
DIMENSION IS POLYNOMIAL IN HEIGHT
FOR POSETS WITH PLANAR COVER GRAPHS
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Abstract. We show that height h posets that have planar cover graphs have dimension

O(h6). Previously, the best upper bound was 2O(h3). Planarity plays a key role in our
arguments, since there are posets such that (1) dimension is exponential in height and
(2) the cover graph excludes K5 as a minor.

1. Introduction

In this paper, we study finite partially ordered sets, posets for short, and we assume
that readers are familiar with the basics of the subject, including chains and antichains;
minimal and maximal elements; height and width; order diagrams (also called Hasse
diagrams); and linear extensions. For readers who are new to combinatorics on posets,
several of the recent research papers cited in our bibliography include extensive back-
ground information.

Following the traditions of the subject, elements of a poset are also called points. Recall
that when P is a poset, an element x is covered by an element y in P when x < y in P
and there is no element z of P with x < z < y in P . We associate with P an ordinary
graph G, called the cover graph of P , defined as follows. The vertex set of G is the
ground set of P , and distinct elements/vertices x and y are adjacent in G when either x
is covered by y in P or y is covered by x in P .

Dushnik and Miller [1] defined the dimension of a poset P , denoted dim(P ), as the least
positive integer d such that there are d linear orders L1, . . . , Ld on the ground set of
P such that x 6 y in P if and only if x 6 y in Li for each i ∈ {1, . . . , d}. In general,
there are many posets that have the same cover graph, and among them, there may be
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posets which have markedly different values of height, width and dimension. Indeed, it
is somewhat surprising that we are able to bound any combinatorial property of a finite
poset in terms of graph theoretic properties of its cover graph.

However, Streib and Trotter [11] proved that dimension is bounded in terms of height
for posets that have a planar cover graph. This stands in sharp contrast with a number
of well-known families of posets that have height 2 but unbounded dimension (e.g.
the standard examples discussed below). The result from [11] prompted researchers
to investigate in greater depth connections between dimension and graph theoretic
properties of cover graphs. Subsequently, it has been shown that dimension is bounded
in terms of height for posets whose cover graphs:

• Have bounded treewidth, bounded genus, or more generally exclude an apex-graph
as minor [4];

• Exclude a fixed graph as a (topological) minor [17, 10];
• Belong to a fixed class with bounded expansion [7].

Moreover, the existence of bounds for dimension of posets with cover graphs in a fixed
class can say something about the sparsity of the class. Joret, Micek, Ossona de Mendez,
and Wiechert [3] proved that a monotone class of graphs is nowhere dense if and only if
for every h > 1 and every ε > 0, posets of height h with n elements whose cover graphs
are in the class have dimension O(nε).

The best upper bound to date on dimension in terms of height for posets that have
planar cover graphs is 2O(h

3). This result can be extracted from [3] via connections
between dimension for posets and weak-coloring numbers of their cover graphs. We will
give additional details on this work in the next section.

Our main theorem improves this exponential bound to one which is polynomial in h.

Theorem 1. If P is a poset of height h and the cover graph of P is planar, then
dim(P ) = O(h6).

Planarity plays a crucial role in the existence of a polynomial bound. In [6], Joret, Micek
and Wiechert show that for each even integer h > 2, there is a height h poset P with
dimension at least 2h/2 such that the cover graph of P excludes K5 as a minor.

To discuss lower bounds, we pause to give the following construction which first appears
in [1]. For each n > 2, let Sn be the height 2 poset with {a1, a2, . . . , an} the set of
minimal elements, {b1, b2, . . . , bn} the set of maximal elements, and ai < bj in Sn if and
only if i 6= j. Posets in the family {Sn : n > 2} are now called standard examples, as
dim(Sn) = n for every n > 2.

To date, the best lower bound for the maximum dimension of a height h poset with a
planar cover graph is 2h−2, and this bound comes from the “double wheel” construction
given in [6], and illustrated here in Figure 1. To avoid clutter, we do not show arrowheads
in our figures. Instead, we indicate directions using color and accompanying narrative.
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Figure 1. We illustrate the double wheel construction when h = 5. Note
that the elements a1, . . . , a10 and b1, . . . , b10 induce a standard example,
so the dimension of the depicted poset is at least 10. On the other hand,
the height of P is 5.

In this figure, the black edges are oriented in each individual wheel from outside to
inside. The elements of {a1, . . . , an} are minimal elements so the red edges are oriented
“left-to-right” and the blue edges are oriented “right-to-left.”

Requiring that the diagram of a poset P is planar is a stronger restriction than requiring
that the cover graph of P is planar. Recall that in the diagram: elements are drawn as
distinct points in the plane, and each cover relation a 6 b in P is represented by a curve
from a to b going upwards. Accordingly among posets that have planar cover graphs,
some but not all also have planar order diagrams. Among the class of posets with planar
diagrams, Joret, Micek and Wiechert [6] showed that dim(P ) 6 192h+ 96 when P has
height h.

The remainder of this paper is organized as follows. In the next section, we prove three
reductions to simpler problems, and we give essential background material. The proof of
Theorem 1 is given in the following two sections, and we close with brief comments on
challenging open problems that remain.

2. Preliminary Reductions and Background Material

When P is a poset, we write x ‖P y (also x ‖ y in P ) when x and y are incomparable. In
general, we prefer the short form x ‖P y, except when subscripts or primes are involved.
A similar remark applies to the relations <,>,6,>. Later in the proof, we will discuss
a poset P and define linear orders T and S on subsets of the ground set of P . In that
discussion, we will write u <T v or u <S v, as appropriate.

We list below some elementary, and well known, properties of dimension.

(i) Dimension is monotonic, i.e., if Q is a subposet of P , then dim(Q) 6 dim(P ).
(ii) The dual of a poset P is the poset P ′ on the same ground set of P with x < y in

P ′ if and only x >P y. Then dim(P ) = dim(P ′).
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For the balance of this preliminary section, we fix a poset P . We let Min(P ) and Max(P )
denote, respectively, the set of minimal elements and the set of maximal elemets of P .
Also, we let Inc(P ) denote the set of all ordered pairs (x, y) with x ‖P y. We will assume
Inc(P ) 6= ∅; otherwise P is a chain and dim(P ) = 1. When (x, y) ∈ Inc(P ) and L is a
linear extension of P , we say that L reverses (x, y) when x > y in L. A set I ⊆ Inc(P ) is
reversible if there is a linear extension L of P which reverses every pair in I. Vacuously,
the empty set is reversible. We then define dim(I) as the least d > 1 such that I can be
covered by d reversible sets. It is easily seen that dim(P ) is equal to dim(Inc(P )).

Given sets A,B ⊆ P , we let Inc(A,B) be the set of pairs (a, b) ∈ Inc(P ) with a ∈ A and
b ∈ B. We use the abbreviation dim(A,B) for dim(Inc(A,B)). Again, dim(A,B) = 1
when Inc(A,B) = ∅. Typically, we will have A ⊆ Min(P ) and B ⊆ Max(P ).

A sequence ((x1, y1), . . . , (xk, yk)) of pairs from Inc(P ) with k > 2 is an alternating
cycle of size k if xi 6P yi+1 for all i ∈ {1, . . . , k}, cyclically (so xk 6P y1 is required).
Observe that if ((x1, y1), . . . , (xk, yk)) is an alternating cycle in P , then any subset
I ⊆ Inc(P ) containing all the pairs on this cycle is not reversible; otherwise we would
have yi <L xi 6L yi+1 for each i ∈ {1, . . . , k} cyclically, which cannot hold.

A sequence ((x1, y1), . . . , (xk, yk)) of pairs from Inc(P ) is a strict alternating cycle if
for each i, j ∈ {1, . . . , k}, we have xi 6P yj if and only if j = i + 1 (cyclically). Note
that in this case, {x1, . . . , xk} and {y1, . . . , yk} are k-element antichains. Note that in
alternating cycles, we allow that xi = yi+1 for some or even all values of i.

When a set S is not reversible and contains an alternating cycle, then an alternating
cycle of mininum size in S is easily seen to be a strict alternating cycle. The converse is
also true, a detail originally observed by Trotter and Moore [14]: A subset I ⊆ Inc(P ) is
reversible if and only if I contains no strict alternating cycle.

When x <P y, a sequence W = (u0, u1, . . . , ut) is called a witnessing path (from x to y)
when u0 = x, ut = y and ui is covered by ui+1 in P for each i ∈ {0, 1, . . . , t− 1}.

The following elementary lemma allows us to concentrate our attention on incomparable
pairs from Inc(Min(P ),Max(P )). See for instance [5, Observation 3] for a proof.

Lemma 2 (Reduction to min-max). For every poset P , there is a poset Q containing P
as an induced subposet such that

(i) The height of P is the same as the height of Q;
(ii) The cover graph of Q is obtained from the cover graph of P by adding some degree

1 vertices; and

dim(P ) 6 dim(Min(Q),Max(Q)).

2.1. Constrained Subsets and Weak-Coloring Numbers. Let P be a poset. We
say that a non-empty subset I ⊆ Inc(Min(P ),Max(P )) is singly constrained in P when
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there is an element x0 ∈ P such that x0 <P b for every (a, b) ∈ I. To identify the element
x0, we will also say I is singly constrained by x0.

