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Fhe purposs of this paper s 1o decuss several invanants cach of which provides a measure of
theintiiive notion of complexity for a timte partialhy ordered set. For a poset X, the nvanants
dowcussed include cardimahty, waidth, fength. breadth, dimension, weak dimension. itenal
diacnvon, and semiorder dimenvion, denoted respectively X0 WXL LiX B(X). dimiiX),
WX B X and Sdimi(X) Among these invanants the following mequaliies hold.
BIX) s Khm(X) = Sdim (X WdimiX) = dim (X5 - WXy We prove that every poset X with
three oo mare points contams a pair v waith [dim(X) < 1 - Idim (X - { v D) T AL denotes the <21
of manvimal clements and A an arbitrany anticham of X0 we show that Tdim (X< WX - M) ana
TdemeNs - 2W (X - A b We alo show that there exist functuons f(n ) and g(r) such that
FeXo - reoand BhimgXo= 0 smphy dimX) < fi 1y sad SdimiX) < 1 oimphes dim(X) = g (o)

1. Preliminaries

In this paper we consider a poser as a pair (X, P) where X s a finite set and P s
an arreflexive, transitive (and thus asvmmetric) relation on X, P is called a strict
pariiai order on X. The notations (x, v)E P, xPy. x < Y in P,and y > x in P are
used interchangeably. The notation x < v (x = v)in P means cither x = v (x > v)
i P orx =y Fordistinct pomnts x. v € X, if neither (2o v )nor (v, x ) isin Powe say v
and v are tncomparabie and write xIv We alse define 4, = {(x.v): Iy b If 7 = 0,
then we cali P a linear order. 1f P and Q are partial orderson X and PC Q. O s
called an exrension of P. By a theorem of Szpilrayn [13),if ¢ denotes the collection
of all lincar extensions of P, then () ¢ = P For convemence, we will frequently
use the single svmbol X to denote the poser (X, P} It Y Z X, the poset
(Y.P oY x YV is called a subposer of (X, P). When we use a singie symbol, the
stateme nt Y is a subposet of X, denoted Y C X, means that the partial orderon Y s
the intersection of the partial order on X with Y » Y. A subposcet which is a linear
order is calied a chain. We denote the n-element chain 0 <2 1< 2<0 .. << n -1 by
n. A subposet for which every distinct pair of points is an it comparable pair s
called an antichain. The length 1L(X; and the width W(X) are the cardinality of a
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maximum chain and a maximum anmhaln in X respectively. We use 1 X] to denote
the cardinality of X,

I (X, P)end (Y. Q) are posets, then the free sum of (X. P) and (Y. Q). denoted
(\ Py~ (Y.Q)or X+ Y, is the posct (X U Y. PU Q) where iJ denotes the disjoint
unien of sets.

11 {X. P) and (Y. Q) ai¢ posets, then the cartesian product of (X, P)and (Y. Q),
denowed (XL P x (Y, u;or X x Y is the poset (X X Y. §) where (x.v)=< (z.w)in §
when v 2 in P and v < w in Q. We will use R to denote the set of real numbers
with the usual ordering and R” to denote the cartesian product of 1 copies of R.

1 iN.P)and (Y. Q) are posets. then the join of (X, P) and {¥Y. Q). denoted
(N.PY<(Y.0) or XEY is the poset (XU Y.S)where S = P O U(X xY)

In Jaicr sections oo this paper. we w:ll frequently be faced with the probiem of
constracting extensions of partial order-. Consequently we will find it convenient to
develop a entenion by which we can determine whether there exists an extension Q
of a partial order P so that Q contairs a given set § ¢ #,. Clearly this problem
reduces to determining whether the trarsitive closure of the relation PUS,
denoted PUS. is a parti.d order: we note that P P U Sis a partial order if and only if
it s crreflenive. '

H (X.P)is a poset and S C 7, then a subset {{a. by 1<i=m}CS for which
h - a . in P (the subscripts are interpreted cvehcally. 1e. a.., = a;) is called a
weak TM-cvcle. The integer m is called the length of the weak TM-cvele. If §
contains a weak TM-cycle. then PUS is not a partial order since it fails to be
irreflerive. The converse of this statement is also true; we refer the reader to [19]
for a proof of this elementary result.

