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Abstract
The original notion of dimension for posets is due to Dushnik and Miller and has been
studied extensively in the literature. Quite recently, there has been considerable interest in
two variations of dimension known as Boolean dimension and local dimension. For a poset
P , the Boolean dimension of P and the local dimension of P are both bounded from above
by the dimension of P and can be considerably less. Our primary goal will be to study
analogies and contrasts among these three parameters. As one example, it is known that the
dimension of a poset is bounded as a function of its height and the tree-width of its cover
graph. The Boolean dimension of a poset is bounded in terms of the tree-width of its cover
graph, independent of its height. We show that the local dimension of a poset cannot be
bounded in terms of the tree-width of its cover graph, independent of height. We also prove
that the local dimension of a poset is bounded in terms of the path-width of its cover graph.
In several of our results, Ramsey theoretic methods will be applied.
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1 Introduction

We investigate combinatorial problems for finite posets. As has become standard in the
literature, we use the terms elements and points interchangeably in referring to the members
of the ground set of a poset. We write x ‖ y in P when x and y are incomparable in a poset
P , and we let Inc(P ) denote the set of all ordered pairs (x, y) with x ‖ y in P . As a binary
relation, Inc(P ) is symmetric. Recall that a non-empty family R of linear extensions of P

is called a realizer of P when x < y in P if and only if x < y in L for each L ∈ R. Clearly,
a non-empty family R of linear extensions of P is a realizer of P if and only if for each
(x, y) ∈ Inc(P ), there is some L ∈ R for which x > y in L. The dimension of a poset P ,
denoted dim(P ), as defined by Dushnik and Miller in their seminal paper [6], is the least
positive integer d for which P has a realizer R with |R| = d .

For an integer n ≥ 2, the standard example Sn is the height 2 poset with minimal ele-
ments A = {a1, a2, . . . , an} and maximal elements B = {b1, b2, . . . , bn}. Furthermore,
ai < bj in Sn if and only if i �= j . As noted in [6], dim(Sn) = n, for all n ≥ 2. Also, dimen-
sion is clearly a monotonic parameter, i.e., if Q is a subposet of P , then dim(Q) ≤ dim(P ).
Accordingly, a poset which contains a large standard example as a subposet has large dimen-
sion. On the other hand, there are posets which do not contain the standard example S2 as a
subposet and nevertheless have large dimension. This observation is the poset analogue to
the fact that there are triangle-free graphs which have large chromatic number.

Quite recently, researchers have been investigating combinatorial problems for two vari-
ations of the Dushnik-Miller concept for dimension, known as Boolean dimension and local
dimension. The concept of Boolean dimension was introduced by Gambosi, Nešetřil and
Talamo in a 1987 conference paper [9], with the full version [10] appearing in journal form
in 1990. However, we use here the definition of Boolean dimension which appears in a
1989 paper by Nešetřil and Pudlák [28]. This paper was first presented in conference form
in 1987. Later, we will comment on the distinction between the two definitions.

On the other hand, the quite new notion of local dimension is due to Torsten Ueck-
erdt [37] who shared his ideas with participants of the workshop on Order and Geometry
held in Gułtowy, Poland, September 14–17, 2016. Ueckerdt’s new concept resonated with
researchers at the workshop, and it served to kindle renewed interest in Boolean dimension
as well.

Here is the definition for Boolean dimension. For a positive integer d , let 2d denote the
set of all 0–1 strings of length d . Such strings are also called bit strings. Let P be a poset
and let B = {L1, L2, . . . , Ld} be a non-empty family of linear orders on the ground set of
P (these linear orders need not be linear extensions of P ). Also, let τ : 2d → {0, 1} be
a function. For each pair (x, y) of distinct elements of P , we form a bit string q(x, y,B)

of length d which has value 1 in coordinate i if and only if x < y in Li . The pair (B, τ )

is a Boolean realizer1 when for each pair x, y of distinct elements of P , x < y in P

if and only if τ(q(x, y,B)) = 1. The Boolean dimension of P , denoted bdim(P ), is the
least positive integer d for which P has a Boolean realizer (B, τ ) with |B| = d . Clearly,
bdim(P ) ≤ dim(P ), since if R = {L1, L2, . . . , Ld} is a realizer of P , we simply take τ as
the function which maps (1, 1, . . . , 1) to 1 while all other bit strings of length d are mapped
to 0.

1In [10], a pair (B, τ ) with B = {L1, L2, . . . , Ld }, is considered a Boolean realizer only when there is some
i for which Li is a linear extension of P and τ(x, y) = 1 implies x < y in Li . We prefer to drop both these
restrictions, as is done in [28].
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Trivially, bdim(P ) = 1 if and only if P is either a chain or an antichain.2 Also,
bdim(Q) ≤ bdim(P ) when Q is a subposet of P . Clearly, bdim(P ) = bdim(P ∗) where P ∗
denotes the dual of P . It is an easy exercise to show that if bdim(P ) = 2, then dim(P ) = 2.
In [10], Gambosi, Nešetřil and Talamo show that dim(P ) = 3 if and only if bdim(P ) = 3.
However, their proof uses a more restrictive definition of Boolean dimension. In [35], Trot-
ter and Walczak simplify the proof given in [10] and show that it actually works for the more
general notion of Boolean dimension we are studying in this paper. It is an easy exercise to
show that all standard examples have Boolean dimension at most 4. In fact, bdim(Sn) = n

when 2 ≤ n ≤ 4 and bdim(Sn) = 4 when n ≥ 4.
Here is the definition for local dimension. Let P be a poset. A partial linear extension,

abbreviated ple, of P is a linear extension of a subposet of P . Whenever L is a family of
ple’s of P and u ∈ P , we set μ(u,L) = |{L ∈ L : u ∈ L}|. In turn, we set μ(L) =
max{μ(u,L) : u ∈ P }. A non-empty family L of ple’s of a poset P is called a local realizer
of P if the following two conditions are satisfied:

(1) If x ≤ y in P , there is some L ∈ L for which x ≤ y in L;
(2) if (x, y) ∈ Inc(P ), there is some L ∈ L for which x > y in L.

The local dimension of P , denoted ldim(P ), is defined as

ldim(P ) = min{μ(L) : L is a local realizer of P }.
Clearly, ldim(P ) ≤ dim(P ) for all posets P , since any realizer is also a local realizer. Also,
ldim(P ) = 1 if and only if P is a chain; ldim(Q) ≤ ldim(P ) if Q is a subposet of P ;
and if P ∗ is the dual of P , then ldim(P ∗) = ldim(P ). It is an easy exercise to show that
if ldim(P ) = 2, then dim(P ) = 2. In presenting his concept to conference participants,
Ueckerdt [37] noted that the local dimension of a standard example is at most 3. In fact,
ldim(Sn) = n when 2 ≤ n ≤ 3 and ldim(Sn) = 3 when n ≥ 3.

In this paper, we give analogies and contrasts between (Dushnik-Miller) dimension,
Boolean dimension and local dimension. Although our results touch on several other topics,
we consider the connections with structural graph theory, given in Section 5, our main the-
orems. A number of open problems remain, and we give a summary listing in the closing
section.

Our arguments will use the following notational conventions:

(1) If n is a positive integer, then we use the now standard notation [n] to represent
{1, 2, . . . , n}.

(2) Let L = {L1, L2, . . . , Lt } be a family of ple’s of a poset P . If x ∈ P , and μ(x,L) =
m, then there are integers j1 < j2 < · · · < jm so that x is in Ljα for each α ∈ [m]. In
this case, we will say that occurrence α of x is in Ljα .

(3) We will make use of the general form of Ramsey’s theorem: For every triple (k, h, r)

of positive integers with h ≥ k, there is a least positive integer Ram(k, h; r) so that if
n ≥ Ram(k, h; r) and ϕ is any coloring of the k-element subsets of [n] using r colors,
then there is an h-element subset H of [n] so that ϕ maps all k-element subsets of H

to the same color.

2In [7], Felsner, Mészáros and Micek consider pairs x, y of not necessarily distinct elements of P so a
query q(x, y,B) has coordinate i set to 1 if and only if x ≤ y in Li . With this restriction, the func-
tion τ is constrained to send the constant string (1, 1, . . . , 1) to 1, so that a non-trivial antichain has
Boolean dimension 2. For all other posets, their definition and ours give exactly the same value for Boolean
dimension.
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2 Forcing Large Boolean Dimension and Large Local Dimension

Since standard examples have small Boolean dimension and small local dimension, it is
of interest to explore what can cause these two parameters to be large. We start with an
example of a well known family of posets where dimension, local dimension and Boolean
dimension all grow together.

When n ≥ 2, we let In denote the canonical interval order whose elements are the closed
intervals of the form [i, j ] where i and j are integers with 1 ≤ i < j ≤ n. The partial order
on In is defined by setting [i, j ] < [k, l] in In when j < k. As is well known, the poset In

does not contain the standard example S2, but the dimension of In goes to infinity with n.
In fact, the value of dim(In) is now known to within an additive constant (see the remarks
in [2]). We now explain why both ldim(In) and bdim(In) tend to infinity. We start with the
result for local dimension.

Theorem 2.1 For each s ≥ 1, if n ≥ Ram(4, 7; s2), then ldim(In) > s.

Proof Suppose to the contrary that for some s ≥ 1, and n ≥ Ram(4, 7; s2) we have
ldim(In) ≤ s. Let L = {Li : 1 ≤ i ≤ t} be a local realizer for In with μ(In,L) ≤ s. Con-
sider a 4-element subset {a, b, c, d} of [n] with a < b < c < d . Then there is some least
positive integer m ∈ [t] so that [a, c] > [b, d] in Lm. We then set ϕ({a, b, c, d}) = (α, β)

where occurrence α of [a, c] is in Lm and occurrence β of [b, d] is in Lm. Now, we have a
coloring of the 4-element subsets of [n] using s2 colors.

In view of our choice for the size of n, we know there is some 7-element subset H =
{a, b, c, d, e, f, g} of [n] and a color (α, β) so that all 4-element subsets of H are mapped to
(α, β). We may assume, without loss of generality, that a < b < c < d < e < f < g. Now
consider the subset {a, c, d, g}. Then let m be the least positive integer so that [a, d] > [c, g]
in Lm. Then occurrence α of [a, d] is in Lm as is occurrence β of [c, g].