The following lemma was used first in [11] for posets with planar cover graphs and in a
more complex form in [5]. The underlying principle is the concept of unfolding, which is
an analogue of breadth first search for posets.

Lemma 3 (Reduction to singly constrained). For every poset P , there exists a poset Q
such that

(i) The height of Q is at most the height of P .
(ii) The cover graph of Q is a minor of the cover graph of P .
(iii) There is a minimal element x0 in Q such that x0 6 q for every q ∈ Max(Q), and

dim(Min(P ),Max(P )) 6 2 dim(Min(Q),Max(Q)).

In particular, the set I = Inc(Min(Q),Max(Q)) in the lemma is singly constrained by x0.
We point out that the lemma produces an element x0 ∈ Min(Q), but later in this paper,
we will be discussing sets I ⊆ Inc(Min(Q),Max(Q)) such that I is singly constrained by
an element x0 which is not a minimal element in Q.

We say that a non-empty subset I of Inc(Min(P ),Max(P )) is doubly constrained in P
when there is a pair (x0, y0) such that

(i) x0 <P y0,
(ii) x0 <P b for every (a, b) ∈ I, and
(iii) a <P y0 for every (a, b) ∈ I.

As before, we will also say that I is doubly constrained by (x0, y0).

We would very much like to reduce to the case where we are bounding dim(I) when
I ⊆ Inc(Min(P ),Max(P )) is doubly constrained. Unfortunately, Lemma 3 will not
be of assistance. Instead, we will use a different reduction, one that will cost us an
O(h3)-factor in the final bound.

The length of a path in a graph is the number of its edges. For two vertices u and v in a
graph G, an u–v path is a path in G with ends in u and v. Let G be a graph and let σ
be an ordering of the vertices of G. For r ∈ {0, 1, 2, . . .} ∪ {∞} and two vertices u and
v of G, we say that u is weakly r-reachable from v in σ, if there exists an u–v path of
length at most r such that for every vertex w on the path, u 6σ w. The set of vertices
that are weakly r-reachable from a vertex v in σ is denoted by WReachr[G, σ, v]. The
weak r-coloring number wcolr(G) of G is defined as

wcolr(G) := min
σ

max
v∈V (G)

|WReachr[G, σ, v]| .

where σ ranges over the set of all vertex orderings of G. We call wcolr(G) the r-th weak
coloring number of G.
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Weak coloring numbers were originally introduced by Kierstead and Yang [9] as a
generalization of the degeneracy of a graph (also known as the coloring number). Since
then, they have been applied in several novel situations (see Zhu [18] and Van den Heuvel
et al. [16], for examples). We also have good bounds on weak coloring numbers. For
planar graphs, van den Heuvel et al. [15] have shown that the r-th weak coloring number
is at most

(
r+2
2

)
· (2r + 1) = O(r3). See also a recent paper [2] with a lower bound in

Ω(r2 log r).

Here is a lemma on weak coloring numbers from [3] that will play an important role in
the reduction to the doubly constrained case.

Lemma 4. Let P be a height h poset, let G be the cover graph of P , and let c :=
wcol4h−4(G). Then there is an element z0 ∈ P such that the set J = {(a, b) ∈ I : a <P z0}
satisfies

dim(J) >
dim(I)

c
− 2.

We then have the following immediate corollary.

Corollary 5. Let P be a poset with a planar cover graph, and let x0 be an element
of P such that x0 < b in P for every b ∈ Max(P ). Let I be a non-empty subset of
Inc(Min(P ),Max(P )). Then there is a set J ⊆ I such that J is doubly constrained in P
and

dim(I) = O(h3) · dim(J).

Proof. Let G be the cover graph of P . Apply Lemma 4 with c = wcol4h−4(G) = O(h3)
to obtain the element z0 and the set J ⊆ I. Let y0 be any maximal element with z0 6 y0
in P . Since y0 ∈ Max(P ) we have x0 < y0 in P . Evidently J is doubly constrained by
the pair (x0, y0). The inequality from Lemma 4 becomes dim(I) 6 c · (2 + dim(J)), and
with this observation, the proof of the corollary is complete. �

2.2. A Reduction to Doubly Exposed Posets. Let P be a poset. We will say
that a non-empty set I ⊆ Inc(Min(P ),Max(P )) is doubly exposed in P if the following
conditions are met:

(i) I is doubly constrained by (x0, y0).
(ii) The cover graph G of P is planar, and there is a plane drawing of G with x0 and

y0 on the same face.

Note that in the preceding definition, we could just as well have required that x0 and y0
be on the exterior face. The form of the definition allows us to determine that a set I is
doubly exposed as evidenced by a plane drawing with x0 and y0 on the same face. If
desired, we can then redraw the cover graph, without edge crossings, so that x0 and y0
are on the exterior face.

Our next goal is to prove a reduction to the doubly exposed case. The argument requires
a technical detail regarding paths. When R is a tree in G and u, v ∈ R, we denote by
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Figure 2. The black path M ′ leaves the blue path M from the left side
while the green path M ′′ and the red path M ′′′ leave M from the right
side.

uRv the unique path in R from u to v. This notation is particularly convenient for
discussing concatenation of paths, and it will be used extensively later in the paper.

Let P be a poset with a planar cover graph, and suppose that I is singly constrained by
x0. Then consider a plane drawing of the cover graph G of P with x0 on the exterior
face. Add to the drawing an extra edge linking x0 from an “imaginary point” located
in the outer face. Let M be a non-trivial path in G starting from x0, and let v be the
other endpoint of M . Now let M ′ be another path in G also starting from x0, sharing
some initial segment with M , say the portion from x0Mu with u 6= v. Note that u could
coincide with x0. Suppose further that the portion of M ′ after u is non-empty. Since
x0 is on the exterior face in the drawing of G (and since we added the imaginary line),
there is a natural notion of “sides”, and we can say with precision that either M ′ leaves
M from the left side, or M ′ leaves M from the right side. Note however that sides are
not well defined when u is the last point of M . We illustrate these concepts in Figure 2.

With this technical detail in hand, we are ready for the reduction to the doubly exposed
case.

Lemma 6. Let P be a height h poset with a planar cover graph. If I ⊆
Inc(Min(P ),Max(P )) is doubly constrained in P , then there is a poset Q and a set
J ⊆ Inc(Min(Q),Max(Q)) such that

(i) the height of Q is at most h;
(ii) the cover graph of Q is a subgraph of the cover graph of P ;
(iii) J is doubly exposed in Q; and

dim(I) 6 2(h− 1) dim(J).

Proof. Let I ⊆ Inc(Min(P ),Max(P )) be a non-empty doubly constrained set by (x0, z0),
and let D be a plane drawing of the cover graph G of P with x0 on the exterior face.

We fix a chain from x0 to z0 and refer to this chain as the spine. Label the points on
the spine as {u0, u1, . . . , ut} with x0 = u0, z0 = ut and ui covered by ui+1 in P for each
i ∈ {1, . . . , t− 1}. Note that t 6 h− 1.
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Let

A = {a ∈ P | there exists b such that (a, b) ∈ I},
B = {b ∈ P | there exists a such that (a, b) ∈ I}.

In particular, we have I ⊆ A×B, so dim(I) 6 dim(A,B).

For each b ∈ B, let τ(b) be the largest integer i so that ui <P b. Note that 0 6 τ(b) 6 t−1.
Let W (b) be a witnessing path from x0 to b such that W (b) shares the initial segment
(u0, u1, . . . , uτ(b)) with the spine.

We partition B into Bleft and Bright in such a way that b is assigned to the set Bleft if
W (b) leaves the spine from the left side. Dually, we assign b to Bright if W (b) leaves the
spine from the right side.

For each a ∈ A, let τ(a) be the least integer i so that a <P ui. Now we have 2 6 τ(a) 6 t.
We partition the set A into A2 ∪ A3 ∪ · · · ∪ At by assigning a to Ai when τ(a) = i.
Clearly,

dim(I) 6 dim(A,B) 6
∑

s∈{2,...,t}

∑
dir∈{left,right}

dim(As, Bdir).

It follows that there is some s ∈ {2, . . . , t} and dir ∈ {left, right} so that

dim(As, Bdir) >
dim(I)

2(h− 1)
.

We assume that dir = right. From the details of the argument, it will be clear that the
proof is symmetric in the other case.

We say that an edge e = uiv in the cover graph of P is bad if 0 6 i < s, v is not on the
spine, and the path {u0, u1, . . . , ui, v} leaves the spine from the left side. We then define
a poset Q having the same ground set as P with x 6 y in Q if and only if there is a
witnessing path in P from x to y avoiding bad edges.

We claim that for every a ∈ As and every b ∈ Bright, we have a 6 b in Q if and only if
a 6 b in P . The forward implication is obvious. To see the backward one, let a ∈ As
and b ∈ Bright with a <P b. Then let W be a witnessing path from a to b in P . This
path cannot use a bad edge as this would make a < ui in P for some i ∈ {1, . . . , s− 1}
contradicting a ∈ As. Therefore, the claim holds and also dim(As, Bright) in Q is the
same as dim(As, Bright) in P .

