ON THE COMPLEXITY OF POSETS

William T. TROTTER. Jr.

Kenneth P. BOGiART
Mathemath, Department. Dartmouth Colleqe. Hanoter. NH 113755 I S A

Recered 15 Varch 19`d
R.unced * March län

Abstract

The phpere of the paper windrownsereal mathants each of which provides a measure of H:-: intutive nothon of complexte for a time parball ordered set for a poset X . the invarian s dacused inciude cardinality. width. length. hreatth, dimension, weak dimenson. anteral $H(X) \cdot \operatorname{ldm}(X) * \operatorname{Sim}(X)-W d m(X)=\operatorname{dm}(X)-W(N)$ We prove that every poet X with lifmix: - W(X i) 1 We aho show that there exist functons $f(n, t)$ and $g(t)$ such that

1. Preliminaries

In this paper we consider a poset as a pair ($X . P$) where X is a finite set and P is an treflexibe, transitive (and thus astmmetric) relation on $X . P$ is called a strict partiai order on X. The notations $(x, y) \in P, x P_{y}, x<Y$ in P, and $y>x$ in P are used interchangeably. The notation $x \leqslant y(x \geqslant y)$ in P means either $x<y(x>y)$ in P or $x=f$. For distinct points $x, y \in X$. if nether (x, y) nor (y, x) is in P. we say x and y are incomparabie and write $x I y$ We also definc $A_{1}=\{(x, y): x \mid y\}$. If $y_{n}=0$. then we call P a linear order. If P and Q are partial orders on X and $P \subseteq O, Q$ is called an extension of P. By a theorem of Szpilrajn $[13]$, if ℓ denotes the collection of all linear extensions of P, then $\cap t=P$. For convemence, we will frequently use the single sombol \mathbf{X} to denote the pose: (X, P). If $Y \in \mathbb{X}$. the poset ($Y, P \subset(Y \times Y)$ is called a subposet of (X, P). When we use a singie symbol, the stateme itt \mathbf{Y} is a subposet of \mathbf{X}. denoted $\mathbf{Y} \subseteq \mathbf{X}$, means that the partal order on Y is the intersection of the partial order on X with $Y \times Y$. A subposet which is a linear order is called a chain. We denote the n-element chain $0<1<2<\ldots<n<1$ by n. A subposet for which every distinct pair of points is an it comparable parr is called an antichain. The length $\mathrm{L}(\mathrm{X})$ and the width $\mathbf{W}(X)$ are the cardinality of a
maximum chain and a maximum antichain in \mathbf{X} respectively. We use $\mathbf{X} \mid$ to denote the cardinality of \mathbf{X}.
$I!(X . P)$ and (Y, O) are posets, then the free sum of $(X . P)$ and $(Y . Q)$, denoted $(\mathbb{P})+(Y, Q)$ or $X+Y$, is the poset $(X \cup Y, P \dot{\cup} Q)$ where \dot{U} denotes the disjoint union of sets.
(i) X, P) and (Y, Q) ane posets, then the cartesian product of (X, P) and (Y, O), denowed $(X, P) \times(Y, Q)$ or $X \times Y$ is the poset $(X \times Y, S)$ where $(x, y) \leqslant(z, n)$ in S When $i^{2} z$ in P and $y \leqslant u$ in Q. We will use R to denote the set of real numbers with the usual ordering and R^{n} to denote the cartesian product of n copies of R.

If $\{. P$) and (Y, O) are posets. then the join of (X, P) and (Y, Q), denoted (A.P)A. (Y.O) or $X \notin \mathbb{I}$ is the poset $(X \cup Y . S)$ where $S=P \cup O \cup(X \times Y)$.

In leas sectons o: this paper, we w:ll frequently be faced with the problem of conotrating extensions of partial order. Consequently we will find it convenient to develop a criterion by which we can determine wheiner there exists an extension Q of a partial order P so that O contairs a given set $S \subseteq y_{p}$. Clearly this problem reduces $t 0$ determining whether the trat sitive closure of the relation $P \cup S$. denoted $\bar{P} \cup \bar{S}$. is a partind order: we note that $\bar{P} \cup S$ is a partial order if and only if if 心:rreflesive

If $\left(X . P^{\prime}\right)$ is a poset and $S \subseteq \mathcal{I}_{m}$, then a subset $\left\{\left(a, b_{i}\right): 1 \leqslant i \leqslant m\right\} \subseteq S$ for which $b \cdot a$ in P (the subscripts are interpreted cyclically. i.e. $a_{m \cdot 1}=a_{i}$) is called a weak TM-cycle. The integer m is called the length of the weak TM-cycle. If S contains a weak TM-cycle, then $\bar{P} \bar{U}$ is not a partial order since it faits to be irrefleve. The conserse of this statement is also true: we refer the reader to $|19|$ for a proof of this elementary result.
l.emma 1.1. Let (X, P) be a poset and let $S \subseteq \mathcal{I}_{p}$. Then $\bar{P} \cup S$ is a partial order if and only if S does not contain a weak TM-cycle.

