction,

since S contains the strict alternating cycle C′ obtained from C by replacing (x1, y1) and
(x2, y2) by (x1, bj−1) and (aj , y2).

It follows that (x2, y2) = (aj+1, y2) ∈ FEBP(j + 1, S). Because j ≥ 2, we have
(x3, y3) 	∈ LEBP(j + 1, S). Also, y1 	= bj+k+1 as x2 < y1 in Sk

n , so S′ = DLEF(j + 1, S)

contains C′. Therefore, DLEF(j + 1, S) 	∈ MSINR, however DLEF(j + 1, S) ∈ INR. By
Lemma 6.9, the only alternative is for DFEL(j + 1, S) to be reversible. In this case, since
x2 = aj+1, we must have g1(C) = n, a contradiction.

Now that we have C∗ in a set S from MSINRD3, we can steer toward the hypotheses
in Lemma 6.7, seeking a set S ∈ MSINRD3 with A(S) ⊆ {a1, a2, . . . , ak+2} and B(S) ⊆
{b1, b2, . . . , bk+2}. We establish one condition at a time.

Claim 3 There is some S ∈ MSINR(C∗) with A(S) ⊆ {a1, a2, . . . , ak+2}.

Proof Let S be any set in MSINR(C∗) which contains the backward 2-fan for C∗. For a
proof by contradiction, suppose (a, b) ∈ S with ak+2 ≺ a ≺ a1. Since S contains (a2, bk+1)

and S is independent, the intervals (a, b) and (a2, bk+1) must overlap. Let b = bj . Then
1 ≤ j ≤ k. However, since S contains the backward 2-fan for C, we have (aj+1, bk+1) ∈ S.
This is a contradiction since (a, b) and (aj+1, bk+1) are adjacent.

Claim 4 There is some S ∈ MSINR(C∗) with A(S) ⊆ {a1, a2, . . . , ak+2} and B(S) ⊆
{b1, b2, . . . , bk+2}.

Proof We consider only sets S ∈ MSINR(C∗) for which A(S) ⊆ {a1, a2, . . . , ak+2}, which
exist by Claim 3. Among these sets, let S be one for which the number of pairs (a, b) with
bk+2 ≺ b ≺ b1 is minimum. We suppose this minimum number is positive and argue to a
contradiction.

Of all pairs (a, b) ∈ S with bk+2 ≺ b ≺ b1, choose one of minimum size. Then there is
some i with 3 ≤ i ≤ k + 1 so that a = ai and (ai, b) ∈ FCBP(i, S).

We note that any pair (x, y) ∈ LCBP(i, S) has a1  x  ak+2. Furthermore, all pairs in
DFCL(i, S)−S end at bi−1. Therefore, all pairs in S′ = DFCL(i, S) start in {a1, . . . , ak+2},
and there are fewer pairs in S′ of the form (a, b) where bk+2 ≺ b ≺ b1. As C∗ is contained
in S′, this contradicts the choice of S.

With Claim 4 in hand, we have shown that there is a set S ∈ MSINRD3 with
{a1, a2, . . . , ak+2} and B(S) ⊆ {b1, b2, . . . , bk+2} that contains the strict alternating cycle
C∗. This set S satisfies the hypotheses of Lemma 6.7. Therefore, |S| ≤ (k + 1)(k + 2)/2 +
2 − n. However, throughout this subsection, we had assumed that each set in MSINR had
size greater than (k + 1)(k + 2)/2 + 2 − n. The contradiction completes the proof of Theo-
rem 1.6. Recall that this inequality is best possible as shown by the construction in Example
4.10.
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7 Closing Remarks

At the outset of the paper, we remarked that we were able to prove Theorem 1.1 without
settling the issue of whether α(Gk

n) = (k + 1)(k + 2)/2. To do so, we first obtained the full
characterization of sets in MINR(n, k) when k < n ≤ 2k. This resulted in the proof that
such sets have size at most 2 + (2k + 1 − n)(2k + 2 − n)/2, a quantity which is less than
(k + 1)(k + 2)/2.

When k ≥ 2n−6, it follows that dim(Sk
n) = 3. So to show that dim(Sk

n) = χ(Gk
n) in this

range, it is only necessary to prove that Gk
n is not 2-colorable. However, this follows from

a theorem of Cogis [2] which asserts that if P is a poset and G is the associated graph of
critical pairs, then dim(P ) ≤ 2 if and only if χ(G) ≤ 2. This is a non-trivial theorem and
the notation and terminology used by Cogis are quite different from the style and contents of
this paper. A more combinatorial proof of this result can be found in [5]. Regardless, when
k ≥ 2n − 6, it is an elementary exercise to show directly that χ(Gk

n) ≥ 3 by identifying an
odd cycle contained in this graph.

When n ≤ k < 2n − 6, we have dim(Sk
n) = 4. We were able to show that χ(Gk

n) = 4 in
this range by showing that Gk

n has so many triangles that no independent set could possibly
intersect them all. This construction is a much more substantive exercise.

As for open problems, there are two obvious challenges stemming from our work. We
have not been able to completely determine the sets which belong to MINR(n, k) when
n ≤ k, and we are not even certain that there is any reasonable way in which this can be
done. Also, when k < n ≤ 2k, it would be interesting to find a way to prove the inequality
in Theorem 1.5 without first finding all sets in MINR(n, k).

As noted in several recent research papers, dimension can be defined for a set of incom-
parable (or critical) pairs in a poset, with the dimension of the poset being the special case
where we consider the entire set of incomparable pairs. Accordingly, it would be of interest
to determine whether dim(S) = χ(S) for subsets S ⊆ Inc(A,B). We expect the answer to
be negative.

Finally, we should mention the classic problem of determining whether there is some
constant c0 ≥ 3 for which there is an infinite sequence {Pn : n ≥ 3} of posets such that
for each n ≥ 3, (1) dim(Pn) ≥ n; and (2) if Gn is the graph of critical pairs of Pn, then
χ(Gn) ≤ c0. If the answer is negative, then it will become an interesting challenge to
investigate classes of posets for which the dimension can be bounded as a function of the
chromatic number of the associated graph of critical pairs.
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