Note that the diagram and the cover graph of Q are obtained simply by removing the
bad edges from the diagram and cover graph, respectively, of P . It follows that the
cover graph of Q is planar. Furthermore, x0 and us are on the same face, and the set
Inc(As, Bright) is doubly exposed by the pair (x0, us). With this observation, the proof
of the lemma is complete. �

Summarizing, we can combine Lemma 3, Corollary 5, and Lemma 6 to obtain:
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Corollary 7. Let P be a height h poset with a planar cover graph. Then there is a poset
Q such that

(i) Q has height at most h;
(ii) Q has a planar cover graph;
(iii) There is a set I ⊆ Inc(Min(Q),Max(Q)) such that I is doubly exposed in Q and

dim(P ) = O(h4) · dim(I).

We are now ready to begin the proof of our main theorem.

3. Large Standard Examples in Doubly Exposed Posets

We pause here to make the following important comment: The concept of height plays
no role in the arguments given in this section.

Throughout this section, P will denote a poset with a planar cover graph. Also, I will
denote a subset of Inc(Min(P ),Max(P )) which is doubly exposed by (x0, y0). Let

AI = {a ∈ P | there exists b such that (a, b) ∈ I},
BI = {b ∈ P | there exists a such that (a, b) ∈ I}.

In particular, we have I ⊆ AI ×BI .

We will then fix a plane drawing D of G, the cover graph of P , with x0 and y0 on the
exterior face. Next, we discuss a subgraph T of G associated with x0 and the elements
of BI . Subsequently, this discussion will be repeated for y0 and the elements of AI .

It is easy to see that there is a subgraph T of G satisfying the following properties.

(i) The vertices and edges of T form a tree containing x0 and all elements of BI .
(ii) The leaves of T are the elements of BI .
(iii) We consider x0 as the root of T , and for each b ∈ BI , we let x0Tb denote the unique

path in T from x0 to b. We require that x0Tb be a witnessing path from x0 to b.

We choose and fix a tree T satisfying these properties. In the remainder of the discussion,
we will refer to T as the blue tree. The vertices and edges of T are called blue vertices
and blue edges respectively. The fact that x0 is on the exterior face implies that T
determines a clockwise linear order <T on the elements of BI . We illustrate the notion of
a blue tree in Figure 3 where we take BI = {1, . . . , 15}. The leaves have been labeled so
that the clockwise order agrees with the natural order as integers. Note that in general,
there are many elements of T that do not belong to {x0} ∪ BI . Also, there are many
elements of P that do not belong to T .

In an entirely analogous manner, we determine a red tree S with y0 as its root and the
elements of AI as its leaves. For each a ∈ AI , we let aSy0 denote the unique path in S
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Figure 3. The leaves of T are {1, . . . , 15}, the elements of BI . They are
ordered clockwise by <T . Recall that we are working in a planar cover
graph setup (and not necessarily planar diagram) so the poset relation
does not have to go vertically upwards in the plane.

from a to y0, and we require that aSy0 be a witnessing path. Once the red tree S has
been chosen, we have a clockwise order <S on the elements of S.

When C is a simple closed curve in the plane, it splits the points of the plane not on C
into those that are in the interior of the region bounded by C and those in the exterior
of this region. In the discussion to follow, we will abuse terminology slightly and say
that a point not on C is either in the interior of C or it is in the exterior of C, dropping
the reference to the region bounded by C.

We find it convenient to assume that in the plane drawing D of G, the vertices x0 and y0
are the lowest, respectively the highest, elements of P in the plane. The entire diagram
will be enclosed in a simple closed curve C which intersects D only at x0 and y0. Note
that x0 and y0 are on C. All other vertices and edges of the cover graph G are in the
interior of C. If we start at x0 and traverse the boundary of C in a clockwise direction,
we refer to the portion of C between x0 and y0, as the left side of C. Continuing on from
y0 to x0, we are then on the right side of C. If N is any path in G from x0 to y0, then
N splits the region bounded by C into two subregions, called naturally, the left half and
the right half.

With the set I fixed, with each pair (a, b) ∈ AI ×BI such that a <P b, we will associate
a separating path N = N(a, b) from x0 to y0 defined as follows: (1) u = u(a, b) is the
least element in P that is on the blue path x0Tb and satisfies a <P u; (2) v = v(a, b)
is the largest element of P that is on the red path aSy0 and satisfies u 6P v; (3) N =
x0TuWvSy0, where W is an arbitrary witnessing path from v to u. Strictly speaking,
the path N(a, b) depends on a and b as well as the choice for W . However, that detail
can be safely ignored, as none of the results to follow depend on which choice is made
for W .

The path x0Tu will be called the blue part of N ; the path uWv will be called the black
part of N ; and the path vSy0 will be called the red part of N . We note that the red and
black parts share a point, as do the blue and black parts. The black part may consist
of a single point, but the red part and the blue part are always non-trivial. We also
note that a point on the red part of N may be an element of the blue tree. Analogous
comments hold for the other parts of N . In general, the vertices a and b do not have to
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left side
right sideN

a

x0

y0

u(a,b)

v(a,b)

b
N

a1

x0

y0

b

a4

a3

a2

Figure 4. In the figure on the left, we illustrate a separating path
N = N(a, b), with its blue, red, and black parts colored appropriately. In
the figure on the right, we show a separating path N = N(a4, b) and four
points in S with a1 <S a2 <S< a3 <S a4. Since a1 and a3 are left of N ,
Proposition 8 implies that each of the paths y0Sa1 and y0Sa3 contains a
point from the union of the black part of N and the blue part of N .

belong to the path N . However, if z is on the path N , and z is either on the red part or
the black part, then a 6P z. Symmetrically, if z is on the blue part or the black part,
then z 6P b.

When N = N(a, b) is a separating path, we consider the two halves of the region C
determined by N . When u is a point of P , and u is not on N , then we will simply say u
is left of N when u is in the left half of F ; analogously, we will say that u is right of
N(a, b) when u is in the right half of C. Our convention regarding the labeling of the
two halves is illustrated in first figure in 4.

The following elementary proposition has four symmetric statements: two for the tree S
and two for the tree T .

Proposition 8. Let N = N(a, b) be a separating path. If a′ ∈ AI , a′ <S a and a′ is left
of N , then y0Sa

′ contains a point of N from the union of the blue part and the black
part of N .

Proof. If v(a, b) ∈ y0Sa′, then the proposition holds, since v(a, b) belongs to the black
part of N . So we may assume v(a, b) 6∈ y0Sz′. Let v′ be the least point of P common to
y0Sa and y0Sa

′. Then v(a, b) <P v
′. Let w be the first vertex on y0Sa

′ after v′. Since
a′ <S a, we know w is right of N . Since a′ is left of N , the path wSa′ must intersect N .
Since S is a tree, any point common to N and wSa′ belongs to the union of the blue
and black parts of N . �

The next proposition is actually an immediate corollary of Proposition 8. It is stated for
emphasis. Note that that there is dual form.
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Proposition 9. Let N = N(a, b) be a separating path . If a′ ∈ AI and a′ ‖P b, then a′

is right of N if and only if a′ <S a. Also, if b′ ∈ BI and b′ ‖P a, then b′ is left of N if
and only if b′ <T b.

Proposition 10. Let N = N(a, b) be a separating path. If w <P z, w is on one side of
N and z is on the other, then either w <P b or a <P z.

Proof. Let W be a witnessing path from w to z. Then W and N must intersect. Let q
be a common point. If q is on the blue part of N , then w <P b. If q is on the red part of
N , then a <P z. If q is on the black part of N , then both w <P b and a <P z hold. �

Let b and b′ be distinct elements of BI . We say that b is enclosed by b′ if there is a cycle
D in G such that (1) all points of D belong to DP [b′]; and (2) b is in the interior of D.
Dually, if a and a′ are distinct points of AI , we say that a is enclosed by a′ if there is a
cycle D in G such that (1) all points of D belong to UP [a′]; and (2) a is in the interior
of D.

Proposition 11. Let k > 2 and let ((a1, b1), . . . , (ak, bk)) be a strict alternating cycle
of pairs from I. If i, j are distinct integers from [k], then bi is not enclosed by bj, and ai
is not enclosed by aj.

Proof. We prove that if i, j are distinct integers from [k], then bi is not enclosed by bj.
The proof of the second assertion is symmetric.

Let D be a cycle in G evidencing that bi is enclosed in bj. Since y0 is on the exterior
face, y0 is not in the interior of D. Note that ai−1 <P bi, and ai−1 ‖P bj. If ai−1 is in
the interior of D, then a witnessing path W = W (ai−1, y0) contains a point w from D.
This implies ai−1 <P w <P bj. In turn, this implies ai−1 <P bj, which is false. The
contradiction shows that ai−1 is not in the interior of D.

Now consider a witnessing path W ′ = W ′(ai−1, bi). Since bi is in the interior of D, W ′

contains a point w′ from D. This implies w′ 6P bj. In turn, we have ai−1 6P w′ 6P bj.
Again, this implies ai−1 <P bj. The contradiction completes the proof. �

Proposition 12. If ((a1, b1), (a2, b2)) is an alternating cycle of pairs from I, then
a1 <S a2 if and only if b1 <T b2.