A subset $\left\{\left(a_{.} b_{i}\right): 1 \leqslant i \leqslant m\right\} \subseteq \mathcal{Y}_{r}$ is called a strong TM-cycle when $b_{1} \leqslant a$, in P iff $j=;+1$ for all i with $1 \leqslant i \leqslant m$. (As before we intend for the subscripts to be interpreted ivelically.)

Lemma 1.2. Let (X.P) be a poset and let $S \subseteq \mathscr{F}_{\mathrm{f}}$. Then $\overline{P \cup S}$ is a partial order iff S does not contain a strong TM-cycle.

Proof. It suffices to show that a subset $S \subseteq I_{p}$ which contains a weak TM-cycle also contains a strong TM-cycle. To accompiish this we choose a weak TM-cycle $\{(a . b):. 1 \subseteq i \leqslant m\} \subseteq S$ so that the length m of the cycle is as small as possible. Now $a_{1} \neq b_{m}$ in P and $a_{i} I b_{1}$ in P. Suppose however that there exists an integer with 2. $n<m$ so that $a_{1} \geqslant b_{n}$ in P. It would then follow that $\left\{\left(a_{1 .} b_{1}\right): 1 \leqslant i \leqslant n\right\}$ is a weak TM-cycle of length n. The contradiction shows that $a_{1} \neq b$, for all i with $1=1-m$. We may use the natural symmetry to conclude that $b_{1} \leqslant a$, in P iff $j=i+1$ for all i with $1 \leqslant i \leqslant m$.

Let P he a chain in a poset $(X, P), S_{1}=\{(c, x): \bullet \in C$ and $(I X$ in $P\}$, and $S_{2}=\{(x, 6): c \in C$ and x / c in $P\}$. It follows immedately from'Lemma 1.2 that $\overline{P \cup} \overline{S_{1}}$ and $\overline{P \cup S_{2}}$ are partial orders. A linear extension L_{1} of $\overline{P \cup S_{1}}$, is called an upper extension of C and a linear extension L_{2} of $\overline{P \cup S_{2}}$ is called a lower extension of C.
If A and B are disjoint subsets of X. then we define an injection of B over A as a linear extension of $\bar{F} \cup S$ where $S=, B \cap(A \times B)$ In this terminology, an upper extension of a chain C is an injection of $X-C$ over C

Lemma 1.3. I.et A and B be disjoint subsets of a poset (X.P). Then there exists an injecton of B oter A if and only if $A_{P} \cap(A \times B)$ does not contair a strong TM-cycle of length 2 .

Proef. Let $\{(a, b):, 1 \cdot 1<m\}$ be 1 strong TM-cycle of kength m comtaned in $A_{p} \cap(A \times B)$ If $m \backsim 2$ then $\left\{\left(a_{!} b_{1}\right),\left(a_{i}, b_{m}\right)\right\}$ is a strong TM-cycle of length 2 contained in $\forall \cap(A \times B)$.

The reader should note if $A_{F} \cap(A \times B)$ contains a strong TM-cycle $\left\{\left(a_{a}, b_{i}\right): 1 *\right.$ 1 . 2) of length 2 , then the points a_{1}, a, b, and b, are distinct. They form a suhposet of (X, P) isomorphic to $2+2$

2. Mathematical formulation of complexity for posets

Dushnik and Miller $[7]$ defined the dimenson of a poset (X, P), denoted $\operatorname{dim}(X, P)$ or $\operatorname{dim}(X)$ as the minimum number of linear extencions of P whose intersection is $1:$ The dimension of a poset can be interpteted as a measure of the complexity of the poset in the following sense. Suppose each of a finite number of observers expresses his individual opinion on the relative merts of a finite set of options by ranking the options in a linear order. A partial ordering on the options is obtained by ranking option x higher than option y when all observers have agreed that x is preferred to y. Conversely, the dimension of a partial order measures the minimum number of obververs necessary to produce the given partial order as a statement of those preferences on which the observers agree unanimously

We observe that certain elementary invariants such as carcinality, width, and length can also be interpreted as measures of complexity. However it is clear that this interpretation is limited in that these invariants may prescribe an inordinately high degree of complexity to such intuitively simple partial orders as chains and antichains.

In this paper, we will discuss other measures of complexit: for finite partial orders. Fach of these measures will be a variant of the concept of dimension. We will note the mathematical and conceptual advantages (and disadvantages) of each.

A poset (X, P) is called a weak order if and only if there exists a function
$\because X \rightarrow R$ or that $x<y$ in P iff $f(x)<f(y)$ in R. It is elementary to prove the foll-wing characterization theorem for weak orders.