Now consider the set {b, c, f, g}. Since occurrence β of [c, g] is in Lm, then the least m′
such that [b, f ] > [c, g] in Lm′ is m′ = m and occurrence α of [b, f ] is also in Lm.

Now consider the set {b, e, f, g}. Since occurrence α of [b, f ] is in Lm, we know that
occurrence β of [e, g] is also in Lm. Furthermore, we know that [b, f ] > [e, g] in Lm.
Finally, we consider the set {a, b, d, f } and conclude that [a, d] > [b, f ] in Lm. In partic-
ular α = β. However, we have now shown that [a, d] > [b, f ] > [e, g] in Lm. This is a
contradiction since [a, d] < [e, g] in In.

Here is the analogous result for Boolean dimension.

Theorem 2.2 For each d ≥ 1, if n ≥ Ram(4, 6; 2d), then bdim(In) > d .

Proof Suppose to the contrary that for some d ≥ 1, and n ≥ Ram(4, 6; 2d) we have
bdim(In) ≤ d . Let (B, τ ) be a Boolean realizer for In with B = {L1, L2, . . . , Ld}. Then
for each 4-element subset {a, b, c, d} of [n] with a < b < c < d, we define the coloring ϕ

by setting ϕ({a, b, c, d}) = q([a, c], [b, d],B).
In view of our choice for n, we may assume that there is some binary string σ of length

d and a 6-element subset H = {a, b, c, d, e, f } of [n], such that a < b < c < d <

e < f , so that ϕ maps all 4-element subsets of H to σ . In particular, ϕ assigns the color
σ to the 4-element subsets {a, b, c, e} and {b, d, e, f }, that is, q([a, c], [b, e],B) = σ =
q([b, e], [d, f ],B).
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Now let i ∈ [d]. If σ(i)=1, then [a, c]< [b, e]< [d, f ] in Li . If σ(i)=0, then [d, f ]<
[b, e]< [a, c] in Li . However, this shows that σ =q([a, c], [b, e],B) = q([a, c], [d, f ],B).
This is a contradiction since [a, c] < [d, f ] in In, so τ(q([a, c], [d, f ],B)) = 1, but [a, c]
and [b, e] are incomparable, so τ(q([a, c], [b, e],B)) = 0.

Next, we present a family for which dimension and local dimension are unbounded
but Boolean dimension is bounded. For a pair (d, n) of integers with 2 ≤ d < n, let
P(1, d; n) denote the poset consisting of all 1-element and d-element subsets of [n] par-
tially ordered by inclusion. We abbreviate the dimension, Boolean dimension and local
dimension of P(1, d; n) as dim(1, d; n), bdim(1, d; n) and ldim(1, d; n), respectively.
Dushnik [5] calculated dim(1, d; n) exactly when d ≥ 2

√
n, and Spencer [29] showed that

for fixed d , dim(1, d; n) = �(log log n). Historically, there has been considerable inter-
est in the case where d = 2. Combining results of Hoşten and Morris [13] with estimates
of Kleitman and Markovsky [23], the following theorem follows easily (see the comments
in [2]).

Theorem 2.3 For every ε > 0, there is an integer n0 so that if n > n0 and

s = lg lg n + 1/2 lg lg lg n + 1/2 lg π + 1/2,

then s − ε < dim(1, 2; n) < s + 1 + ε.

As a consequence, for almost all large values of n, we can compute the value of
dim(1, 2; n) exactly; for the remaining small fraction of values, we are able to compute two
consecutive integers and say that dim(1, 2; n) is one of the two.

We are not able to compute the value of ldim(1, 2; n) as accurately, but at least we can
show that ldim(1, 2; n) goes to infinity with n.

Theorem 2.4 For each s ≥ 1, if n ≥ Ram(3, 4; s2), then ldim(1, 2; n) > s.

Proof Fix s ≥ 1 and let n ≥ Ram(3, 4; s2). We assume that L = {L1, L2, . . . , Lt } is a local
realizer for P = P(1, 2; n) with μ(P,L) ≤ s and argue to a contradiction. In the argument,
we abbreviate the singleton sets in P(1, 2; n) by omitting braces, i.e., the singleton set {a}
will just be written as a. Now the partial order is that an integer a ∈ [n] is less than a
2-element set S in P(1, 2; n) when a ∈ S.

Now let T = {a, b, c} be a 3-element subset of [n]. We may assume without loss of
generality that a < b < c. Since b �∈ {a, c}, there is some least integer m ∈ [t] with
b > {a, c} in Lm. Then there is an ordered pair (α, β) ∈ [s]×[s] of (not necessarily distinct)
integers so that occurrence α of b is in Lm and occurrence β of {a, c} is in Lm. We then
have a coloring ϕ of the 3-element subsets of [n] using s2 colors. Since n ≥ Ram(3, 4; s2),
there is some color (α, β) and a 4-element subset H = {a, b, c, d} so that all 3-element
subsets of H are assigned color (α, β). Again, we may assume without loss of generality
that a < b < c < d .

We consider first the 3-element subset {a, b, d} and note that there is some m ∈ [t] for
which b > {a, d} in Lm. Furthermore, occurrence α of b is in Lm while occurrence β of
{a, d} is in Lm. Now consider the subset {a, c, d}. Since occurrence β of {a, d} is in Lm,
we must have occurrence α of c in Lm with c > {a, d} in Lm.

Now consider the subset {a, b, c}. Since occurrence α of b is in Lm, we must then have
b > {a, c} in Lm. On the other hand, if we consider the subset {b, c, d}, since occurrence α

of c is in Lm, we must have c > {b, d} in Lm. We then have {b, d} < c < {a, c} < b in Lm,
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which is a contradiction to the fact that b < {b, d} in every ple of P(1, 2; n) where b and
{b, d} appear.

Since P(1, 2; n) is a subposet of P(1, d; n + d − 2), it follows that for fixed d ≥ 2,
ldim(1, d; n) tends to infinity with n. However, as we will soon see bdim(1, d; n) is bounded
in terms of d .

For the family P(1, d; n), every maximal element is comparable with exactly d elements.
A careful reading of the proof of Theorem 3.6 on page 259 in [10] shows that they have
actually established the following result.

Theorem 2.5 Let P be a poset of height 2. If there is some positive integer d so that each
maximal element of P is comparable with at most d minimal elements, then bdim(P ) ≤ 2d .

The inequality in Theorem 2.5 is obviously tight for d = 1. We will now show that it
is tight for d ≥ 2. To accomplish, we will show that bdim(1, d; n) = 2d , provided n is
sufficiently large in terms of d . The argument will make use of the following elementary
observation. When (B, τ ) is a Boolean realizer of a poset P , it is easy to see that a linear
order Li in B can be replaced3 with L∗

i , the dual of Li , i.e., x < y in Li if and only if x > y

in L∗
i . Of course, we must also make the obvious modification to the map τ .

Theorem 2.6 For each d ≥ 2, there is some positive integer n0 so that if n ≥ n0, then
bdim(1, d; n) = 2d .

Proof We already know that bdim(1, d; n) ≤ 2d for all d ≥ 2. We fix a value of d ≥ 2,
suppose that bdim(1, d; n) < 2d for each n > d and argue to a contradiction.

Let (B, τ ) be a Boolean realizer for P(1, d; n) with B = {L1, L2, . . . , Ls} such that
s < 2d . As before, we take Min(P ) = [n] with Max(P ) the family of all d-element subsets
of [n].

First, we apply Erdős-Szekeres to the set [n] of minimal elements of P relative to
the order of these elements in the linear orders in B to obtain a subset A of [n] that
appears either in increasing order or decreasing order for each Li ∈ B. Using our previous
remarks concerning duals of linear orders in B, if n is sufficiently large, we may assume
there is a subset A of [n] with |A| = 2d + 1 so that the restriction of Lj to A is exactly
the same as the restriction of Lk to A whenever 1 ≤ j < k ≤ s. After relabeling, we
may assume A = {1, 2, . . . , 2d + 1} so that 1 < 2 < 3 < · · · < 2d + 1 in Lj for each
j = 1, 2, . . . , s.

There are 2d “gaps” between consecutive elements of A of the form (i, i + 1). One
of i and i + 1 is even and the other is odd. Now consider the maximal element S =
{2, 4, 6, . . . , 2d}. There are 2d gaps and at most 2d − 1 linear orders in B. It follows that
there is some gap (i, i +1) for which there is no integer j with j ∈ [s] so that i < S < i +1
in Lj . This implies that q(i, S,B) = q(i+1, S,B) so that τ(q(i, S,B)) = τ(q(i+1, S,B)).
This is a contradiction since one of i and i + 1 is in S while the other is not.

We comment in closing that Theorem 2.5 can be easily strengthened to yield the
following result.

3This statement does not apply for the definition of Boolean dimension used in [7].
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Theorem 2.7 For every d ≥ 1, there is a constant cd so that if P is poset and every maximal
element of P is comparable with at most d elements of P , then bdim(P ) ≤ cd .

Furthermore, we note that Trotter and Walczak [35] proved that if P is a poset and
ldim(P ) ≤ 3, then bdim(P ) ≤ 8443. However, they also proved that for every d ≥ 1, there
is a poset P with bdim(P ) ≥ d and ldim(P ) ≤ 4. Accordingly, in general, neither Boolean
dimension nor local dimension is bounded in terms of the other.

3 Basic Inequalities for Dimension

Dimension, local dimension and Boolean dimension are all monotonic parameters. But, it is
natural to ask whether they are “continuous”, i.e., if Q is a subposet of P obtained by remov-
ing a single point from P , are the values for Q close to the corresponding values for P ?

For dimension, the following elementary result was proved by Hiraguchi [12]. We
include a short proof as the basic idea will be important in the discussion to follow.

Theorem 3.1 Let P be a poset on two or more points and let x be an element of P . Then
dim(P ) ≤ 1 + dim(P − {x}).