Proof. We assume that a1 <S a2 and b2 <T b1 and show that this leads to a contradiction.
Let N = N(a1, b2) be a separating path. Since we are assuming b2 <T b1 and a1 ‖P b1,
it follows by Proposition 9 that b1 is right of N . Since a2 >S a1 and a2 ‖P b2, again by
Proposition 9, we know a2 is left of N . Applying Proposition 10 for w = a2 and z = b1
we conclude that either a1 <P b1 or a2 <P b2, but both of these statements are false.
The contradiction completes the proof. �

We illustrate the implications of Proposition 12 on the left side of Figure 5.
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Figure 5. On the left side, we show the typical appearance of an alter-
nating cycle of size 2. On the right side, we show the first case in the
proof of Proposition 13.

For a non-empty subset I ⊆ Inc(Min(P ),Max(P )), we define an auxiliary digraph HI

whose vertex set is Inc(AI , BI). In HI , we have a directed edge from (a, b) to (a′, b′)
when these two pairs form an alternating cycle and a <S a′ (therefore, b <T b′ by
Proposition 12). The next proposition implies a notion of transitivity for directed paths
in HI , and this concept will prove to be fundamentally important.

Proposition 13. Let n > 3 and let ((a1, b1), . . . , (an, bn)) be a directed path in HI . Then
((ai, bi), (aj, bj)) is an edge in HI for all i, j with 1 6 i < j 6 n. In particular, these
pairs form a copy of the standard example Sn.

Proof. Using induction, it is clear that the lemma holds in general if it holds when n = 3.
Since a1 <S a3 (and b1 <T b3), it suffices to show that a1 <P b3 and a3 <P b1.

We suppose first that a1 ‖P b3 and argue to a contradiction. A symmetric argument
shows that the assumption that a3 ‖P b3 leads to a contradiction.

Let N = N((a2, b3) be a separating path. Since b2 ‖P a2 and b2 <T b3, Proposition 9
implies that b2 is left of N . Since a1 <S a2, and a2 ‖P b3, Proposition 9 also implies a1
is right of N . Since a1 <P b2, Proposition 10 implies that either a2 < b2 or a1 <P b3.
Since the first option is false, and the second is assumed to be false, we have reached a
contradiction. �

The argument for the preceding proposition is illustrated on the right side of Figure 5.

For a non-empty subset I ⊆ Inc(Min(P ),Max(P )), we define ρ(I) to be the maximum
size (number of vertices) of a directed path in HI . The proof of the following lemma
is (essentially) the same as the argument given for Lemma 5.9 in [11], although we are
working here in a more general setting.
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Figure 6. Two cases of the <S-ordering of a1, a2, ak.

Lemma 14. Let P be a poset with a planar cover graph, and let I ⊆
Inc(Min(P ),Max(P )) be doubly exposed. Then

dim(I) 6 ρ(I)2.

In particular, if k is the largest size of a standard example in P , then dim(I) 6 k2.

Proof. We show dim(I) 6 ρ(I)2 by exhibiting a partition of I into ρ(I)2 reversible sets.
These sets will have the form I(m,n) where 1 6 m,n 6 ρ(I). A pair (a, b) ∈ I belongs
to I(m,n) if

(i) the longest directed path in HI starting from (a, b) has size m, and
(ii) the longest directed path in HI ending at (a, b) has size n.

To complete the proof, it suffices to show that each I(m,n) is reversible. We argue by
contradiction.

Suppose that for some pair (m,n), the set I(m,n) is not reversible. Therefore there is a
strict alternating cycle ((a1, b1), . . . , (ak, bk)) of size k > 2 with all pairs from I(m,n).
Without loss of generality, a1 <S ai for each i ∈ {2, . . . , k}.

If k = 2, then there is a directed edge from (a1, b1) to (a2, b2) in HI . It follows that any
directed path in HI starting at (a2, b2) can be extended by prepending (a1, b1). Thus
(a1, b1), (a2, b2) cannot both belong to I(m,n). We conclude that k > 3.

The balance of the proof divides into two cases. In view of our assumptions regarding
the labeling of the pairs in the alternating cycle, exactly one of the following two cases
is applicable (see Figure 6):

a1 <S ak <S a2 or a1 <S a2 <S ak.



POSETS WITH PLANAR COVER GRAPHS 15

x0

y0

a1

b1
b2

b3

akwm
zm

w1

a2
w2

z1 z2
w3

z3

Figure 7. The argument shows that a2 is left of N and z2 is right of N .
Therefore, a witnessing path for a2 <P z2 has to cross N , and this forces
ak <P z2.

In the first case, we will show that there is a directed path in HI of size m+ 1 starting at
(a1, b1). In the second case, we will show that there is a directed path in HI of size n+ 1
ending at (a2, b2). Both implications are contradictions. We will give details of the proof
for the first case. It will be clear that the argument for the second case is symmetric.

Therefore we assume a1 <S ak <S a2. Since the pairs (a1, b1), (ak, b2) ∈ Inc(AI , BI) form
an alternating cycle of size 2 and a1 <S ak, we have an edge in HI from (a1, b1) to
(ak, b2). Since (a1, b1) is the first vertex on this edge, we know m > 2. By Proposition 12,
we have b1 <T b2. Similarly, there is a directed edge in HI from (ak, b3) to (a2, b1), and
b3 <T b1. Therefore,

b3 <T b1 <T b2.

Fix a directed path ((w1, z1), (w2, z2), . . . , (wm, zm)) inHI with (w1, z1) = (a2, b2). (Recall
that m > 2.) Now consider the sequence

((a1, b1), (ak, b2), (w2, z2), . . . , (wm, zm)).

We claim that this sequence is a directed path in HI . Since it has size m + 1 and it
starts at (a1, b1), this will be a contradiction.

We have already noted that ((a1, b1), (ak, b2)) is an edge in HI and since all
((wi, zi), (wi+1, zi+1)) are edges in HI as well, it remains only to show that there is an
edge from (ak, b2) to (w2, z2) in HI . Note that ak <S a2 = w1 <S w2, and w2 <P z1 = b2.
Therefore, we only need to show that ak <P z2. We assume that ak ‖P z2 and show
that this leads to a contradiction. Let N = N(ak, b1) be a separating path (see Fig-
ure 7). Since a2 ‖P b1, we know from Proposition 9 that a2 is left of N . Note also that
b1 <T b2 = z1 <T z2. With our assumption that ak ‖P z2, we know from Proposition 9
that z2 is right of N . Since a2 = w1 <P z2, it follows from Proposition 10 that either
a2 <P b1 or ak <P z2. The first option is false, and the second is assumed false. Again,
we have reached a contradiction. �
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When I is doubly exposed, we now have dim(I) bounded in terms of ρ(I), independent
of the height h of P . Now we turn our attention to bounding ρ(I) in terms of h.

4. Restrictions Resulting from Bounded Height

This section is devoted to proving the following lemma.

Lemma 15. Let P be a height h poset with a planar cover graph. Let I ⊆
Inc(Min(P ),Max(P )) be doubly exposed in P . Then

ρ(I) 6 34h+ 11.

Once this lemma has been proven, the proof of our main theorem will be complete. To
see this, recall that using Corollary 7, we paid a price of O(h4) to reduce to the case
where we need to bound dim(I) for I doubly exposed in P . Lemma 14 asserts that
dim(I) 6 ρ(I)2. Combining this with Lemma 15, we obtain the bound O(h6).

Our final bound on ρ(I) will emerge from a series of preliminary results. In their
presentation, we aim for reasonable multiplicative constants and consciously tolerate
less than optimal additive constants.

As we did in the last section, we will present a series of small propositions all working
within the following context. We fix an integer h > 2 and assume that we have a poset
P whose height is at most h. We let G denote the cover graph of P . We assume that we
have a set I ⊆ Inc(Min(P ),Max(P )) which is doubly exposed by (x0, y0), and we have
a plane drawing of G with x0 and y0 on the exterior face. Finally, we have an integer
n > 2 and a directed path ((a1, b1), (a2, b2), . . . , (an, bn)) in HI .

As before, we choose a blue tree T and a red tree S. We then have linear orders <T and
<S on BI and AI , respectively.

The next proposition is concerned with how a witnessing path W can intersect paths of
the form aSy0, where a is an element of the red tree S. There is an analogous version for
paths of the form x0Tb where b is a point in the blue tree T . When i ∈ [n], we will say
that a witnessing path W cuts ai when W intersects the path aiSy0. Also, when si is a
point common to W and aiSy0, we will say W cuts ai at si. When 1 6 i < j < k 6 n,
W cuts ai at si, W cuts ak at sk, and s = si = sk, then the fact that S is a tree implies
that W cuts aj at s. When si 6= sk, the path W may cut each of aiSy0 and akSy0 at
several other points. Subsequently, there may be several regions in the plane formed by
portions of aiSak and W .

The following elementary proposition will play a key role in subsequent arguments. There
are actually two versions, one for the red tree S and one for the blue tree T . The impact
of the proposition is illustrated in Figure 8.