Lemma 1.1. Ler (X, P) be a poset and let S C #5. Then PUSisa partial order if
and only if S does not contain a weak TM-cycle.

A subset {(a.b):1<i<m}C ¥ is called a strong TM-cycle when b, < a, in P
iff j= .+ 1forall i with | <i=<m. (As before we intend for the subscripts to be
interprated cvclically.)

Lemma 1.2. Let (X. P) be a poset and let S C #p. Then P U S is a partial order iff
S does not contain a strong TM-cycle.

Proof. It suffices to show that a subset S C .#, which contains a weak TM-cycle also
contains a strong TM-cycle. To accompiish this we choose a weak TM-cycle
Ha.b):1=<i=<m}C S sothai the length m of the cycle is as small as possible. Now
a. > b, in P and a,1b, in P. Supposc however that there exists an integer with
2= n< m so that a, = b, in P. It would then follow that {(a.b):1<si<n}isa
weak TM-cycle of length n. The contradiction shows that a, # b, for all i with
- ¢t m. We mayv use the natural symmetry to conclude that b, <4, in P iff
=t~ ltforall i withlsi<m.
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Let 7 be a chain in a poset (X.P). $;={(c.x):~€ C and cIx in P}. and
S:={(x.):c € C and xIc in F}. It follows immed-ately from'Lemma 1.2 that
PUS, and PUSS; are partial orders. A linear extension L, of PUS,, is called
an upper extension of C and a linear extension L, of m; is called a lower
extension of C.

If A and B are disjoint subsets of X then we define an injection of B over A as a
linear extension of P U S where $ = 7, N (A x B) In this terminology, an upper
extension of a chain € 18 an njection of X - C over C

Lemma 1.3. Let A and B be disjoint subsets of a poset (X, P). "hen there exists an
ijection of B over A if and onlv if 4, N (A < B) does not contair. a strong TM-cycle

-~

of length 2.

Proef. Lot {(a.b): 1~ 1= m} be 1 strong TM-cvele of length m contained in
Fe V(A x B). H m 2 then {(a..b). (¢..b.)} is a strong TM-cycle of length 2
contained 1n /. O {A =« B).

The reader should note if /. (A < B) contains a strong TM-cvcle {(a. b.): 1 =
t = 2t of length 2, then the points a.. a.. b, and b are distinct. They form a subposet
of (X, P) isomorphic to 2+ 2.

2. Mathematical formulation of complexity for posets

Dushnih and Miller {7] defined the dimension of a poset (X, P). denoted
dim (X, P) or dim{X). as the mimimum number of linear extensions of P whose
intersection is 2° The dimension of a poset can be interpreted o8 2 measure of the
complexity of the poset in the following sense. Suppose each ot a finite number of
observers expresses his individual opinion on the relative ments of a finite set of
options by rarking the options in a linear order. A partial orderiag on the options is
obtained by ranking option x higher than option v when all observers have agreed
that x is preferred to yv. Converselv, the dimension of a partial order measures the
minimum number of observers necessary to produce the giver: partial order as a
statement of those preferences on which the observers agree unanimously.

We observe that certain elementary invariants such as carcinality, width, and
length can also be interpreted as measures of complexity. However it is clear that
this interpretation is limited in that these invariants may prescribe an inordinately
high degree of complexity to such intuitively simple partial orders as chains and
antichains.

In this paper, we will discuss other measures of complexity for finite partial
orders. Each of these measures will be a variant of the concepr of dimension. We
will note the mathematical and conceptual advantages (and disadvaniages) of each.

A posct (X, P) is called a weak order if and only if there exists a function
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- XN —+R so that x < v in P ifl f(x)< f(v)in R. It is elementary to prove the
{oll 'wing characterization theorem for weak orders.