Proof Let Q = P − {x}, let d = dim(Q) and let {L1, L2, . . . , Ld} be a realizer of Q. For
an integer i ∈ [d − 1], let Mi be any linear extension of P such that the restriction of Mi

to Q is Li . Let Y be the ground set of Q and let D(x) consist of all points of Q which are
less than x in P . Dually, let U(x) consist of all points of Q which are greater than x in P .
Define Md and Md+1 by:

Md = Ld(D(x)) < x < Ld(Y − D(x)) and

Md+1 = Ld(Y − U(x)) < x < Ld(U(x)).

Clearly, {M1, M2, . . . , Md+1} is a realizer of P .

We now prove the analogous inequality for local dimension, although the argument is a
bit more complex.

Theorem 3.2 Let P be a poset on two or more points and let x be an element of P . Then
ldim(P ) ≤ 1 + ldim(P − {x}).

Proof Let Q = P − {x}. We show that if d = ldim(Q), then ldim(P ) ≤ d + 1.
Now let L be a local realizer of Q. Clearly, we may assume that μ(y,L) = d for every

y ∈ Q. Let y0 ∈ Q and relabel the ple’s in L as {L1, L2, . . . , Lt } so that y0 ∈ Li when
i ∈ [d]. For each i ∈ [d], let Qi be the subposet of P determined by the ground set of Li .
It follows that if u ∈ Q, then u ∈ Qi for some i ∈ [d]. Then for each i ∈ [d], let Mi be
a linear extension of the subposet of P determined by elements of Qi and x for which the
restriction of Mi to Qi is Li .

Let I (x) = {u ∈ P : x ‖ u in P }. If I (x) = ∅, then

{Mi : i ∈ [d]} ∪ {Lj : d + 1 ≤ j ≤ t}
is a local realizer for P and this would imply that ldim(P ) = d . So we may assume that
I (x) �= ∅.
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Let W = {w ∈ I (x) : w �∈ Qd, x > w in Mi for all i ∈ [d − 1] with w ∈ Qi}. Also, set
Z = {z ∈ I (x) : z �∈ Qd, x < z in Mi for all i ∈ [d−1] with z ∈ Qi}. Note that W ∩Z = ∅.

The ple Ld has the block form A < {x} < B. Then let A′ = A∩I (x) and B ′ = B∩I (x).
We then define ple’s N1 and N2 as follows: The ground set of N1 is {x} ∪ Qd ∪ W and the
ground set of N2 is {x} ∪ Qd ∪ Z. These two ple’s will have the following block form:

N1 = A − A′ < {x} < A′ ∪ B ∪ W,

N2 = A ∪ B ′ ∪ Z < {x} < B − B ′.
Note that no element in W is less than an element in A−A′, or else it would be comparable
to x. The analogous assertion holds for elements in Z and B−B ′. Furthermore, the ordering
of elements of A − A′ in N1 is equal to the ordering of A − A′ in Ld . A similar assertion
holds for elements of A′ ∪ B in N1, B − B ′ in N2, and A ∪ B ′ in N2 when comparing to the
ordering in Ld . It follows that:

L′ = {Mi : 1 ≤ i < d} ∪ {Lj : d < j ≤ t} ∪ {N1, N2}
is a local realizer for P with μ(P,L′) = d + 1.

We do not know whether the analogous result holds for Boolean dimension. In fact, here
is the best inequality we have been able to obtain concerning the removal of a single point.

Theorem 3.3 Let P be a poset on two or more points and let x be an element of P . Then
bdim(P ) ≤ 3 + ldim(P − {x}).

Proof Let (B, τ ) be a Boolean realizer for Q = P − {x}, with |B| = bdim(Q) = d . Label
the linear orders in B as {L1, L2, . . . , Ld}. For each i ∈ [d], let Mi be the linear order on
the ground set of P defined by setting Mi = x < Li . Next, we set Md+1 = x < L∗

1.
Now let L be any linear extension of P . With a shift in subscripts and letting Y be the

ground set of Q, we follow the proof of Theorem 3.6 and set:

Md+2 = L(D(x)) < x < L(Y − D(x)) and

Md+3 = L(Y − U(x)) < x < L(U(x)).

Note that Md+2 and Md+3 are linear extensions of P .
Then set B̂ = {M1,M2, . . . , Md+3}. For a pair (u, v) of distinct points of P , we

claim that we can always determine whether u is less than v in P based on the bits
in the string q(u, v, B̂). First, we consider the bits associated with the linear orders in
{M1,M2, . . . , Md,Md+1}. If one of u and v is x, these bits are constant; otherwise they
are not. Furthermore, if one of u and v is x, we can tell whether u < v in P from
the bits associated with the linear extensions Md+2 and Md+3. If neither u nor v is x,
then we can tell whether u is less than v in P by applying τ to the bits associated with
{M1,M2, . . . , Md}.

3.1 Inequalities InvolvingWidth

In his classic 1950 paper [4], Dilworth observed in a first page footnote that an immedi-
ate consequence of his chain partitioning theorem is that the Dushnik-Miller dimension of
a poset is at most its width. The standard examples show that this elementary inequality
is best possible. To date, we have not been able to determine the maximum local dimen-
sion of a poset of width w (w ≥ 4). While it is bounded above by w, we do not know if
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this is a tight upper bound. The analogous question for Boolean dimension also remains
open.

Although it may seem surprising, we have been able to settle analogous questions for
more complex inequalities involving width. As one such example, the following inequality
was proved by Trotter [32].

Theorem 3.4 Let P be a poset and let A = Max(P ). If P − A is non-empty and has width
w, then dim(P ) ≤ w + 1 and this is sharp.

In [32], a family {Pw : w ≥ 2} of posets is constructed to show that the inequality in
Theorem 3.4 is tight for Dushnik-Miller dimension. These posets are shown in Fig. 1.

As noted in [32], it is straightforward to verify that for each w ≥ 3, the poset Pw is
(w + 1)-irreducible. However, it is an easy exercise to show that all the posets in this family
have local dimension at most 4, and they have Boolean dimension at most 4. Therefore it
remains to answer the following: Is the inequality in Theorem 3.4 tight for local dimension
or for Boolean dimension? We will explain why the answer for both parameters is yes, but
we elect to postpone the argument until we have discussed a second inequality involving
width.

The following inequality was also proved in [32].

Theorem 3.5 Let A be an antichain in a poset P with P − A non-empty. If the width of the
subposet P − A is w, then dim(P ) ≤ 2w + 1.

The argument to show that this inequality is best possible is more complex, and a con-
struction to accomplish this task is given by Trotter in a separate paper [31]. We now analyze
a “one-sided” variation of that construction.

For a pair (n,w) of positive integers, we define a poset P = P(n,w) containing nw+nw

points. The subposet P −Max(P ) contains nw elements that form a disjoint sum of w chains

Fig. 1 Showing the inequality is tight

Order (2020) 37:243–269 251



each of size n: C1 + C2 + . . . + Cw . We label the points of Ci as xi,1 < xi,2 < . . . < xi,n.
For each sequence σ = (j1, j2, . . . , jw) ∈ [n]w of positive integers taken from [n], there is
a maximal element aσ of P with aσ covering xi,ji

in P for each i ∈ [w]. Note that there are
nw maximal elements in P , and in the argument below, we will denote the set Max(P ) of
maximal elements of P just as A.

We also require a special case of a result which has become known as the “Product
Ramsey Theorem,” given in the classic text [11] as Theorem 5 on page 113. However, we
will use slightly different notation in discussing this result.

When A1, A2, . . . , At are k-element subsets of B1, B2, . . . , Bt , respectively, we refer to
the Cartesian product A1 × A2 × · · · × At as a kt -grid in B1 × B2 × · · · × Bt . Here is a
formal statement of the version of the Product Ramsey Theorem we will use.

Theorem 3.6 Let (k, t, h, r) be a 4-tuple of positive integers with h ≥ k. There exists a
least positive integer n0 = PRam(k, t, h, r) such that if n ≥ n0, g is an nt -grid and ϕ is a
coloring of all kt -grids in g with r colors, then there exists an ht -grid g′ in g such that all
kt -grids in g′ are mapped to the same color by ϕ.

With these preparatory remarks in hand, here is the result we will prove. This theorem
shows that the inequality in Theorem 3.4 is best possible for both local dimension and
Boolean dimension.

Theorem 3.7 For every w ≥ 1, there is an integer n0 so that if n ≥ n0, then
ldim(P (n, w)) = bdim(P (n, w)) = w + 1. Note that w is the width of P(n, w) −
Max(P (n, w)).

Proof We give full details of the proof for local dimension, which is slightly more compli-
cated. At the end, we will outline how an argument for Boolean dimension can be structured.

Since ldim(P (n,w) ≤ dim(P (n, w)) ≤ w+1, we need only show that ldim(P (n, w)) ≥
w+1, provided n is sufficiently large. This assertion holds trivially when w = 1, so we will
fix a value w ≥ 2, assume that ldim(P (n, w)) ≤ w for all n and argue to a contradiction.

We consider a large, but unspecified value of n, and we let L = {Li : i ∈ [t]} be a local
realizer of P(n, w) with μ(P,L) ≤ w. Clearly, we may assume μ(z,L) = w for every
z ∈ P(n, w).

Next, we describe a coloring ϕ of the 2w grids in C1 × C2 × · · · × Cw . For each i ∈ [w],
consider a 2-element subset Si = {ji, j

′
i } of Ci with ji < j ′

i . Note that g = S1×S2×· · ·×Sw

is a 2w grid. With the grid g, we associate the antichain {xi,j ′
i

: i ∈ [w]} and an ele-
ment a(g) of Max(P ). We set a(g) = aσ , where σ = (j1, j2, . . . , jw). Clearly, a(g)

is incomparable with each element of the antichain. Therefore for each i ∈ [w], there
is a least positive integer mi ∈ [t] so that a(g) < xi,j ′

i
in Lmi

. Then we set ϕ(g) =
((α1, β1), (α2, β2), . . . , (αw, βw)), where occurrence αi of a(g) and occurrence βi of xi,j ′

i

is in Lmi
, for each i ∈ [w].

The number of colors used by ϕ is w2w, thus we take n ≥ PRam(5, w, 2, w2w). Theo-
rem 3.6 implies that there exists a 5w-grid H1 × H2 × . . . × Hw such that every 2w-grid
within it is assigned the same color:

((α1, β1), (α2, β2), . . . , (αw, βw)).