Proposition 16. Let i and k be integers with 1 6 i 6 k 6 n. If W is a witnessing
path, and W cuts ai and ak, then W cuts aj for every j with i < j < k. Suppose further
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Figure 8. In the figure on the left, aj is in the interior of a region whose
boundary is the union of ziWzk and ziSzk. This configuration leads to the
conclusion that either aj is enclosed by ai or aj is enclosed by ak. Either
of these outcomes violates Proposition 11. In the figure on the right, we
show a specific case with i = 3 and k = 9. Some care must be taken in
choosing s4, . . . , sk to insure that the desired monotonic conditions are
satisfied.

that W cuts ai at si, W cuts ak at sk, and si 6P sk (si >P sk, respectively). Then for
every j with i < j < k, there is an element sj of P such that W cuts aj at sj, and
si 6P si+1 6P · · · 6P sk (si >P si+1 >P · · · >P sk, respectively). Also, if the paths
siWsk and siSsk form a simple closed curve R. Then aj is in the exterior of R for
every j with i < j < k.

Proof. If si = sk, then si belongs to ajSy0 for every j with i 6 j 6 k. In this case, the
final statement of the proposition holds vacuously. Now supose that si 6= sk and say
si < sk in P . When si > sk in P the argument is symmetric.

It is easy to see that there are points s′i and s′k on W such that si 6P s′i <P s
′
k 6P sk;

and the paths s′iWs′k and s′iSs
′
k form a simple closed curve R in the plane. First, let

j be any integer with i < j < k. Since ai <S aj <S< ak, either (1) aj is in interior of
R; or (2) aj is in the exterior of R and W cuts aj at a point which belongs to s′iWs′k.
Now assume that option (1) holds. Since ai 6P si 6P s′i <P s′k, all points on the
boundary of R belong to UP [ai]. This implies that aj is enclosed by ai, which contradicts
Proposition 11. We conclude that option (2) must hold. Note that this proof verifies the
final statement of the proposition in the special case where si = s′i and s′k = sk.

The remaining part of the proof is a simple inductive argument. There is nothing to
prove if k = i + 1. When k = i + 2, there is only one valid choice for j, i.e. j = i + 1,
and the previous paragraphs proves the statement. Now suppose that k > i+ 2. The
path W can cut ai+1 in many different places, but we simply fix such an element si+1

common to W and ai+1Sy0. With this choice, we have si 6P si+1 6P sk. If si+1 = sk,
we simply take sj = sk for all j with i+ 1 < j < k. If si+1 6= sk, then si+1 <P sk, and
we apply the proposition to the witnessing path si+1Wsk which cuts ai+1 and ak. �
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For a non-empty subset X ⊆ [n], we let A(X) = {ai : i ∈ X} and B(X) = {bi : i ∈ X}.
Note that the pairs in {(ai, bi) : i ∈ X} determine a directed path of size |X| in HI . Let
α, β ∈ [n] −X with α 6= β, and let N = N(aα, bβ) be a separating path. We will say
that N separates A(X) from B(X) if all points of A(X) are on one side of N and all
points of B(X) are on the other side.

We present the first of three key results bounding ρ(I) in terms of the height of P .

Proposition 17. Let X be a non-empty subset of [n], let α ,β be two distinct integers
in [n]−X, and let N = N(aα, bβ). Suppose further that N separates A(X) from B(X).

(i) If the black portion of N is trivial, then |X| = 1.
(ii) If the black portion of N is non-trivial, then |X| 6 2h− 1.

Proof. We give the argument when the points of A(X) are left of N and the points of
B(X) are right of N . The argument when the sides are reversed is symmetric.

Let W be the black portion of N . We assume first that W is trivial. Then N is a
witnessing path from x0 to y0, so that the elements on N form a chain in P . Now assume
that |X| > 2, and let ai and aj be distinct elements of A(X). Then let W (ai, bj) and
W (aj, bi) be arbitrary witnessing paths. Since ai and aj are left of N , while bi and bj are
right of N , there must be a point z common to W (ai, bj) and N and a point z′ common
to W (aj, bi) and N . However, N is a chain, so z and z′ are comparable in P . If z 6P z′,
then ai < z 6 z′ < bi in P , which is false. A similar contradiction is reached if z′ <P z.
We conclude that |X| = 1. This observation completes the proof of the first assertion.

We now assume that W , the black portion on N , is non-trivial. Consider the red portion
of N . Clearly, it is a chain on at most h elements from v(aα, bβ) to y0. For each a ∈ A(X)
let τ(a) be the lowest element of this chain such that a <P τ(a). Consider also the blue
portion of N which is a chain on at most h elements from x0 to u(aα, bβ). For each
b ∈ B(X) let τ(b) be the highest element of this chain such that τ(b) <P b.

We claim that when i, j ∈ X and i < j, then τ(ai) 6P τ(aj). Assume the contrary,
τ(ai) >P τ(aj). Consider a witnessing path from aj to τ(aj). By our assumption this
path must avoid aiSy0. Thus, we have α < i < j and a witnessing path from ajSy0
to aαSy0 avoiding aiSy0. This is a contradiction with the statement of Proposition 16.
Similarly, when i, j ∈ X and i < j, we have τ(bi) >P τ(bj).

We claim that at least one of these two inequalities τ(ai) 6P τ(aj), τ(bi) >P τ(bj) must
be strict. To see this assume that τ(ai) = τ(aj) and τ(bi) = τ(bj). Consider a witnessing
path W ′ from aj to bi. Since aj is left of N and bi is right of N , we know that W ′

intersects N . Let z′ be a common point of W ′ and N . If z′ lies on the red portion of N ,
then bi > z′ > τ(aj) = τ(ai) > ai in P which is a contradiction. If z′ lies on the blue
portion of N , then aj < z′ 6 τ(bi) = τ(bj) 6 bj in P which is a contradiction. Thus z′

is black. Similarly a witnessing path W ′′ from ai to bj must intersect N at a point z′′

which is black. Since the black portion is a chain, z′ and z′′ are comparable in P . If
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Figure 9. Consider N = N(a8, b9). The figure suggests that the black
part of N intersects a3Sy0. This forces a4, a5, a6, a7 to be left of N .
Similarly, the black part of N intersects x0Tb11. This forces b10 to be left
of N .

z′ 6P z′′, then aj 6 z′ 6 z′′ 6 bj in P . If z′ >P z′′, then ai 6 z′′ 6 z′ 6 bi in P . Both
statements are false. This observation confirms our claim.

Consider the following two sets {τ(a) | a ∈ A(X)}, {τ(b) | b ∈ B(X)}. Each of these
can be considered as a sequence sorted by the linear order on X as a set of integers.
The first sequence is non-decreasing on the red chain in N . The second sequence is
non-increasing on the blue chain in N . For each consecutive pair i < j of integers in
X (i.e. there is no i′ ∈ X with i < i′ < j), we have a change in at least one of the two
sequences. Therefore,

2h > |{τ(a) | a ∈ A(X)}|+ |{τ(b) | b ∈ B(X)}| > 2 + (|X| − 1).

With this observation, the proof is complete. �

Proposition 18. If T and S have no common vertices, then n 6 6h+ 1.

Proof. We assume that n > 6h+ 2 and argue to a contradiction. Let N = N(a4h, b4h+1)
be a separating path. Then set u = u(a4h, b4h+1), v = v(a4h, b4h+1). We note that v
belongs to a4hSy0 but not a4h+1Sy0. Dually, u ∈ x0Tb4h+1 but not x0Tb4h. Let W be
the black portion of N . Note that W is non-trivial. We split the elements of the pairs
into A1 = {a1, a2, . . . , a4h−1}, A2 = {a4h+2, a4h+3, . . . , a6h+2}, B1 = {b1, b2, . . . , b4h−1}
and B2 = {b4h+2, b4h+3, . . . , b6h+2}.

Proposition 9 implies that both a4h+1 and b4h are left of N . Propositions 8 and 16
together imply that all elements of A2 ∪B1 are left of N . On the other hand, elements
of A1 ∪B2 may be on either side of N .

We illustrate the path N and possible intersections with paths in T and S in Figure 9.
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We partition the set {1, 2, . . . , 4h − 1} as X1 ∪ X2, where i ∈ X1 if and only if ai is
left of N . Since N separates A(X2) from B(X2) ⊆ B1, it follows from Proposition 17
that |X2| 6 2h− 1. Therefore |X1| > 4h− 1− (2h− 1) = 2h. Similarly, we partition
{4h + 2, 4h + 3, . . . , 6h + 2} as Y1 ∪ Y2, where i ∈ Y1 if and only if bi is left of N .
Now we conclude that |Y2| 6 2h − 1 and therefore |Y1| > 2h + 1 − (2h − 1) = 2. Set
m = 2h. Now we are going to discard excess elements and relabel those that remain.
Let A′ be a subset of A(X1) of size m with elements relabeled as {w1, . . . , wm} so that
w1 <S · · · <S wm. Let B′ be the corresponding subset of elements of B(X1) with
elements relabeled correspondingly as {z1, . . . , zm}. Let {zm+1, zm+2} be a subset of
B(Y1) of size 2 so that zm+1 <T zm+2. Let {wm+1, wm+2} be the corresponding subset
of elements of A(Y1). Note that we have

w1 <S · · · <S wm <S a4h <S a4h+1 <S wm+1 <S wm+2,

z1 <T · · · <T zm <T b4h <T b4h+1 <T zm+1 <T zm+2.