Theorem 2.1. A poset is a weak order if and only if it does not contain a subposer
isomorphic 10 24 1.

It i~ natural then to define the weak dimension of a poset (X, P). denoted
Wdim(N. P)or Wdim (X) as the smallest positive integer k for which there exists a
function £:X-+R* so that x < v in X iff f(x)(i)< f(y)(@i) in R for all i with
1< 1< k The function f is called a point coordinatization of length k of the poset
(x.r)

Or¢ [10] gave the following alternate definition of the dimension of a poset.
Jim X, Poas the smallest positive anteger & for which (X, P) is isomorphic to a
subposct of the cartesian product of k chains. For finite posets. it is then casy to see
that dim (X, Pys the smallestinteger k for which (X, P)is isomorphic to a subposet
of R 1¢ dim(X.P) is the smallest positive integer kK for which there exists a
function - XN = R* sothat x < vin P iff f(x)(i)= f(x) (i) for all ¢ with 1= 1 = k.
Fhus we see that Wdim (X0 < dim (X) for every poset X, Furthermore it is trivial to
verfy that Wdim(X) = dim (X) unless X 1s a weak order but not a chain, and in this
case Wdim(X) = | while dim(X) = 2.

A collectien ¢ of closed intervals (points are also considered closed intervals) of
R has 4 natural ordening -2 induced onitby A << B iff v € A, v € B implies x <y
im R Anv poset which 18 isomorphic to a poset of the form (¢, <2) is called an
intertal order We state a well known theorem of Fishburn [8] which gives a
charactenization of interval orders,

Theorem 2.2. A poset X is an interval order if and only, if it does not contain a
subposet 1somorphic to 2+ 2.

A poset (X, P)is called a semiorder’ when there cxists a real number d and a
fupcton - X — Rsothat x < vin XU f f(x) + d < f(y)in R, Itis easy tosec *hat a
poset s a semiorder iff it is isomorphic to an interval order in which all intervals
have umit fength. The following well known charactenizotizn of semiorders is due to
Soott and Suppes [12].

Theorem 2.3. Aninterval order X is a semiorder if and only if it does not contain a
suhpiset isomorphic to 3+ 1.

We note that the join of two interval orders (semiorders) is another interval order
isermorder).

Such ponets are discussed i a different setting by Dean and Keller |§] who shawed that the number of

/

N
2n .
somonders enoa pents i ‘ n )/ (n +1). They called semiorders natural partial orders.
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Ustng the notions ctanterval orders and semiorders, we can row define two new
mvanants for a it posct. Fust we detne the anterval dimension of X. denoted
Idim (X). as the smuallest positive integer A for which there exists a function F which
assigns to cach v € X sequence FOO(, F(aO(2). ... F(x) (k) of closed intervals
of Rsuch that v+ van Nt Foy(-Fv) @) for all i < k. F s called an interval.
coordinatization of X of length k- To detine the semiorder dimension of X, denoted
Sdim (X). we further require that # (v) () have length 1 forall x € X and all : < k.
As an immediate conseguence of these definions, we have Idim (X) = Sdim (X) for
all posets X Xoiwan antichain, then YWdim(X) = Sdim (X) = Wdim(X) = L. If X 1s
not an antichain, choose 4 point coordinatizavon f of X of length k and let
m = min{f(x Y& (v ey 4ov vy Then X has a unit interval coordinatiza-
tion detined by f(uy( [Hiviiorme 1 2f(xyaym] oand thus Sdim (X' s
Wdim(\V) for all X

We also note that the authors and Rabinoviteh have recently proven [3] that for
cach n = 1. there exists a poset X with Idim (X)) = 1 and dim (X)) = n. This proof is
castly modificd to obtain an analogous result for semiorder dimension.

W e state the following elementary result which is casily proved by induction. We
refer to this resolt as the interpolation lemma.