We relabel the elements of P so that Hi = {xi,1, xi,2, xi,3, xi,4, xi,5} with xi,1 < xi,2 <

xi,3 < xi,4 < xi,5, for each i ∈ [w].
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Consider the 2w-grids of the form ga = S1×S2×· · ·×Sw where Si = {xi,1, xi,a} with a ∈
{2, 3, 4, 5}, for each i ∈ [w]. These grids show that there is a sequence (m1,m2, . . . , mw)

of not necessarily distinct integers so that for each i ∈ [w], occurrence βi of xi,2, xi,3, xi,4
and xi,5 all occur in Lmi

.
Let us show that the elements of the sequence (m1, m2, . . . , mw) are pairwise distinct.

Suppose, for a contradiction, that m1 = m2, noting that this argument can be applied
for the case where any other two elements of the sequence are equal. Let Si = {xi,4, xi,5}
for i ∈ [w] and consider the 2w-grids g1 = {x1,1, x1,2} × S2 × S3 × . . . × Sw , and
g2 = S1 ×{x2,1, x2,2}×S3 × . . .×Sw. We must have a(g1) < x1,4 in Lm1 , and a(g2) < x2,2
in Lm2 . As m1 = m2 this implies a(g1), x1,4, a(g2), and x2,2 appear in Lm1 . Since
x1,4 < a(g2) in P , it follows that a(g1) < x1,4 < a(g2) < x2,2 in Lm1 . This is not possi-
ble as x2,2 < a(g1) in P . Therefore the integers in the sequence (m1,m2, . . . , mw) are all
distinct.

Now let σ = (2, 2, 2, . . . , 2) and σ ′ = (3, 3, 3, . . . , 3). It follows that xi,2 < aσ <

xi,3 < aσ ′ < xi,4 in Lmi
for each i ∈ [w]. This accounts for all w of the occurrences of

aσ and aσ ′ . As a consequence, there is no ple L in L with aσ > aσ ′ in L. Since aσ is
incomparable to aσ ′ in P this implies that L is not a local realizer for P . The contradiction
completes the proof of the theorem for local dimension.

Here is an outline of the argument for Boolean dimension. As before, suppose that P =
P(n, w) has a Boolean realizer (B, τ ) with |B| = w and argue to a contradiction when n is
sufficiently large. First, use the Product Ramsey theorem to assume that, after relabeling of
the chains in P and the linear orders in B, we have the following two properties:

(1) for each (i, j) ∈ [w] × [w], the elements of Ci appear as a block in Lj , and
(2) for each a ∈ Max(P ), and for each i ∈ [w], if a covers a point x ∈ Ci and x < x′ in

Ci , then a is between x and x′ in Li .

Once this structure has been identified, it is easy to see that for every bit-string σ of length w,
there is some pair (a, a′) of distinct maximal elements such that q(a, a′,B) = σ . Clearly,
this results in a contradiction if we simply choose σ such that τ(σ ) = 1.

The original construction given in [31] has an antichain A with n chains C1+C2+· · ·+Cn

below A and n chains D1 + D2 + · · · + Dn above A. Now the size of A is n2w , where
each element in A covers exactly one element from each Ci and is covered by exactly one
element from each Dj , i, j ∈ [n]. Using this construction, it is straightforward to modify
the argument given above to show that the inequality in Theorem 3.5 is best possible for
both local dimension and Boolean dimension.

3.2 Dimension and Size

The following well known inequality is due to Hiraguchi [12].

Theorem 3.8 If n ≥ 2 and |P | ≤ 2n + 1, then dim(P ) ≤ n.

The family of standard examples shows that the preceding theorem is best possible
for Dushnik-Miller dimension. Accordingly, it is of interest to determine (or at least esti-
mate) the maximum value of the Boolean dimension and the maximum value of the local
dimension of a poset on n points.

Resolving this question for Boolean dimension is the principal result in Nešetřil and
Pudlak’s 1989 paper [28].
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Theorem 3.9 The maximum value of the Boolean dimension of a poset on n points is
�(log n).

The lower bound for the preceding theorem results from a simple counting argument.
Consider an integer n = 2m and the posets on 2m points with {a1, a2, . . . , am} ⊆ Min(P )

and {b1, b2, . . . , bm} ⊆ Max(P ). Clearly, there are 2m2
such posets. If they all have Boolean

dimension at most d , then we must have

(2m!)d22d ≥ 2m2
.

This implies that d = 
(log n). The argument given in [28] to show that the maximum
Boolean dimension of a poset on n points is O(log n) is more complex.

Quite recently, Kim et al. [20] have settled the analogous question for local dimension
using clever probabilistic methods. Both upper and lower bounds of their proof are non-
trivial.

Theorem 3.10 The maximum value of the local dimension of a poset on n points is
�(n/ log n).

3.3 Dimension and the Complement of Antichains

The following inequality was proved independently by Trotter [32] and Kimble [21].

Theorem 3.11 Let A be an antichain in a poset P and let n = |P − A|. Then dim(P ) ≤
max{2, n}.

The standard examples again show that the inequality in Theorem 3.11 is best possible.
Moreover, this inequality coupled with the fact that dim(P ) is at most the width of P yields
a simple proof of Hiraguchi’s inequality.

For local dimension we have the following analogue, a result where Theorem 3.10 plays
an important role.

Theorem 3.12 The maximum value of the local dimension of a poset P consisting of an
antichain A and n other points is �(n/ log n).

Proof The argument for the lower bound in Theorem 3.10 results from considering height 2
posets with n minimal elements and n maximal elements and showing that among them,
there is (at least) one whose local dimension is 
(n/ log n). Accordingly, the same lower
bound applies in this theorem as well.

The upper bound is a bit more complicated,4 and we find it convenient to prove a slightly
stronger result, i.e., we show that the local dimension of a poset P is O(n/ log n) when the
ground set of P can be partitioned as A ∪ X ∪ Y where

(1) A is a maximal antichain in P ;
(2) each point of X is less than some point in A;
(3) each point of Y is greater than some point in A; and
(4) |X| = |Y | = n.

4This part of the proof is a result of conversations in 2016 with S. Felsner, P. Micek and V. Wiechert.
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We now build a local realizer L = L1∪L2∪L3∪L4 of P . We start by setting L1 = {L1, L2}
where X < A < Y in L1, X < A < Y in L2 and the restriction of L1 to A is the dual of the
restriction of L2 to A. Using Theorem 3.10, we take the family L2 to be a local realizer of
the subposet Q determined by X∪Y with μ(u,L2) being O(n/ log n) for each point u ∈ Q.

Next, we construct a family L3 of ple’s of X ∪ A so that

(1) for each incomparable pair (x, a) with x ∈ X and a ∈ A, there is some L ∈ L3 with
x > a in L; and

(2) μ(u,L3) is O(n/ log n) for each u ∈ X ∪ A.

We begin by taking an arbitrary partition of X as X = X1 ∪ X2 ∪ · · · ∪ Xs where each
subposet Xi has size m = n/s. As usual in arguments of this type, we are assuming s and m

are integers. For each i ∈ [s], we let Ui denote the family of all upsets of Xi . Considering
Ui as partially ordered by inclusion, it is clear that Ui can be partitioned into at most

(
m

�m/2�
)

chains, as Ui is a subposet of the Boolean lattice (or subset lattice).
Now let S1 � S2 � S3 � · · · � Sr be any chain in this partition of Ui . We build a ple

L using the following recursion. Set D1 = S1 and let Di = Si − Si−1 for 2 ≤ i ≤ r . An
element x ∈ X will be in L if and only if x ∈ Sr . Second, we have x > y in L if there are
integers i and j with 1 ≤ i < j ≤ r so that x ∈ Di and y ∈ Dj . The order L assigns to a
pair x, y ∈ Sr when there is some i for which x, y ∈ Di is arbitrary.

To complete the definition of L we add those elements a ∈ A such that there is some
i for which a is incomparable with all elements of Si and comparable with all elements of
Xi − Si . Of course, we place a immediately under the lowest element of Si in L.

Now we count frequencies. Each element of X is in a unique subposet Xi . So, being
generous μ(x,L3) ≤ (

m
�m/2�

)
. On the other hand, for each i ∈ [s], an element a ∈ A appears

in at most one ple associated with chains in the partition of Ui . It follows that μ(a,L3) ≤ s.
So to optimize the construction, we choose s so that s = (

m
m/2

)
. This yields that μ(u,L3)

is O(n/ log n) for every u ∈ X ∪ A.
To complete the proof, the preceding construction is then repeated in a symmetric manner

to obtain a family L4 for Y ∪ A.

For Boolean dimension, we have been able to show that there is a constant C such that
bdim(P ) ≤ �2n/3� + C when P contains an antichain A and n other points. We do not
include the details as we feel the result is most likely far from best possible.

3.4 Dimension and the Product of Chains

For positive integers k and d , let kd denote the Cartesian product of d copies of a k-element
chain. As is well known, for all k ≥ 2, dim(kd) = d . It is an easy application of the Product
Ramsey Theorem to show that for each d ≥ 1, there is an integer kd so that if k ≥ kd , then
bdim(kd) = ldim(kd) = d . However, we are completely unable to settle whether or not
kd = 2 when d ≥ 2. An easy counting argument shows that bdim(2d) = 
(d/ log d), but
it might be the case that bdim(2d) = d . We know even less about the situation with local
dimension.

3.5 Components and Blocks

We assume that the reader is familiar with basic concepts of graph theory, including
the following terms: connected and disconnected graphs, components, cut vertices and k-
connected graphs for an integer k ≥ 2. Recall that when G is a graph, a connected induced
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subgraph H of G is called a block of G when H is a maximal subgraph with no cut
vertex.

Here are the analogous concepts for posets. A poset P is said to be connected if its cover
graph is connected. A subposet B of P is said to be convex if y ∈ B whenever x, z ∈ B and
x < y < z in P . Note that when B is a convex subposet of P , the cover graph of B is an
induced subgraph of the cover graph of P . A convex subposet B of P is called a component
of P when the cover graph of B is a component of the cover graph of P . A convex subposet
B of P is called a block of P , when the cover graph of B is a block in the cover graph
of P .