Let N ′ = N(wm+1, zm+2) be a separating path. Then set u′ = u(wm+1, zm+2) and
v′ = v(wm+1, zm+2). Also, let W ′ denote the black part of N ′. Proposition 9 implies that
zm+1 is left of N ′. Propositions 8 and 16 then imply that all elements of B′ are left of
N ′.

Claim. All elements of A′ are right of N ′.

Proof. Considet an element a ∈ A′. Since a is left of N , W cuts a. Let p be the largest
point of W that is also on aSy0. Since zm+2 is left of N , we know that W cuts zm+2.
Let q be the least element of W that is also on x0Tzm+2. Since the red and blue trees
are disjoint, we know v 6 p < q 6 u in P .

By the planarity of the drawing, we have that q is also the first point of x0Tzm+2 that
lies in W . Also, the path qWp leaves x0Tzm+2 from the right side.

Proposition 16 implies that there is a point r ∈ qWu such that W cuts zm+1 at r. In
particular, we have q 6 r 6 zm+1 in P .

In our research, we found it convenient to view the path M = x0TqWpSa as a pillar.
M is not a witnessing path, and it is not a separating path. Nevertheless, it has a useful
property

z 6 q 6 r < zm+1 in P , for every z in M .

In particular, this implies that W ′ does not intersect M as otherwise if w is an intersection
point of W ′ and M , we would wm+1 6 w 6 zm+1 in P , a clear contradiction.

Recall that W ′ hits the branch x0Tzm+2 at element u′. There are two options: either u′

lies in the section x0Tq (including q) or u′ lies in the section qTzm+2 (excluding q). We
want to exclude the the first option. Indeed, if u′ is on the path x0Tq, then

wm+1 < u′ 6 q 6 r < zm+1 in P ,
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Figure 10. On the left side, we show the separating path N with thick-
ened lines. We also show the points wm+1, zm+2, a that have crossed over
to the left of N . On the right side, we show the pillar M with thickened
lines. The remaining lines are part of the separating path N ′. We note
that a must be right of N ′, which is a contradiction.

which is a contradiction. We conclude that u′ is an element of x0Tzm+2 that occurs
after q. This implies that the pillar M leaves the path x0Tu

′ from the right side, as
illustrated in Figure 10.

Now consider the red path v′Sy0. We observe that there is no point on v′Sy0 that also
belongs to the pillar M . To see this, suppose that w is a common point. Then

wm+1 6 w 6 q 6 r < zm+1 in P ,

which is again clearly false.

To complete the proof, we simply recall that the pillar leaves the path x0Tu
′ from the

right side and never touches N ′ again. This means that a must be right of N ′, as
desired. The final statement in the proof of the preceding claim is also illustrated in
Figure 10. �

We have now reached a contradiction since we have shown that N ′ separates A′ and B′

with |A′| = |B′| = m = 2h, contradicting Proposition 17. This completes the proof of
Proposition 18. �

4.1. Separating the Red and Blue Trees. To illustrate the challenges we face in
separating the blue and red trees, we show on the left side of Figure 11 how it can
happen that x0Tbi∩y0Saj can intersect for at least half the comparable pairs in AI×BI .
In this example, there is one “essential” crossing of the red and blue trees. On the right
side of this figure, we show a small example with two essential crossings. With these
examples in mind, it is conceivable that a more complex example might have arbitrarily
many different essential crossings. Accordingly, it will take some effort to show that this
cannot happen.
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Figure 11. On the left side, we show two copies of a wheel stacked
vertically. In this figure, black and green paths are oriented downwards.
On the right side, we show three copies of S2 stacked vertically. In this
figure, edges common to the red tree and the blue tree are shown in purple.
The black paths (solid and dotted) are oriented downwards.

Now we begin the material necessary to separate the red and blue trees. Let Z be the
non-empty subposet of P consisting of all elements of P that belong to a witnessing
path from x0 to y0. If we restrict our drawing of G to the induced subgraph determined
by the elements of Z, we obtain a drawing without edge crossings of the cover graph of
Z. Furthermore, x0 is the unique minimal element of Z, and y0 is the unique maximal
element of Z. We note that no element of AI ∪BI belongs to Z.

Although we are working with a drawing of a cover graph, and not an order diagram,
the fact that x0 and y0 are on the exterior face implies that when we restrict to the
cover graph of Z, and we take an element z of Z, then like in an order diagram, the up
covers of z must appear in a block as do the down covers of z. Accordingly, when z 6= y0,
among the up covers of z, there is a well defined left-to-right order (clockwise). And
dually, when z 6= x0, there is a left-to-right order on down covers of z (counterclockwise).
See Figure 12.

It is easy to see that Z has dimension at most 2. We carry out a depth-first search of Z,
starting at x0, with a local left-to-right preference, to obtain a linear extension L of Z.
Dually, we carry out a depth-first search of Z using a local right-to-left preference, to
obtain a linear extension R of Z. These two linear extensions form a realizer of Z as
z < z′ in Z if and only if z <L z

′ and z <R z
′. When u, v ∈ Z and u ‖P v, we we will

say that u is left of v (also v is right of u) when u <L v and v <R u. Note that these
two terms are transitive, e.g., if u is left of v and v is left of w, then u is left of w. We
illustrate these concepts in Figure 12.

When W is a witnessing path from x0 to y0, then W is also a maximal chain in Z.
Therefore, if u ∈ Z and u is not on W , then there is an element v ∈ W such that u ‖P v.
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Figure 12. The subposet Z consists of all points of P that are on
witnessing paths from x0 to y0. The element 16 has two up covers 17, 21,
and three down covers 10, 12, 15 (both lists sorted from left to right). The
elements of Z are labeled with the integers in [25] according to the depth-
first search linear extension <L that uses a local left-to-right preference.
Note that 7 is left of 16 and 16 is left of 18. This implies 7 is left of 18.
Also, 10 is right of 5.

We will say that u is left of W if u is left of v. In a symmetric manner, we will say that
a point u ∈ Z that is not on W is right of W if there is a point w on W such that u
is right of w. It is easy to verify that when u ∈ Z and u is not on W , then either u is
left of W or right of W , and these two options are mutually exclusive. Naturally, when
u ∈ Z, the phrase u is not left of W means that either u is on W or u is right of W .

The next two elementary propositions highlight the interplay of the terms left and right
as applied to a pair of elements, and an element vs. a witnessing path.

Proposition 19. Let W be a witnessing path from x0 to y0 and let u and v be a pair of
points from Z with u ‖P v. If u is not right of W and v is not left of W , then u is left
of v.

Proof. Since u is not right of W , we know that either u is left of W or u is on W . In
both cases, there exists u′ in W such that u 6L u′. Analogously, since v is not left of W ,
we know that either v is right of W or v is on W . In both cases, there exists v′ in W
such that v 6R v′.

Since u′ and v′ both belong to W , they are comparable in P , i.e., u′ 6 v′ or v′ 6 u′ in P .
In the first case, we conclude u 6L u′ 6L v′ 6L v and since u ‖P v in P , at least one of
these inequalities must be strict. This proves that u is left of v. In the second case, we
conclude v 6R v′ 6R u′ 6R u, and since u ‖P v in P , at least one of these inequalities
must be strict. This proves that v is right of u (so u is left of v). These observations
complete the proof of the proposition. �
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Proposition 20. Let W be a witnessing path from x0 to y0, and let u and v be points
of Z with u left of v. If v is not right of W , then u is left of W . Also, if u is not left of
W , then v is right of W .

Proof. We prove the first assertion. The argument for the the second is symmetric. If v
is on W , then the fact that u is left of v implies u is left of W . If v is not on W , then
our assumption forces that v left of W . Choose v′ on W such that v is left of v′. Thus
by transitivity, u is left of v′ and so u is left of W . �

Our fixed drawing of the cover graph of Z splits the plane into regions: some number of
bounded regions and one unbounded. We call such a bounded region a Z-face. Each
element of P that is not in Z is in the interior of one of the regions. After adding two
dummy element z′, z′′ into P (and Z) such that (1) x0 < z′ < y0, x0 < z′′ < y0 in P and
all these relations are covers; (2) z′ is the leftmost up (down) cover of x0 (y0); (3) z′′ is
the rightmost up (down) cover of x0 (y0); we can assume that any element of P that is
not in Z is in the interior of one of the (bounded) Z-faces.

Each Z-face F is bounded by two distinct witnessing paths that have only their starting
and ending points in common. We let x(F) denote the common starting point, and we
let y(F) denote the common ending point of these two witnessing paths. When we start
at x(F) and traverse the boundary of F in a clockwise manner, we follow the left side of
F until we reach y(F). Then we traverse the right side of F backwards until we arrive
back at x(F).

When F is a Z-face, no element u of P that is in the interior of F satisfies x(F) <P

u <P y(F); otherwise this region would be split into smaller Z-faces. Also, a Z-face has
no chords.