Lemma 2.4. Lot (X.P) be uaposetand Y C X. Suppose Fis a function which assigns
w each v €Y an interval (alternately. a unut interval) such that v,.v.€Y and
vioo v imply F(v.)-2F(v.). Then Fcan be extended to X. i.e. foreachx €X - Y an
interval (alternately, a unit interval) F(x) may be chosen so that x;.x: € X and
x < x, imply F(x) < F(x:).

We will tind it convenient to adopt the .onvention of saying that the dimension.
weak dimension, interval dimension, and semiorder dimension of a one point poset
Iy zeTO.

3. A Hiraguchi theorem for interval dimension

In 1955 Hiraguchi [9] proved that dim (X) = H X1 for all X with IX{= 4. A simple
proof of Hiraguchi's theorem may be found in [15]. 1t has been conjectured that an
even stronger result holds, namely that every posct of three or more points contains
a pair of points whose removal lowers the dimension at most one. There are many
conditions under which such a pair is known to exist. As an example, Hiraguchi [9]
proved that if @ and b are incomparable, a is maximal. and b is minimal, then
dim(X)= | +dim(X-{a.h}). To extend this notion, we say that {a. b) satisfies
property M if alb but z ~ a implies z b and z < b implies z < a. In afinite poset
which is not a chain, an ordered pair (a. b) satisfying property M exists. To see that
this is the case. choose an incomparable pair (a.b) with the cardinality of
{z:z =alU{z:z < b} assmall as possible. We conjecture that for any poset X, the
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remonal of a pair satisfving property M reduces the dimension at most 1. In support
of this conjecture we offer the following theorem.

Theorem 3.1. Suppose X is a poset and (a. b) satisfies property M then the removal
of a and b reduces the interval dimersion of X at most one, ie. ldim(X)<
1+ Idm(X - {a. b}).

Proof. Suppose Idim{X, - {a. b} = ; then choose an interval coordinatization F ¢f
X ja. b} of length 1. We use this coordinatization to construct an intervas
coordinatization G of X of length ¢ + .

Forcach x € X - ‘a. b} 1t G(x)('i) = F(x) (i) for all i = ¢ By the interpolation
femma, we may choose for each i <1 intervals Ga) (i) and G(0)(1) so that
v N and x o vamply GO () G(y) () ‘

Now partition X - {a. b] nto five subposets:

X, - {x€NXN:x >al. X:={x € X:xla.x »bh}, X.={x € X:xla.xlb},
X:={vEXN:x<axlk}, X={x& X:x< b}
Let o= X for cach 1 = 5. Then define the following open intervals:
U = (=) U.=(L2. U =(-10
C.=(-20 1) Uc=(-= -2).

For cach j < 5. choose m, points P, <2 P.<2 ... < P, from U, and let v,, < x,. <
" 1. be any hinear extension of the subposet X
To complete the coordinatization let Ga)(r+ 1)=[-1.2). gb)(t+ )=
[~ 21 and G(x X+ D=P, forj= 1,234 5aud i = 1.2,...,m,. It is casy to
venify that G s aninterval coordinatization of X of fength ¢ + 1 and it follows that
Idim(X)< ¢+ 1.

We note that the cenjecture presented in this section has not been settled for
semiorder dimension.

4. Other inequolities

We begin the section by proving some removal theorems analogous to the results
appcaning in [2. 4. 15].

Theorem 4.1. Let x €EX and let C be a chain in X. Then:
iy lim(X)< 1+ Idim(X - x).
(7 Sdim(X)= i + Sdim(X - 1).
Gy ldimiXy= 2+ Idim(X - C).
(31 Sdim(X)= 2 + Sdimi(X - ().
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Proof. To prove statement (1) (statement (2)). suppose Idim(X - x) =1
(Sdim (X - v)=1). Then choose an (unit) interval coordinatization F of X~ x of
fength ¢ For cach v € X~ x and cach 1= ¢ - 1 let G(v)(i)= F(x)(i). For cach
i< 1 -1, extend G to all ef X by the interpolation lemma. Then define

X = {vE Xy >y}, X.={y € X:vylx}, Xo={vE€Il:v<x}

and consider X,. X, X, X, U X.. and X; U X, as posets by taking as partial ordering
@ bt Fla){t)<1F(b)(1). Then let H and K be unit interval coordinatizations of
the interval orders (semiorders) X5 v b 33X, U X and XU X P {x B X, respec-
tively.