As is well known, when P is a disconnected poset with components C1, C2, . . . , Ct , for
some t ≥ 2, dim(P ) = max({2} ∪ {dim(Ci) : 1 ≤ i ≤ t}). Readers may note that the
preceding observation is just a special case of the formula for the dimension of a lexico-
graphic sum (see page 23 in [33]). For local dimension, it is an easy exercise to show that
ldim(P ) ≤ 2 + max{ldim(Ci) : 1 ≤ i ≤ t}, but we do not know whether this inequality is
best possible.

The corresponding result for Boolean dimension is more complicated and is due to
Mészáros et al. [25].

Theorem 3.13 Let P be a disconnected poset with components C1, C2, . . . , Ct , for some
t ≥ 2. If d = max{bdim(Ci) : 1 ≤ i ≤ t}, then bdim(P ) ≤ 2 + d + 4 · 2d .

The inequality in Theorem 3.5 cannot be improved dramatically, since it is shown in [25]
that for large d , there is a disconnected poset P with bdim(P ) = 
(2d/d) and bdim(C) ≤ d

for every component C of P .
The situation with blocks is more complex, even for Dushnik-Miller dimension. In [38],

Trotter, Walczak and Wang prove the following result for Dushnik-Miller dimension.

Theorem 3.14 If d ≥ 1 and dim(B) ≤ d for every block of a poset P , then dim(P ) ≤ d+2.
Furthermore, this inequality is best possible.

Neither the proof of the inequality in Theorem 3.14, nor the proof that the inequality
is best possible is elementary. Surprisingly, however, there is no analogous result for local
dimension, as Bosek et al. [3] prove that for every d ≥ 4, there is a poset P with ldim(P ) ≥
d , such that ldim(B) ≤ 3 whenever B is a block in P .

However, on the issue of blocks, Boolean dimension behaves like Dushnik-Miller
dimension, as the following inequality is proved in [25].

Theorem 3.15 If d ≥ 1 and bdim(B) ≤ d for every block B of a poset P , then bdim(P ) ≤
9 + d + 18 · 2d .

Again, this inequality cannot be improved dramatically, as it is shown in [25] that for
large d , there is a poset P with bdim(P ) = 
(2d/d) and bdim(B) ≤ d for every block B

of P .

4 Planar Posets and Dimension

A poset P is planar if its order diagram can be drawn in the plane without edge crossings.
If a poset is planar, then its cover graph is planar, although the converse does not hold in
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general. It is easy to see that the standard example Sn is planar when 2 ≤ n ≤ 4 and
non-planar when n ≥ 5.

In Fig. 2, we show a construction due to Kelly [19] showing that for all n ≥ 5, the
non-planar poset Sn is a subposet of a planar poset. This specific figure is a diagram where
n = 5, but it should be clear how we intend that the diagram should be modified for other
values of n. Of course, the Kelly posets show that there are planar posets with arbitrarily
large dimension.

In retrospect, the Kelly posets should have prompted research on the following questions:

(1) Must a planar poset with large dimension have large height?
(2) Must a planar poset with large dimension have many minimal elements (and many

maximal elements)?
(3) Must a planar poset with large dimension contain two large chains with all points in

one incomparable with all points in the other?
(4) Must a planar poset with large dimension contain a large standard example?

However, these natural questions lay dormant for more than 20 years, so here is a com-
pact summary of work done in the last five years. The first three questions in this listing
have been answered in the affirmative. However, the last question in the list has been open
for nearly 30 years.

In 2014, Streib and Trotter [30] proved that for every positive integer h, there is a least
positive integer ch so that if P is a poset of height h and the cover graph of P is planar,

Fig. 2 The Kelly construction
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then dim(P ) ≤ ch. The proof given in [30] merely established the existence of ch and
gave no useful information about its size. However, an exponential upper bound was given
in [16], and more recently, two groups have announced a polynomial upper bound on ch.
Joret, Micek, Ossona de Mendez and Wiechert have shown how their results in [16] can
be extended to obtain this conclusion. Meanwhile, Kozik et al. [24] have a much more
complicated argument which yields a better exponent. From Below, Joret et al. [17] showed
that the ch ≥ 2h − 2.

For planar posets, Joret et al. [17] have a linear upper bound, i.e., they show that a planar
poset of height h has dimension at most 192h + 96. They have also given 4h/3 − 2 as a
lower bound.

In [36], Trotter and Wang proved that the dimension of a planar poset with t minimal
elements is at most 2t +1. They also showed that this inequality is tight for t = 1 and t = 2.
For t ≥ 3, they were only able to show that there is a planar poset with t minimal elements
which has dimension t +3. Using duality, analogous statements hold for maximal elements.
Note, however, that there are no statements of this type for posets with planar cover graphs,
since as pointed out in [30], for every d ≥ 1, there is a poset P with a zero and a one such
that dim(P ) ≥ d and the cover graph of P is planar.

In [14], Howard, Streib, Trotter, Walczak and Wang proved that for each k ≥ 1, there is
a constant dk so that if P is a poset which does not contain two chains C1 and C2 each of
size k such that all points of C1 are incomparable with all points of C2, then the dimension
of P is at most dk .

In [8], Felsner, Trotter and Wiechert showed that if P is a poset and the cover graph of P

is outerplanar, then dim(P ) ≤ 4. They also gave an example to show that the inequality is
best possible. This same example shows that the inequality is tight for Boolean dimension
and local dimension. The argument for Boolean dimension is trivial, while the argument for
local dimension has the same spirit as the proof of Theorem 2.1. We leave the details of this
proof as an exercise.

In [28], Nešetřil and Pudlák note that the Kelly posets have Boolean dimension at most 4,
and they asked whether Boolean dimension is bounded for the class of planar posets. This
challenging question remains open. We note that it is conceivable (although we consider
it very unlikely) that Boolean dimension is bounded for planar posets but unbounded for
posets with planar cover graphs.

In presenting his concept of local dimension to conference participants, Ueckerdt noted
that standard examples have local dimension at most 3, and it is easy to see that in fact, the
Kelly posets have local dimension at most 3. This leads naturally to the question: Do planar
posets have bounded local dimension? However, this question has recently been answered
in the negative by Bosek et al. [3].

5 Connections with Structural Graph Theory

In this section, we explore which variants of dimension can be bounded in terms of path-
width or tree width. For the sake of completeness, we include here the basic definitions of
tree-width and path-width. Let G be a graph with vertex set V (G). A tree-decomposition of
G is a pair (T ,B) where T is a tree with vertex set V (T ), and B = {Bt : t ∈ V (T )} is a
family of subsets of V (G) satisfying:

(T1) for each v ∈ V (G) there exists t ∈ V (T ) with v ∈ Bt ; and for every edge uv in G

there exists t ∈ V (T ) with u, v ∈ Bt ;
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(T2) for each v ∈ V (G), if v ∈ Bt ∩ Bt ′′ for some t, t ′′ ∈ V (T ), and t ′ lies on the path in
T between t and t ′′, then v ∈ Bt ′ .

It is common to refer to the tree T as the host tree in the tree-decomposition, and when
t ∈ V (T ), the induced subgraph G[Bt ] of G is referred to as a bag. Note that, |Bt | is just
the number of vertices of G[Bt ].

The width of a tree-decomposition (T ,B) is defined as

max
t∈V (T )

{|Bt | − 1}.

The tree-width of G, tw(G), is the minimum width of a tree-decomposition of G.
A tree-decomposition (T , {Bt : t ∈ V (T )}) is called a path-decomposition when the

host tree T is a path. In turn, the path-width of G, pw(G), is the minimum width of a path-
decomposition of G. Observe that pw(G) ≥ tw(G) since every path-decomposition of G is
a tree-decomposition of G.

We encourage readers to consult the discussion of connections between Dushnik-Miller
dimension and structural graph theory as detailed in [15, 36] and [35]. Here we provide a
quick summary of highlights.

The first major result linking dimension and structural graph theory is due to Joret et
al. [15], who proved that the dimension of a poset is bounded as a function of its height and
the tree-width of its cover graph. More formally, they showed that for each pair (t, h) of
positive integers, there is a least positive integer d(t, h) so that if P is a poset of height h

and the tree-width of the cover graph of P is t , then dim(P ) ≤ d(t, h). A poset of height 1
is an antichain and has dimension at most 2, so it is of interest to study d(t, h) only when
h ≥ 2. Trotter and Moore [34] showed that d(1, h) = 3 for all h ≥ 2, and Joret et al. [18]
showed that d(2, h) ≤ 1276 for all h ≥ 2. As is well known, Kelly posets have cover graphs
with path-width at most 3, so d(t, h) goes to infinity with h when t ≥ 3.

Joret et al. [17] have recently shown that for fixed t ≥ 3, d(t, h) grows exponentially
with h. The best bound to date in the general case is due to Joret et al. [16], where they
prove:

2
(h�(t−1)/2�) ≤ d(t, h) ≤ 4(t+3h−3
t ). (1)

Now we turn our attention to analogous results for Boolean dimension and local dimen-
sion. In 2016, Micek and Walczak [26] proved that the Boolean dimension of a poset is
bounded in terms of the path-width of its cover graph, independent of its height. In 2017,
Felsner et al. [7] proved that in fact, the Boolean dimension of a poset is bounded in terms
of the tree-width of its cover graph, independent of its height.

Now on to local dimension. We will first prove the following result which asserts that
the local dimension of a poset is bounded in terms of the path-width of its cover graph,
independent of its height.

Theorem 5.1 For every t ≥ 1, there is a least positive integer d(t) so that if P is a poset
whose cover graph has path-width t , then ldim(P ) ≤ d(t).

The details of the proof show that d(t) is O(5(t+1)2
). However, we will then show that

the local dimension of a poset is not bounded in terms of the tree-width of its cover graph
independent of its height.

Theorem 5.2 For every d ≥ 1, there exists a poset P with ldim(P ) > d such that the cover
graph of P has tree-width at most 3.
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5.1 Local Dimension and Path-Width

Here we give the proof of Theorem 5.1. Our argument requires some preliminary material
on a concept introduced by Kimble [22]. The split of a poset P is the height 2 poset Q

whose minimal elements are {x′ : x ∈ P } and whose maximal elements are {x′′ : x ∈ P }.
Furthermore, for all x, y ∈ P not necessarily distinct, x′ < y′′ in Q if and only if x ≤ y

in P .
The following well known result is an easy exercise, but it is stated here for emphasis.