When t, t′ are elements of Z, we let [t, t′] consist of all elements s ∈ Z with t 6 s 6 t′ in
Z. However, we also consider [t, t′] as a region in the plane, i.e, we consider all points in
the plane that are on witnessing paths from t to t′ as well as all points in the plane that
are in the interior of regions bounded by portions of two witnessing paths from t to t′.
Thus, there is a well defined left side and right side of [t, t′]. Note that [t, t′] is a union
of Z-faces and witnessing paths. It might be that the left side and the right side of [t, t′]
can share points and even edges of witnessing paths. We illustrate these concepts in
Figure 13.

When F is a Z-face, we define the left side path of F formed by concatenating the
following three paths: (1) the left side of [x0, x(F)]; (2) the left side of F ; and (3) the
left side of [y(F), y0]. The right side path of F is defined symmetrically.

Let F and F ′ be two distinct Z-faces. We say that F is under F ′ if y(F) 6P x(F ′).
Dually, we say that F is over F ′ if x(F) >P y(F ′). We say that F is left of F ′ if no
point on the boundary of F is right of the left side path of F ′. Symmetrically, we say
that F is right of F ′ if no point on the boundary of F is left of the right side path of F ′.
Proposition 20 implies that when F is left of F ′, there is a point u on the boundary of
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Figure 13. An interval [t, t′] with its two sides bolded.
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Figure 14. The left side path and the right side path for the face 1 are
shown using thick lines. Shadow face 1 is over 2, 3 and 4. It is under 5
and 6. All other Z-faces are either left or right of 1. In particular, 7, 8, 9
are left of 1, while 10, 11, 12 are right of 1.

F that is left of the left side path of F ′. Symmetrically, when F is right of F ′, there
is a point v on the boundary of F that is right of the right side path of F ′. These
observations give a formal argument for the natural conclusion that if F and F ′ are
distinct Z-faces, then F is either over, under, left of, or right of F ′. Furthermore, the
four options are mutually exclusive. We illustrate the concept of over, under, left and
right for Z-faces in Figure 14.

When u ∈ P and u is not in Z, there is a unique Z-face Fu containing u in its interior.
We let yu = y(Fu) and xu = x(Fu). We note that when (a, b) ∈ I, then a 6∈ Z and b 6∈ Z.
A witnessing path from a to y0 has to leave the interior of Fa, and this implies a < ya in
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P . Dually, a witnessing path from b to x0 (going backward) has to leave the interior of
Fb, and this implies xb < b in P .

A pair (a, b) ∈ I will be called a same-face pair if Fa = Fb; otherwise we will say that
(a, b) is a diff-face pair. When (a, b) is a diff-face pair, then Fa is not under Fb, as this
would imply a < ya 6 xb < b in P . It follows that Fa is either over, left of or right of Fb.

Lemma 21. The set of all diff-face pairs in I can be covered by two reversible sets.

Proof. Let M1 be the set consisting of all diff-face pairs (a, b) ∈ I such that either Fa is
left of Fb or Fa is over Fb. Let M2 be the set consisting of all diff-face pairs (a, b) ∈ I such
that either Fa is right of Fb or Fa is over Fb. Clearly, the two sets M1 and M2 cover the
set of all diff-face pairs in I. We now show that M2 is reversible. The argument to show
that M1 is reversible is symmetric. Suppose to the contrary that ((a1, b1), . . . , (ak, bk)) is
an alternating cycle of diff-face pairs from M2. For each i ∈ [k], let zi be the <L-largest
point on the boundary of Fbi with zi <P bi. There is such an element since xbi <P bi.

Claim. zi <L zi+1 for all i ∈ [k] (cyclically).

Proof. Let i ∈ [k]. Since (ai, bi) is a diff-face pair, Fai and Fbi are distinct Z-faces. We
know that ai <P bi+1. Let Wi be a witnessing path from ai to bi+1. Then let ui be the
first point of Wi that is on the boundary of Fai , and let vi+1 be the last point of Wi that
is on the boundary of Fbi+1

. Then ui 6P vi+1, and vi+1 6L zi+1. Since 6L is a linear
extension of P , this implies ui 6L zi+1.

If ui 6P zi, then ai <P ui 6P zi <P bi so ai <P bi, which is false. We conclude that
ui 66P zi. If zi <P ui, then we have zi <L ui 6L zi+1. This implies zi <L zi+1 as desired.

So we may assume that ui 66 zi and zi 6< ui in P . In other words, ui ‖ zi in P . Since
(ai, bi) ∈M2, either Fai is over Fbi or Fai is right of Fbi . If Fai is over the face Fbi , then
we have ui 6 yai 6 xbi 6 zi in P but we are now assuming that ui ‖P zi, so this option
cannot hold. We conclude that Fai is right of Fbi . Let W be the left side path of Fai .
Then no point on the boundary of Fbi is right of W . In particular, zi is not right of W .
On the other hand, the point ui is on the boundary of Fai . Therefore, ui is not left of
W . Now Proposition 19 implies zi is left of ui. Altogether we have zi < ui 6 zi+1 in L.
This completes the proof of the claim. �

To complete the proof of the lemma, we simply note that the statement of the claim
cannot hold for all i ∈ [k] cyclically. �

Lemma 22. For every strict alternating cycle ((a1, b1), . . . , (ak, bk)) of same-face pairs
in I, there is a Z-face F such that all elements a1, . . . , ak, b1, . . . , bk are in the interior
of F .
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Proof. We assume to the contrary that ((a1, b1), . . . , (ak, bk)) is a strict alternating cycle
of same-face pairs from I, and there is no Z-face that contains all elements of the cycle
in its interior. Of all such cycles, we assume further that k is minimum.

Claim 1. There do not exist distinct integers i, j ∈ [k] such that the pairs (ai, bi) and
(aj, bj) are in the same Z-face.

Proof. Suppose that for some i 6= j all four elements involved in (ai, bi), (aj, bj) lie in
the same Z-face. Since our alternating cycle is a counterexample, we do not have all
the pairs lying in the same Z-face, so we know that k > 3. After a relabeling, we may
assume that j = k and 2 6 i 6 k − 1. However, this implies that

((a1, b1), . . . , (ai−1, bi−1), (ak, bi))

is an alternating cycle of same-face pairs from I. This is a contradiction unless all the
pairs on this cycle belong the same Z-face. In this case, we consider the alternating cycle

((ai, b1), (ai+1, bi+1), . . . , (ak, bk)).

Again, we have a strict alternating cycle. However, now it is clear that not all the pairs
on this cycle belong to the same Z-face. Furthermore, the length of this cycle is less
than k. The contradiction completes the proof of the claim. �

For each i ∈ [k], let Fi be the common Z-face Fai = Fbi , let xi = xbi , and let yi = yai .
Let Wi = Wi(ai, bi+1) be a witnessing path. Then let ui be the lowest point of Wi that is
on the boundary of Fi, and let vi+1 be the highest point of Wi that is on the boundary
of Fi+1. We note that ai <P ui 6P vi+1 <P bi+1.

Claim 2. For all i, j ∈ [k], ui 6P vj if and only if j = i+ 1 (cyclically).

Proof. We already know that ui 6P vi+1 for all i ∈ [k]. Now suppose j 6= i + 1 and
ui 6 vj. Then ai <P ui 6P vj < bj. This implies ai < bj. Now we have contradicted
the assumption that our original cycle is strict. With this observation, the proof of the
claim is complete. �

Claim 2 implies that ((u1, v1), . . . , (uk, vk)) is a strict alternating cycle of incomparable
pairs in Z. Let i ∈ [k]. Since ui ‖P vi, and both ui and vi are on the boundary of Fi, it
implies that they are on opposite sides of Fi. Also, {ui, vi} ∩ {xi, yi} = ∅. Furthermore,
the statement ui is left of vi means the same as saying ui is on the left side of Fi and vi
is on the right side of Fi. A symmetric statement holds when ui is right of vi.

Claim 3. For each i ∈ [k], the following statements hold.

(i) If ui <L vi, then ui+1 <L vi+1 and ui+1 <L ui.
(ii) If ui <R vi, then ui+1 <R vi+1 and ui+1 <R ui.
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Figure 15. The point vi+1 must be on the left side of [ui, y0]. This forces
vi+1 to be on the right side of Fi+1. In turn, this forces ui+1 to be on the
left side of Fi+1.

Proof. We prove the first statement. The proof of the second is symmetric. Let i ∈ [k].
Then ui is on the left side of Fi, and vi is on the right side of Fi.

Since ui+1 and vi+1 lie on the boundary of Fi+1, and ui 6P vi+1, ui ‖P ui+1, we conclude
that vi+1 must be on the boundary (left side or right side) of [ui, y0] while the point ui+1

as well as all points in plane that are in the interior of Fi+1 are in the exterior of the
interval [ui, y0].