Foreach v € X let G(v) ()= H{y)and G(vi(t + 1) = K(v). It is easy to verify
that (G s a (unit) interval coordinatization of X of length r+1 and thus
Idim(X)= ¢+ 1 (Sdim(X)=1 + 1.

To prove statement (3) (statement (4)) let F be any (unit) interval coordinatiza-
tionof X - € of length 1. Foreachy € X- C and each i <t let G(y)(i) = F(v)(1).
For each = « use the interpolation lemma to extend G to all of X. Now let (X, L))
and (X, L..) bc upper and lower extensions of the chain C and let H and K be (unit)
interval coordinatizations of (X. 1)) and (X.L:). Then for ecach x € X, let
Gix)(t+ D= H(x)yand G(x) (e + 2)= K(x). It follows that GG is an (unit) interval
coordinatization of X of length ¢+ 2.

If A denotes the set of maximal elements of a poset X, it is proved in [15] that
dim(X) - - N(X - M) and a family of posets is constructed to show that this
inequality 1 best possible. It is straightiorward to modify the argument in [15] to
show that the inzquatity Sdim(X) = 1 + W(X - M) is also best possible. For interval
dimension we have:

Theorem 4.2, Idim(X) < W (X -~ M)

Proof. Lt W(X~ A =randlet C.UC.- U ... UC be adecompesition of X - M
into chains provided by Dilworth's theorem [6]. Foreach i < . let (X - M, L) be a
lower extension of C. Then let Po= P U L, It follows that each poset (X, P) is an
interval order and for cach i = ¢t we choose an interval coordinatization H, of
(X.P). Then let G(x)(i) = H (x). It follows that GG is an interval coordinatization
of X\ of length 1.

In [14]. the crown 8h is defined and the formula dim(83) = {2(n + k)/(k + 2)} 1s
established. We note that the same formula holds for the weak dimension, interval
dimension. and semiorder dimension of S$% Thus for kK =0, dim(S)=n =
W (S, - M). i.c. the inequality in Theorem 4.1 is best possible. Note that for n = 3,
the poset S, is isomurphic to the collection of 1-element and (n - 1)-element
subsets of an n-¢lement set ordered by inclusion.

For a poset X, we define the breadth of X, denoted B(X). to be 1 if X is a chain. If
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X s not a chain but does not contain a subposet isomorphic to 8. for n = 3, we
dehne the breadth of X to be 2. If X contains a subposet isomorphic to S, for some
n 3 we define B(X) 1o be the largest integer m such that §7,Z XU If X is a lattice.
this defimtion agrees with the usual definition of breadth for a lattice. It follows
then that the inequalities B(X) = dim(X) = W(X) hold and are best possible.

i A is an anuchain of X. it is proved in [15] thai the inequality dim(X)=
2W(X - A)+ 1 always holds and a famly of posets is produced to show that the
result 1s best possible. The arguments 1n this paper can be modified to show that the
o cquahty Sdim(X) = 2W(X - A} + 1 1s also best possible. Once again for interval
dirrension ‘the result is shghtly different.

Theorem 4.3, Idim(X) = 2W(X - A4)- |.

Proof. If W(X - A) = 1. then X does not contain 2+ 2 and is therefore an interval
order. For WX - A)=1¢ ~i. the theorem follows from induction on 1 and
statement (3) of Theorem 3.1,

We note that it is not known whether or not the result of Theorem 4.3 is best
possible.

5. Inequalities involving length

In this section we derive some incqualities which show the relationship hetween
~ld:m(X). Sdim(X). and [.(X).