Theorem 5.3 Let Q be the split of a poset P . Then dim(P ) ≤ dim(Q) ≤ 1 + dim(P ).

Recent work in dimension theory has made use of a variant of the notion of a split. Let
P be a poset and let X denote the ground set of P . The split-in-place of P is the poset R

obtained as follows:

(1) The ground set of R is disjoint union of three sets X ∪ X′ ∪ X′′.
(2) X′ = {x′ : x ∈ X} = Min(R) and X′′ = {x′′ : x ∈ X} = Max(R).
(3) The subposet of R determined by X is P .
(4) In R, for each x ∈ X, x′ is only covered by x, and x′′ only covers x.

Observe that the split of P is a subposet of the split-in-place of P .
Essentially the same argument used to prove Theorem 5.3 yields the following extension.

Theorem 5.4 LetQ be the split and letR be the split-in-place of a poset P . Then dim(P ) ≤
dim(Q) ≤ dim(R) ≤ 1 + dim(P ).

We note that there is no analogue of this theorem for Boolean dimension. Indeed, while
the Boolean dimension of the canonical interval order is unbounded, it is easy to show that
the split of any interval order has Boolean dimension at most 6. Here is the analogue of the
preceding theorem for local dimension.

Lemma 5.5 Let Q be the split and let R be the split-in-place of a poset P . Then ldim(P ) ≤
ldim(R) ≤ 2 ldim(Q) − 1 and ldim(Q) ≤ ldim(R) ≤ 2 + ldim(P ).

Proof The inequalities ldim(P ) ≤ ldim(R) and ldim(Q) ≤ ldim(R) hold since both P and
Q are subposets of R.

Setting s = ldim(Q), we show that ldim(R) ≤ 2s − 1. Let L = {L1, L2, . . . , Lt } be
a local realizer of Q with μ(u,L) = s for every u ∈ Q. Recall that the ground set of R

is X ∪ X′ ∪ X′′, where X is the ground set of P . For each i ∈ [t], let X′
i consist of those

elements x′ ∈ X′ which are in Li and let X′′
i consist of those elements x′′ ∈ X′′ which are

in Li . Then let Xi consist of those elements x ∈ X for which either x′ ∈ X′
i or x′′ ∈ X′′

i .
For the poset R, let Mi be a ple whose ground set is Xi ∪ X′

i ∪ X′′
i such that the

restriction of Mi to X′
i ∪ X′′

i is Li . Checking the necessary details it can be seen that
M = {M1,M2, . . . , Mt } is a local realizer of R, with μ(R,M) ≤ 2s. However, since for
each x ∈ P there is some i with x′ < x′′ in Li it follows that μ(R,M) ≤ 2s − 1.

Next, we show that ldim(R) ≤ 2 + ldim(P ). Let d = ldim(P ) and let L =
{L1, L2, . . . , Lt } be a local realizer of P with μ(x,L) = d for all x ∈ P . For each i ∈ [t],
let Xi be the ground set of the ple Li . We then modify Li as follows: for each x ∈ Xi , we
add x′ immediately under x and we add x′′ immediately over x.
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It remains to witness the incomparabilities (a, b) where both a and b are in X′ or
both are in in X′′. Construct two linear extensions of R as follows. Let L be a linear
extension of P . Take M0 to be the linear extension of R with block structure X′ < X < X′′,
where the restriction to each of X,X′ and X′′ is ordered according to the corresponding
elements in L. Similarly, define M ′

0 to be the linear extension of R with block structure

X
′
< X < X

′′
, where X

′
and X

′′
are ordered dually to L, and X is ordered according to

L. Now, we can see that M = {M0, M
′
0} ∪ {Mi : i ∈ [t]} is a local realizer for R with

μ(R,M) ≤ 2 + d .

For the remainder of the proof, we fix a positive integer t and let P be a poset whose
cover graph has path-width at most t . We will then show that ldim(P ) is O(5(t+1)2

). Let Q

be the split of P , and let R be the split-in-place of P . The basic idea for the remainder of
the argument is to prove that the path-width of the cover graph of R is t + 1. We will use
this to show that the local dimension of Q is bounded in terms of t . The conclusion of our
theorem will then follow from Lemma 5.5.

We let Pn denote the path whose vertex set is [n] with vertices i and j from [n] adjacent
in Pn if and only if |i − j | = 1.

Then let G be the cover graph of P and let H be the cover graph of R.
Let PG = (Pm, {Bt : t ∈ [m]}) be a path-decomposition of G of width t . If u ∈ P we

define aPG
(u) = min{t ∈ [m] : u ∈ Bt } and bPG

(u) = max{t ∈ [m] : u ∈ Bt }. Since PG

is a path-decomposition, it follows that u ∈ Bt if and only if aPG
(u) ≤ t ≤ bPG

(u). Thus
we define the interval of u in PG to be the set of consecutive integers IntPG

(u) = {t ∈
[m] : aPG

(u) ≤ t ≤ bPG
(u)}. We may assume that the endpoints of the intervals in PG

are distinct and every bag contains an endpoint, i.e., for each i ∈ [m], there is exactly one
vertex u ∈ P with i ∈ {aPG

(u), bPG
(u)}.

Let us fix the path-decomposition for H to be P = (P3m, {B ′
t : t ∈ [3m]}), where

B ′
3i−j =

⎧
⎪⎪⎨

⎪⎪⎩

Bi ∪ {u′′} if j = 0 and i = aPG
(u) for some u ∈ P,

Bi ∪ {u′} if j = 1 and i = aPG
(u) for some u ∈ P,

Bi if j = 2 and i = aPG
(u) for some u ∈ P,

Bi if j ∈ {0, 1, 2} and i �= aPG(u) for all u ∈ P .

Since the path-decomposition of H is now fixed we let n = 3m, and we adopt similar
notation for intervals inP as done above. That is, if u ∈ R, then au = min{t ∈ [n] : u ∈ B ′

t },
bu = max{t ∈ [n] : u ∈ B ′

t }, and Int(u) = {t ∈ [n] : au ≤ t ≤ bu}. Note that P has width
t + 1 and that it satisfies the following properties:

(1) The endpoints of the intervals in P are distinct, i.e., for each i ∈ [n], there is at most
one vertex u ∈ R with i ∈ {au, bu}.

(2) For every u ∈ P , bu′ < au′′ .
(3) For every pair (u, v) of (not necessarily distinct) elements of P , if Int(v) intersects

either of Int(u′) and Int(u′′), then it contains both of them.

We now begin to use properties of P to build a local realizer L for Q. To avoid a
proliferation of primes and double primes in the presentation, we will adopt the following
conventions: the letter x, sometimes written with subscripts, will always denote a mini-
mal element of Q. Dually, the letter y will always denote a maximal element of Q. Also,
we take X as the set of all minimal elements of Q while Y is the set of all maxi-
mal elements of Q. We let Inc(X, Y ) denote the set of all pairs (x, y) ∈ X × Y with
(x, y) ∈ Inc(Q).
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We begin by including two linear extensions L0 and L′
0 in L such that for all (x, y) ∈

X × Y , x < y in both L0 and L′
0, in which:

(1) the restriction of L0 to X is the dual of the restriction of L′
0 to X, and

(2) the restriction of L0 to Y is the dual of the restriction of L′
0 to Y .

Given a set of ple’s L′ which satisfy the following condition, then L = L′ ∪ {L0, L
′
0} is a

local realizer for Q.

Reversing Min-Max Pairs For each pair (x, y) ∈ Inc(X, Y ), there is some L ∈ L′ with
x > y in L.

Of course, we must take care to keep μ(z,L) bounded in terms of t for all z ∈ Q. We
begin by taking ϕ as a proper coloring of the graph G in the sense that for each pair of
distinct vertices u, v ∈ P we have ϕ(u) �= ϕ(v) when Int(u) ∩ Int(v) �= ∅. Let us see why
such a coloring exists using t + 1 colors. Let P ′ be the path-decomposition of G resulting
from restricting the bags of P to only contain elements of G. Consider the ordering of V (G)

given by the left endpoints of intervals in P ′. We may greedily color vertices of G according
to this ordering. Since P ′ witnesses that pw(G) ≤ t , the resulting coloring does not use
more than t + 1 colors. Without loss of generality, we may assume that ϕ uses the integers
in [t + 1] as colors.

Second, for each z ∈ X ∪ Y , we let stack(z) denote the set of all points u ∈ P such that
Int(z) ⊆ Int(u). Note that | stack(z)| ≤ t +1. We then define a coloring π of the elements of
X ∪ Y . The colors used by π are vectors of length t + 1 and the coordinates are taken from
{0, 1, 2, 3}, so π uses 4t+1 colors. Below π(z)(i) is the i-th coordinate in the (t + 1)-tuple
of π(z). Note that there is at most one u ∈ stack(z) with ϕ(u) = i, because ϕ is a proper
coloring (by definition of ϕ). For each z ∈ X ∪ Y and each i ∈ [t + 1], we set:

(0) π(z)(i) = 0 if there is no element u ∈ stack(z) with ϕ(u) = i.
(1) π(z)(i) = 1 if there is an element u ∈ stack(z) with ϕ(u) = i and z < u in R.
(2) π(z)(i) = 2 if there is an element u ∈ stack(z) with ϕ(u) = i and z > u in R.
(3) π(z)(i) = 3 if there is an element u ∈ stack(z) with ϕ(u) = i and z ‖ u in R.