First, we assume that vi+1 is on the right side of [ui, y0]. Clearly, the right side of this
interval is the portion of the left side of Fi from ui to yi concatenated with the right
side of the interval [yi, y0]. If vi+1 lies on the left side of Fi (somewhere starting from ui
but before yi), then since Fi and Fi+1 are distinct faces, this would force vi+1 to be on
the right side of Fi+1. In turn, this would imply that ui+1 is on the left side of Fi+1 and
therefore ui+1 <L vi+1. Also when we extend any witnessing path from ui to vi+1 to a
witnessing path W from x0 to y0, we clearly have ui on W and ui+1 left of W . Now by
Proposition 19, we conclude that ui+1 is left of ui as desired. If vi+1 lies on the right side
of [yi, y0], then vi < yi 6 vi+1 in P , which cannot hold in our strict alternating cycle.

It remains only to consider the case that vi+1 is on the left side of the interval [ui, y0].
This forces vi+1 to be on the right side of Fi+1 and therefore ui+1 is on the left side of
Fi+1. Thus we get ui+1 <L vi+1. This is the situation illustrated in Figure 15. Again
when we extend any witnessing path from ui to vi+1 to a witnessing path W from x0 to
y0, we clearly have ui on W , and ui+1 left of W . Now by Proposition 19, we conclude that
ui+1 is left of ui as desired. With this observation, the proof of the claim is complete. �

To complete the proof of the lemma, we simply note that the statement of the claim
cannot hold for all i ∈ [k] cyclically. �
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When F is a Z-face, let I(F) consist of those pairs (a, b) ∈ I such that F = Fa = Fb.
Then Lemma 21 and Lemma 22 imply

ρ(I) 6 2 + max
F

ρ(I(F)).

With this material as background, we may assume that:

(i) The boundary of G is the boundary of a Z-face F .
(ii) I = I(F), x0 = x(F), and y0 = y(F).
(iii) If (a, b) ∈ I, then x0 <P b and a <P y0.

Let ((a1, b1), . . . , (an, bn)) be a directed path in I. Suppose that (i, j) is a pair of distinct
integers in [n] such that x0Tbj intersects y0Sai. Let u = u(ai, bj) and v = v(ai, bj) be,
respectively the least and greatest element of P common to x0Tbj and y0Sai. Then
x0 <P u 6P v <P y0. Since F is a Z-face, no point in the interval [u, v] is in the interior
of F . It follows that [u, v] is a portion of one of the two sides of F . Furthermore, all
points and edges of x0Tbj after v are in the interior of F , and all points and edges of
aiSy0 before u are in the interior of F .

Now suppose that i < j. It is easy to see that the following three statements hold:

S(1): x0Tv and uSy0 are portions of the right side of F .
S(2): If 1 6 i′ < i, then uSy0 is a terminal portion of ai′Sy0.
S(3): If j < j′ 6 n, then x0Tv is an initial portion of x0Tbj′ .

If i > j, then there is a symmetric set of three statements for the left side of F .

The proof of the following proposition completes the proof of our Theorem.

Proposition 23. If ((a1, b1), . . . , (an, bn)) is a directed path in HI , then n 6 34h+ 9.

Proof. We argue by contradiction and assume that there is a directed path
((a1, b1), . . . , (an, bn)) in HI with n = 34h+10. Set s = 6h+2, and note that n = 5s+4h.

If X is any subset of [n] with |X| = s, then Proposition 18 implies that there are distinct
integers i, j ∈ X such that x0Tbj intersects aiSy0. We apply this observation to the set
X = [s]. We give the balance of the argument under the assumption that i < j. From
the details of the argument, it will be clear that the proof when i > j is symmetric.

Since 1 6 i < j 6 s, we know that statements S(1), S(2), S(3) hold. For each α with
i 6 α 6 n, let uα be the lowest point on the right side of F that belongs to aαSy0. If
α < n, then uα 6P uα+1. For each β with j 6 β 6 n, let vβ be the highest point on the
right side of F that belongs to x0Tbβ. Since aβ ‖P bβ, we know vβ <P uβ. Furthermore,
if β < n, then vβ 6P vβ+1.
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Figure 16. On the left, we show an intersection between the red and
blue trees in the Z-face F . On the right, we show a forced intersection,
and the resulting contradiction completes the proof.

An important consequence of the previous paragraph is that for every β with j 6 β < n,
the path x0Tbβ contains a non-trivial portion of the right side of F . Since we are
working with a single Z-face x0Tbβ cannot hit both the left side and the right side of
F . Therefore, x0Tbβ stays disjoint from the left side of F . This implies that whenever
x0Tbβ intersects aαSy0 m, we have α < β.

Claim 1. If j 6 k 6 n− s, then uk 6P vk+s.

Proof. Consider the set X = {k, k + 1, . . . , k + s}. Since this set has size s + 1, by
Proposition 18 there is some distinct pair α, β of elements of this set such that x0Tbβ
intersects aαSy0. Our remarks just above require α < β, and this implies uα 6 vβ. We
conclude that uk 6 uα 6 vβ 6 vk+s in P . �

We note that if j 6 k 6 m 6 n, then vj <P uj 6P um, so vj <P um. As illustrated on
the left side of Figure 16, we then have the following comprehensive inequality:

vs < us 6 v2s < u2s+2h 6 v3s+2h < u3s+2h

6 v4s+2h < u4s+4h 6 v5s+4h < u5s+4h in P .

Let N1 = N(a3s+2h, bs) be a separating path. We note that x0Tbs and a3s+2hSy0 are
disjoint. Let W1 = W (w1, z1) be the (necessarily non-trivial) witnessing path that forms
the black part of N1. Proposition 9 implies that b3s+2h is right of N1.



POSETS WITH PLANAR COVER GRAPHS 31

Referring to the right side of Figure 16, let R be the region in the plane formed by
vsTz1W1w1Su3s+2h and the portion of the right side of F between vs and u3s+2h. Clearly,
when u is an element of AI ∪BI , we have u is right of N1 if and only if u is in the interior
of R.

We assert that there is no point v in the blue tree with v >P us such that v ∈ W1. To
see this, the existence of v would imply:

as <P us 6P v 6 z1 6 bs.

This would imply as <P bs, which is false. Therefore, our assertion holds. From this, it
follows that all points of B2 = {b4s+2h, . . . , b4s+4h} are left of N1.

Claim 2. W1 does not intersect a5s+4hSy0.

Proof. If the claim fails, then Proposition 16 implies that W1 intersects aSy0 for every
a ∈ A2 = {a4s+2h, . . . , a4s+4h}. We assert that in fact, a is right of N1 for every a ∈ A2. If
this assertion does not hold, then it is easy to see that a is enclosed by a3s+2h. Therefore,
our assertion holds. However, this now implies that N1 separates A2 from B2. This is a
contradiction with Proposition 17 since these two sets have size larger than 2h− 1. �

As a consequence of Claim 2, we know that a5s+4h is left of N1. Now let N2 =
N(a5s+4h, b3s+2h) be a separating path, and let W2 = W (w2, z2) be the non-trivial
witnessing path that forms the black part of N2. Using symmetric arguments, the
following statements hold: (1) b5s+4h is right of N2; (2) there is no point w of the red
tree with w 6P v5s+4h such that w ∈ W2; (3) all elements of A2 are right of N2; and
(4) W2 does not intersect x0Tbs.

Since a5s+4h is left of N1, and b3s+2h is right of N1, the witnessing path W =
a5s+4hSw2W2z2Tb3s+2h must intersect the boundary of R. Clearly, this requires that
there is a point v common to W2 and W1. This implies

a3s+2h 6P w1 6P v 6P z2 6P b3s+2h.

In turn, this implies a3s+2h <P b3s+2h, which is false. The contradiction completes the
proof of the proposition. �

And as noted previously, this completes the proof of Lemma 15, as well as the principal
theorem of the paper.

5. Closing Comments

Since we have not been able to disprove that dim(P ) = O(h) we comment that our proof
that for O(h6) has three steps where improvements might be possible. Do we really need
the O(h3) factor in the transition from singly constrained to doubly constrained set of
incomparable pairs? When I is a set of doubly constrained pairs, did we need another
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factor of h to transition to the doubly exposed case? Could dim(I) be linear in ρ(I)
when I is doubly exposed in P?

Although we believe the establishment of a polynomial bound for dimension in terms
of height for posets with planar cover graphs is intrinsically interesting, we find the
results of Section 3, where height plays no role, particularly intriguing. Indeed, we hope
that insights from this line of research may help to resolve the following long-standing
conjecture.

Conjecture 24. For every n > 2, there is a least positive integer d so that if P is a
poset with a planar cover graph and dim(P ) > d, then P contains the standard example
Sn.

Apparently, the first reference in print to Conjecture 24 is in an informal comment on
page 119 of [13], published in 1991. However, the problem goes back at least 10 years
earlier. In 1978, Trotter [12] showed that there are posets that have large dimension
and have planar cover graphs. In 1981, Kelly [8] showed that there are posets that have
large dimension and have planar order diagrams. In both of these constructions, the
fact that the posets have large dimension is evidenced by large standard examples that
they contain. The belief that large standard examples are necessary for large dimension
among posets with planar cover graphs grew naturally from these observations.

To attack Conjecture 24, it is tempting to believe that we can achieve a transition from
a singly constrained poset to a doubly exposed poset, independent of height, by allowing
a considerable reduction in the dimension d.
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[2] Gwenaël Joret and Piotr Micek. Improved bounds for weak coloring numbers. submitted,

arXiv:2102.10061.
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