Suppose X is a poset whose length is n. Let A, be the set of maximal clements of
N. If A.., has been defined. then let A, be the maximal clements of X - 4, -
AL+~ ... = A.... This construction partitions X into n antichains. For cach x € X
we define the level of x. denoted L.(x) as the unique i for which x € A,. We note
that x > v in P implies L(x)=L(v). We also note that in a semiorder L{x) =
L(v)+2 implies x >y in P.

The results developed in this section are motivated by the following pair of
theorems discovered by Rabinovitch [11].

Theorem 5.1. If X is a semiorder, then dim(X) =< 3.

Proof. i.et A ={x € X:L(x)iseven}andlet B = {x € X: L{x)is odd}. Then A and
B are disjoint subsets of an interval order and in view of Lemma 1.3, there exists an
injection L, of A over B and an injection L of B over A. Now suppose L(X) = n
and let X' = A, UA.U ... UA, be the natural partition of X into antichains. For
cach i with 1 =i < n. let A be the dual of the restriction of I.. to A,. Then define
L =4 2A S BAFEAGDA; Itfollows immediately that L, N L.N L, =
P and thus dim(X) < 3.
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The inequality of Theorem 5.1 18 best possible as there exist three dimensional
semierders. Rabinovitch [11] has also given a characterization theorem for such
posets.

Theorem 5.2, There exists a functior f(x ) so that if X is an interval order of length n,
then dim(X) < f(n).

We do not include a proof of Theorem 5.2 although the reader may easily
establish Rabinoviteh’s original result that the dimension of an interval order of
leneth nois at most {1+ log.n}. We note that this bound was improved by the
authors and Rabinovitch [3]. Subsequently Trotter [18] proved that there is a
posttive constant ¢ so that an interval order of length n has dimension at most
¢ log:log: n. Trotter also proved that for ecach n = 1, there exists an interval order
of length n whose dimension is at least 2log.log. n. In view of the intimate
connection between Trotter’s bounds and Ramsev theory, it 1s not likely that a
computation of the best possible value of f(n) in Theorem 5.2 is feasible.

It 15 possible. however, to extend Rabinovitch's theorems as follows:

Theorem 8.3, If Sdim(X) < ¢ then dim(X)= 31

Proof. Suppose that Sdim(X) = ¢ and let F be a unit interval coordinatization of
length ¢ of X. For each i = . let (X,. P) be the posct defined by x < v in P, iff
FO (-2 F/yy(i). Then cach poset (X.. P) is a semiorder and we may choose
lincar orders 1., 1., and L., so that P =L, NL.NL,. Since P=
PPy 0Pt follows that dim(X) = 3¢

Theorem 5.4. There exists a function g(n.t) so that if X is a poset of length n and
interval dimension t. thern dim(X) = g(n.t).

The proof of Theorem 5.4 1s quite similar to that of Theorem 5.3. As we shall see
in the next section, determining the best possible values of the function g is a
hopelessly difhicult problem.

6. Cartesian products
One of the well known clementary inequalities for posets is dim(X xY) =

dim(X) +~ dim(Y). Not so well known is the following result (see Exercise 7, page
101 of Birkhoff [1}).

Theorem 6.1. If X and Y are posets with distinct universal bounds, then
dim(X x Y) = dim(X) + dim(Y) and B(X x Y) = B(X) + B(Y).
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We will next derive a vanant of Theorem 6.1 for interval dimension.

Theorem 6.2. L.et X=(NX.P) and Y =(Y. Q) be posets with distinct umversai
beunds. If neither X nor Y is a chain. then Idim(X x Y) = dim (X)+ dim(Y).

Proof. Suppose Idim(X x Y) = ¢ and let F be an interval coordinatization of X x Y
of length ¢ We denote the universal bounds of X by 0 and 1: similarly we denote the
universal bounds of Y by (" and 1. Then we may assume without loss of generality
that there exists an integer s with 1= s =1 so that the right end point of
FUo. 10 (1) s greater than or equal to the right end point of F((1,00)(i) iff
f« 1< s We now show that s =2 dim(Y).