Next, we define a coloring τ of ordered pairs of elements from X ∪ Y . The colors used
by τ are (t +1)× (t +1) matrices with all entries taken from {0, 1, 2, 3, 4}, so τ uses 5(t+1)2

colors. For each pair (z, w) of elements of X ∪ Y and each pair (i, j) ∈ [t + 1]2, we set:

(0) τ(z,w)(i, j) = 0 if there is no pair (u,w) with u ∈ stack(z), v ∈ stack(w), ϕ(u) = i

and ϕ(v) = j .
(1) τ(z,w)(i, j) = 1 if there is a pair (u,w) with u ∈ stack(z), v ∈ stack(w), ϕ(u) = i,

ϕ(v) = j and u < v in P .
(2) τ(z,w)(i, j) = 2 if there is a pair (u,w) with u ∈ stack(z), v ∈ stack(w), ϕ(u) = i,

ϕ(v) = j and u > v in P .
(3) τ(z,w)(i, j) = 3 if there is a pair (u,w) with u ∈ stack(z), v ∈ stack(w), ϕ(u) = i,

ϕ(v) = j and u ‖ v in P .
(4) τ(z,w)(i, j) = 4 if there is a pair (u,w) with u ∈ stack(z), v ∈ stack(w), ϕ(u) = i,

ϕ(v) = j and u = v in P .

Let x, y ∈ R. We say x is left of y if and only if bx < ay . Under the same conditions,
we say y is right of x. Now define a coloring σ of the pairs in Inc(X, Y ) using 4-tuples
of the form (α1, α2, α3, α4). The first coordinate α1 is 0 if x is left of y and 1 if x is right
of y. The remaining three coordinates are defined by setting α2 = π(x), α3 = π(y) and
α4 = τ(x, y). Clearly, σ uses 2 · 42(t+1) · 5(t+1)2

colors.
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Since the number of colors used by σ is bounded in terms of t , to complete the proof, it
suffices to show that for each color � = (α1, α2, α3, α4) used by σ , we can determine a fam-
ily L(�) of ple’s so that (1) For each (x, y) ∈ Inc(X, Y ) with σ(x, y) = �, there is some
L ∈ L(�) with x > y in L; and (2) For each z ∈ X∪Y , μ(z,L(�)) is bounded in terms of t .

Fix a color � = (α1, α2, α3, α4) and consider the subset S(�) of Inc(X, Y ) consisting
of all pairs (x, y) ∈ Inc(X, Y ) with σ(x, y) = �. We will assume that α1 = 0, i.e., if
(x, y) ∈ S(�) then all our pairs will have x left of y. From the details of the argument, it
will be clear that the case α1 = 1 is symmetric. Of course, we will also assume that the set
S(�) is non-empty.

The next part of the proof will involve four claims. We begin by proving the following.

Claim 1 Let x1, x2 ∈ X and y1, y2 ∈ Y . Then the following two statements hold:

(1) If (x1, y1) and (x2, y1) are in S(�), and y1 is left of y2, then τ(x1, y2) = τ(x2, y2). In
particular, (x1, y2) ∈ S(�) if and only if (x2, y2) ∈ S(�).

(2) If (x2, y1) and (x2, y2) are in S(�), and x1 is left of x2, then τ(x1, y1) = τ(x1, y2). In
particular, (x1, y1) ∈ S(�) if and only if (x1, y2) ∈ S(�).

Proof Let us prove (1), noting that the proof for (2) follows from a similar argument. Sup-
pose τ(x1, y2)(i, j) = k for some (i, j) ∈ [t + 1]2 and k ∈ {0, 1, 2, 3, 4}. We show that
τ(x2, y2)(i, j) = k. This results in the following five cases

• Assume that k = 0. If π(y2)(j) = 0, then τ(x2, y2) = 0. However, if π(y2)(j) �= 0
then π(x1)(i) = 0. Since σ(x1, y1) = σ(x2, y1) this implies in particular that
π(x1)(i) = π(x2)(i). So π(x2)(i) = 0 and therefore τ(x2, y2) = 0.

• If k = 4, then i = j and there exists u ∈ stack(x1) ∩ stack(y2). Since x1 is left of
y1 and y1 is left of y2, then u ∈ stack(y1). Therefore τ(x1, y1)(i, i) = 4. This implies
τ(x2, y1)(i, i) = 4, as σ(x1, y1) = σ(x2, y1). Thus u ∈ stack(x2) and it follows that
τ(x2, y2)(i, i) = 4.

• For the case where k = 1, there is u ∈ stack(x1) and v ∈ stack(y2) such that ϕ(u) = i,
ϕ(v) = j, and u < v in P . Let u = u1u2 . . . um = v be a path in G that witnesses the
comparability u < v. It follows that ul ∈ stack(y1) for some l ∈ [m]. Suppose ϕ(ul) =
j ′. Let us assume that τ(x1, y1)(i, j

′) = 1, noting that the case where τ(x1, y1)(i, j
′) =

4 follows from an analogous argument. Since τ(x1, y1)(i, j
′) = 1, this is witnessed by

u ∈ stack(x1) and ul ∈ stack(y1). Since σ(x1, y1) = σ(x2, y1) and τ(x1, y1)(i, j
′) =

1, we conclude that τ(x2, y1)(i, j
′) = 1. Therefore there is u′ ∈ stack(x2) with ϕ(u′) =

i and u′ < ul . We now have u′ < v and therefore τ(x2, y2)(i, j) = 1.
• The case where k = 2 follows from an argument analogous to the one for k = 1.
• We have shown that τ(x1, y2) �= 3 if and only if τ(x2, y2) �= 3. Thus the result holds

when k = 3.

Claim 2 Let S ⊆ S(�). Then the following two statements hold:

(1) If there is some z ∈ X such that (z, y) ∈ S(�) whenever (x, y) ∈ S, then the set S is
reversible.

(2) If there is some w ∈ Y such that (x,w) ∈ S(�) whenever (x, y) ∈ S, then the set S is
reversible.

Proof We prove the first statement and note that the proof for (2) is symmetric. We argue
by contradiction and assume there is some k ≥ 2 for which there is a strict alternating cycle
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S = {(xi, yi) : i ∈ [k]} contained in S. Without loss of generality, we may assume that the
pairs of this cycle have been labeled so that y1 is left of yi for all i ∈ {2, 3, . . . , k}. Note
that (xi, yi) ∈ S and xi ‖ yi in R for all i ∈ [k]. Since (z, yi) ∈ S(�), it follows that z ‖ yi

for all i ∈ [k]. Because (x1, y1) and (z, y1) are in S(�) with y1 left of y2, Claim 1 guarantees
(x1, y2)∈S(�) since (z, y2)∈S(�), thus x1 ‖y2. This is not possible since x1 <y2 in S .

We consider the pairs in S(�) as edges in a bipartite graph G(�) whose vertex set is X∪Y

with vertex x ∈ X adjacent to vertex y ∈ Y in G(�) when (x, y) ∈ S(�). In general, the
graph G(�) may be disconnected and some of the components may just be isolated vertices.
Regardless, since a vertex from X ∪ Y belongs to at most one component of G(�), it is
enough to consider a subset of S(�) consisting of pairs determining a non-trivial component
of G(�). Let C be such a component, let SC be the edge set of C, and let XC and YC be,
respectively, the subsets of X and Y which are incident with at least one edge in SC . Also,
let x0 be the left-most element of XC .

Then using the graph-theoretic concept of distance in a connected graph, for each edge
(x, y) ∈ SC , we define ρ(x, y) = min{dist(x, x0), dist(y, x0)} to be the distance from the
edge (x, y) to the vertex x0. For each non-negative integer s, we let SC(s) denote the set of
edges (x, y) ∈ SC with ρ(x, y) = s. Note that SC(0) is just the set of edges (x0, y) ∈ SC

where y ∈ YC . The set XC(s) consists of all vertices x ∈ XC incident with an edge in
SC(s). The set YC(s) is defined analogously. It is obvious that for each x ∈ XC , there are at
most two values of s for which x ∈ XC(s). Furthermore, if there are two values, then they
are consecutive integers and the smaller of the two is odd. Similarly, if y ∈ YC , there are
at most two values of s for which y ∈ YC(s). If there are two values, they are consecutive
integers and the smaller of the two is even.

Claim 3 The following two statements hold:

(1) If s is a non-negative even integer, (x1, y) ∈ SC(s) and (x2, y) ∈ SC(s + 1), then x1 is
left of x2.

(2) If s is an odd positive integer, (x, y1) ∈ SC(s) and (x, y2) ∈ SC(s +1), then y1 is right
of y2.

Proof First, suppose that s = 0. Then since (x1, y) ∈ SC(0), we know that x1 = x0 and
therefore x1 is left of x2 since x0 was chosen to be the left-most element of XC . Now, we
argue by contradiction. Let s be the least positive integer for which one of the two statements
of the claim fails.

If s is a positive even integer and the claim fails for the pairs (x1, y) ∈ SC(s) and
(x2, y) ∈ SC(s + 1), then x2 is left of x1. Let (x1, y1) be any edge in SC so that
ρ(x1, y1) = s−1. Since the claim holds for s−1, we know that y1 is right of y. By Claim 1,
we conclude that (x2, y1) ∈ SC , so ρ(x2, y1) ≤ s − 1 because y1 is at distance s − 1 from
x0. Therefore ρ(x2, y) ≤ s, which contradicts the fact that ρ(x2, y) ∈ SC(s + 1). Therefore
s is not a positive even integer.

A similar contradiction is reached when s is a positive odd integer, and with this
observation, the proof of the claim is complete.

Accordingly, to complete the proof of our theorem, it is enough to show that for each
non-negative integer s and component C, there is a family LC(s) of ple’s with ground set
XC(S) ∪ YC(S) so that

(1) for each (x, y) ∈ SC(s), there is some L ∈ LC(s) with x > y in L; and
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(2) μ(x,LC(s)) and μ(y,LC(s)) are bounded in terms of t , for every x ∈ XC(s) and
every y ∈ YC(s).

The case s = 0 is easy since all the edges in SC(0) are of the form (x0, y), and clearly
the set of such pairs is reversible. Similarly, the case s = 1 is handled by Claim 2, since it
asserts that the set SC(1) is reversible.

Now we fix an integer s ≥ 2. Suppose first that s is even. For each x ∈ XC(s), there is a
unique right-most point w ∈ YC with (x,w) ∈ SC(s − 1). We call w the right-parent of x.
For each w ∈ YC , we then let XC(s,w) denote those elements x ∈ XC(s) for which w is the
right-parent of x. Clearly, when w1 �= w2, the sets XC(s,w1) and XC(s,w2) are disjoint.

For a vertex w ∈ YC for which XC(s,w) �= ∅, we then let YC(s,w) denote the set of all
y ∈ YC(s) for which there is some x ∈ XC(s,w) with (x, y) ∈ SC(s).