Fet ¢ be an integer with 1= 4 < s: then define a subset §,CJ, by § =
v . v )E 4., nght end point of F((0. v.)) (i) is at least as large as the left end point
of F((1.v.)(1)}. Suppose that some S, contans a strong TM-cycle {(a. b)) 1 = j =
m} of length m. {hen for cach [ with 1 < < m, we know that the right end point of
FUO b )(1) is at ;e as large in R as the left end point of F((1.a ))(i). Since
b<a. i Q5 : citows that (0.h)<(l.q.) in XXY and therefore
Fao. b (o) F((. o, 500 1t follows that for cach j with | = j < m. the left end
peint of F((l.a,..)3(:) .~ kmger than the left end point of F((1. a,))(1). Clearly. this
i« not possithle. We may conclude that for cach ¢ with 1 <1 = 5 the relation
O =0US ina partia: order on Y. Now for each i with 1 <4 < s let M, be a lincar
estenvon of Q. We rext show that Q= L, N L. ... NL,

Supyose (vi.v)E F, but that (v, v.)€ S for cach ¢ with 1= < s Then nt
follows that F(O. v )G < F((.v) () foralli with <=1 < 5. Now (0. v T (L. v)in
X < ¥ but (0.y.) (0. 1) and (1.0°)< (1, v.). Furthermore the nght ¢nd point of
Feel. o)) s larger than the right end point of F((O. 1)) for cach @ with
s < ¢ < ¢ This in turn implies that F((O. v ) (D)< F((L.y)i) forall i with 1 = ¢+ ¢,
The contradiction shows that there must exist some i with 1< i< s so that
(v .v:)= 8. It follows immediately that Q =L, " L.N ... N L, and therefore
s = dim(Y).

Tt - argument that 1 - s = dim(X) is dual and is therefore omitted.

We note that it follows immediately from Theorem 2.2 that Idim(2x2)=
Idim(2 - 3y =1 while [dim(2 x 4) = Idim(3 x 3) = 2. It is then trivial to modify the
proof of Theotrem 6.2, to obtain the following corollaries.

Corollary 6.3. Idim(X x 2) = dim(X) for every poset X.

Corollary 5.4. Let X be a poset with distinct universal bounds. If X contains at least
3 pomis, then Idim(X x 3) = | + dim(X).

Corollary 6.5. Let X be a poset with distirct universal bounds. If X contains at least
4 ponts, then Idim(X » 2)= 1 + dim(X).
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Theorem 6.2 and the coroltaries reveal that interval dimension does not behave
well with respect to the algebraic operation of cartesizn product. Intuitively, we
would prefer that if X and Y are relatively simple pose s, then each of the posets
X+ Y.XE Y. and X x Y should also be relatively simple. However., we see that the
cartesian product of an interval order and a 2-clement chain can have arbitrarily
large interval dimension This obvious drawback for interval dimension must be
weighed against its many advantages. For examiple, Theorems 2.2 and 2.4 show that
the inequality Idim(X) = 1 X { holds for all X. Furthermore we invite the reader to
compare the characterization of this inequality for interval dimension [21] with the
corresponding result for dimension [4]. Morcover. the removal theorems for
interval dimension are much more elegant than the corresponding theorems for
dimension. )

7. Concluding remarks and open problems

Ongmally. the authors” motivation for studying such concepts as interval
dimension and semiorder dimension came from our desire to merge the applica-
tions of semiorders and interval orders in the theory of measurement with the
concept of dimension theory. However. certain unexpected mathematical benefits
have surfaced. First, the concept of interval dimension has proved to be a key link
between a number of combinatonial problems. In [20] Tiotter and Moore use |
interval dimeesion to relate problems involving posets to important characteriza-
non problems imvolving circular are graphs. comparability graphs, and planar
lattwwes. Furthermore. the concept of interval dimension has been used in the
construction of irreducible posets of arbitrary cardinality [17].

Finally we note that the results in the preceding section impart further signifi-
cance to determining whether or not for each pair of positive integers m and
n with m = n, there exists posets X and Y with dim(X)=m, dim(Y)=n and
dm(XxY)=m.
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