Claim 4 If w1 and w2 are distinct elements of YC , then YC(s,w1) ∩ YC(s,w2) = ∅.

Proof Suppose to the contrary that there is some y ∈ YC(s,w1) ∩ YC(s,w2). Choose ele-
ments x1 ∈ XC(s,w1) and x2 ∈ XC(s,w2) such that (x1, y), (x2, y) ∈ SC(s). Without
loss of generality, we may assume that w1 is left of w2. Since (x2, w2) ∈ SC(s − 1) and
(x2, y) ∈ SC(s) where s is even, Claim 3 guarantees y is left of w2. Then by Claim 1,
(x1, w2) ∈ SC . Clearly, ρ(x1, w2) is either s − 1 or s. However, if ρ(x1, w2) = s, then the
pairs (x1, w1) and (x1, w2) violate Claim 3. Also, if ρ(x1, w2) = s − 1, w1 is not the right
parent of x1. The contradiction completes the proof of the claim.

For each w ∈ YC for which XC(s,w) ∪ YC(s,w) is non-empty, we form a ple LC(s,w)

whose ground set is XC(s,w)∪YC(s,w). In view of Claim 2, we may assume that x > y in
LC(s,w) for every pair (x, y) ∈ SC(s) with x ∈ XC(s,w). In view of Claim 4, for each z ∈
XC ∪ YC , there is at most one element w ∈ YC for which z is in the ground set of LC(s,w).

The proof when s is a positive odd integer is similar, except we use the obvious notion
of a left-parent rather than a right-parent.

Finally, observe that each element of Q appears at most twice when reversing the
incomparable pairs in S(�). Recall that L = L′ ∪ {L0, L

′
0}, therefore

ldim(Q) ≤ μ(Q,L) ≤ 2 · 2 · 42(t+1) · 5(t+1)2
.

Now Lemma 5.5 implies that

ldim(P ) ≤ 2 · 2 · 2 · 42(t+1) · 5(t+1)2 + 3.

Thus ldim(P ) is O(5(t+1)2
), as desired.

5.2 Local Dimension and Tree-Width

We now turn to proving Theorem 5.2. Recall that our goal is to prove that for every d ≥ 1,
there exists a poset P such that ldim(P ) > d and the tree-width of the cover graph of P is
at most 3.

Our argument will require some additional Ramsey theoretic tools. The results we use in
the proof of Theorem 5.2 are treated in a more comprehensive manner by Milliken [27].5

However we will find it convenient to use somewhat different notation and terminology.

5The particular result we need is Theorem 2.1 on page 220. Note that Milliken credits the result to Halpern,
Läuchi, Laver and Pincus and comments on the history of the result.
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For a positive integer n, we view the complete binary tree Tn as the poset whose elements
are the binary strings of length at most n, with x ≤ y in Tn when x is a initial segment in
y. The empty string, denoted ∅, is then the zero (least element) of Tn. For all n ≥ 1, Tn has
2n+1 − 1 elements, 2n leaves and height n + 1. By convention, we take T0 as the one-point
poset whose only element is the empty string.

When n ≥ 1 and x is a binary string of length n, we will denote coordinate i of x as x(i)

and when a string is of modest length, we may write it explicitly, e.g., x = 01001101. Let x

be a string of length p, y be a string of length m and x < y in Tn. We say y is in the left tree
above x when y(p + 1) = 0. Similarly, y is in the right tree above x when y(p + 1) = 1.

Let n and m be integers with n ≥ m ≥ 0, and let  be a subposet of Tn. We will say 

is a strong copy of Tm when there is a function f : Tm →  satisfying the following two
requirements:

(1) f is a poset isomorphism, i.e., f is a bijection and for all x, y ∈ Tm, x ≤ y in Tm if
and only if f (x) ≤ f (y) in .

(2) For all x, y ∈ Tm with x < y in Tm, y is in the left tree above x in Tm if and only if
f (y) is in the left tree above f (x) in Tn.

The following result is the special case of Theorem 2.1 from [27] for binary trees and has
also been used in [1]. In fact, the application here preceded and motivated the work in [1].

Theorem 5.6 For every triple (m, p, r) of positive integers, with p ≥ m, there is a least
positive integer n0 = BTRam(m, p, r) so that if n ≥ n0 and ϕ is an r-coloring of the strong
copies of Tm in Tn, then there is a color α ∈ [r] and a subposet  of Tn such that  is a
strong copy of Tp and ϕ assigns color α to every strong copy of Tm contained in .

We now turn our attention to a construction due to Joret et al. [17] which was used to
show that a poset whose cover graph has bounded tree-width can have dimension that grows
exponentially with the height of the poset. Here is their construction, with notation and
terminology adjusted so that we can conveniently apply Theorem 5.6.

For n ≥ 0, construct a poset Pn as follows. The ground set of Pn is the disjoint union
An ∪ Bn where Bn is an up set and An is a down set in Pn. The subposet Bn is a copy of Tn.
For each string x in Tn of length at most n, we let bx be the corresponding element of Bn,
i.e., bx < by in Bn if and only if x is an initial segment of y. Note that b∅ is the minimum
of Bn.

The subposet An is a copy of T ∗
n , the dual of Tn. When x ∈ Tn, we let ax be the corre-

sponding element of An, i.e., ax > ay in An if and only if x is an initial segment of y. Note
that a∅ is the maximum of An.

When (ax, by) ∈ An × Bn, we set ax < by if and only if neither x nor y is an initial seg-
ment of the other. For example, a1011 < b01, a11 < b010, a101 ‖ b10 and a101 ‖ b101 in Pn.

In Figs. 3 and 4, we show a tree-decomposition of the cover graph of P1 and P2 that have
width 3 respectively. Observe that P1 is isomorphic to the standard example S3. Also, note
that there is a leaf of the host trees in which the only two vertices of P1 and P2 which occur
in this bag are a∅ and b∅.

Now it is an easy exercise to verify by induction the following properties of the family
{Pn : n ≥ 0}:
(1) The tree-width of the cover graph of Pn is (at most) 3, and
(2) Pn has a tree-decomposition of width 3 for which there is a leaf (bag) u in the host tree

for which the set of elements of Pn appearing in u is precisely {a∅, b∅}.
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Fig. 3 The Joret-Micek-Wiechert Construction for n = 1

To complete the proof of Theorem 5.2, we now prove the following claim.

Claim Let d ≥ 2. If n ≥ BTRam(1, 3, d2), then ldim(Pn) > d.

Proof Let d ≥ 2 and n ≥ BTRam(1, 3, d2). We assume ldim(Pn) ≤ d and argue to a
contradiction. Let L = {L1, L2, . . . , Lt } be a local realizer for Pn with μ(L) ≤ d . We use
L to construct a coloring ϕ of the strong copies of T1 in Tn. A strong copy of T1 consists of
three binary strings x, y, z with x an initial segment of both y and z and, if x is a string of
length s, y(s + 1) = 0 while z(s + 1) = 1. In particular, this implies that ax ‖ bz in Pn.

We then define a d2-coloring of the strong copies of T1 in Tn by setting ϕ({x, y, z}) =
(α, β) where α and β are defined as follows: Let i be the least positive integer for which
ax > bz in Li . Then (α, β) is the pair for which occurrence α of ax is in Li and occurrence β

of bz is in Li . Since α, β ∈ [d], the function ϕ uses at most d2 colors. We pause to note that
the element y plays no role in this argument. Everything to follow depends only on x and z.

Fig. 4 The Joret-Micek-Wiechert construction for n = 2
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From Theorem 5.6, there is a subtree  of Tn and a color (α, β) so that  is a strong
copy of T3 and ϕ maps every strong copy of T1 in  to color (α, β). Relabel the elements
of  so that they match the standard notation for T3.

Now consider the 3-element subset {∅, 0, 111} in T3, which is a strong copy of T1. This
copy is assigned color (α, β) so there is some Li ∈ L so that a∅ > b111 in Li , where
occurrence α of a∅ is in Li and occurrence β of b111 is in Li . Next consider the 3-element
subset {∅, 0, 101} which is also a strong copy of T1. Since we already know that occurrence
α of a∅ is in Li , it follows that occurrence β of b101 is also in Li .

We then consider the subsets {10, 100, 101} and {11, 110, 111}. Both are strong copies
of T1. Since we already know that occurrence β of b101 and occurrence β of b111 is in Li ,
we conclude that a10 > b101 in Li and a11 > b111 in Li . This is impossible since a10 < b111
in Pn and a11 < b101 in Pn. The contradiction completes the proof.

6 Summary Listing of Open Problems

For the convenience of readers, we gather here a listing of open problems concerning
Boolean dimension and local dimension.

(1) For a positive integer w, what is the maximum value of the Boolean dimension of a
poset whose width is w?

(2) For a positive integer w, what is the maximum value of the local dimension of a poset
whose width is w?

(3) For a non-negative integer n, what is the maximum value of the Boolean dimension
of a poset consisting of an antichain and n additional points?

(4) Is there a constant d0 such that every planar poset has Boolean dimension at most d0?
(5) Is there a constant d0 such that every poset with a planar cover graph has Boolean

dimension at most d0?
(6) If a planar poset has large dimension, must it contain a large standard example?
(7) If a planar poset has large Boolean dimension, must it contain a large standard

example?
(8) If a planar poset has large local dimension, must it contain a large standard example?
(9) For an integer d ≥ 4, what is the maximum local dimension of a disconnected poset

in which each component has local dimension at most d? Note. The answer is either
d , d + 1 or d + 2.

(10) What is the maximum amount the Boolean dimension of a poset can drop when a
single point is removed? Note. The answer is either 1, 2 or 3.

(11) What is the Boolean dimension and the local dimension of 2d?
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10. Gambosi, G., Nešetřil, J., Talamo, M.: On locally presented posets. Theoret. Comput. Sci. 70, 251–260
(1990)

11. Graham, R.L., Rothschild, B.L., Spencer, J.H. Ramsey Theory, 2nd edn. Wiley, New York (1990)
12. Hiraguchi, T.: On the dimension of orders. Sci. Rep. Kanazawa Univ. 4, 1–20 (1955)
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