Theorem 2.1. A poset is a weak order if and only if it does not comain a subposet somorphic to $2+1$.

It is natural then to define the weak dimension of a poset (X, P). denoted Wdim(X. P) or $W \operatorname{dim}(X)$ as the smallest positive integer k for which there exists a function $f: \mathbf{X} \rightarrow \mathbf{R}^{+}$so that $x<v$ in \mathbf{X} iff $f(x)(i)<f(y)(i)$ in \mathbf{R} for all i with 1 . $\cdot k$ The function f is called a point coordinatization of length k of the poset (B.P)

Ore $|10|$ gate the following alternate definition of the dimension of a poset.
 shopoct of the cares ian product of h chatns. For finite posets. it is then easy to see that $\operatorname{dim}(X . P$) in the smallest integer k for which ($X . P$) is isomorphic to a subposet of \mathbb{R}^{*} ie $\operatorname{dim}(\mathbb{X} P)$ is the smallest positive integer k for which there exists a functon $\boldsymbol{X}-\mathbf{R}^{4}$ othat $x<y$ in P iff $f(x)(i) \leqslant f(y)(i)$ for all i with $1 \leqslant i \leqslant k$. Thus ue see that $\mathbf{W} \operatorname{dim}(\mathbf{X})<\operatorname{dim}(\mathbf{X})$ for every poset \mathbf{X} Furthermore it is trivial to sersf ihat $\boldsymbol{U} \operatorname{dim}(X)=\operatorname{dim}(X)$ unless X is a weak order but not a chain. and in this cace $\operatorname{Him}(X)=1$ uhile $\operatorname{dim}(X)=2$.

A collection f of closed intervals (points are also considered closed intervals) of K has a natural ordering $\cdot ?$ induced on it by $A<B$ iff $x \in A, y \in B$ implies $x<y$ in \mathbb{K} Ans poset which is somorphic to a poset of the form ($f . a)$ is called an onterad order. We sate a well knoun theorem of Fishburn $[x]$ which gives a charatesmathon of interval orders

Theorem 2.2. A poset X is an interval order if and only if it does not contain a sutposet isomorphic to $2+2$.

A poset ($\mathbf{X .} \mathbf{P}$) is called a semiorder' when there exists a real number d and a funtuon $f: X \rightarrow \mathbf{R}$ so that $x<y$ in X. iff $f(x)+a<f(y)$ in \mathbf{R}. It is easy to see iat a poet Na a semorder iff it is isomorphic to an interval order in which all intervals have unt length. The following well known characterization of semiorders is due to Sent and Supper [12].

1 heorem 2.3. An intercal order \mathbf{X} is a semiorder if and only if it does not contain a sutperet isomorphic to $3+1$.

We note that the join of two interval orders (semiorders) is another interval order (emmerder).

[^0]Wing the nothon af intersal orders and wemiorders, we can row define two new intatiant, for a fimb pinct. Fist we define the intertal dimension of \mathbf{X}. denoted
 asigns to cach $\in \mathbb{X}$ a sequence $P(1)(1 \% F(x)(2) \ldots . F(x)(k)$ of closed intervals
 coordinatizathon of \mathbf{X} of length k Tudefine the semiorder dimension of \mathbf{X}. denoted Sdim (\mathbf{X}). we further require that $\boldsymbol{f}(1)(1)$ hate length 1 for all $x \in \mathbf{X}$ and all $i \leq k$. As an mmediate comequence of these definitions. we have $\operatorname{Idim}(X)<\operatorname{Sdim}(X)$ for all posets \mathbf{X} If \mathbf{X} ath anficha:n, the in $\operatorname{ddm}(\mathbf{X})=\operatorname{Sdim}(\mathbf{X})=\operatorname{Xdim}(\mathbf{X})=1$. If \mathbf{X} is not an antichatn, chooce a promt coeddeatisation f of X of length k and let
 fion detined by f(x)(1) $\mid \because: i x)(1) m$. $1+2 f(x)(1) / m]$ and thus Sdim(X's Wdiand) for all K

We aho nofe that the athors and Rathootteh have recently proven $[3]$ that for each $n \cdot 1$. there evists a poset X with $\operatorname{ldim}(X)=1$ and $\operatorname{dim}(X)=n$. This proof is cassly modified to whan an analogous result for semiorder dimension.

We vate the following elementary result which is easily proved by induction. We refer to this result as the interpolation lemma.

Lemma 2.4. Let (X. P) be a poset and $\mathbf{Y} \subseteq \mathbf{X}$. Suppose F is a function which assigns weach $y \in Y$ an interval (alternately, a unit interval) such that $y_{1}, \mathcal{y} \in \mathbf{Y}$ and $y_{i} \cdot y=$ imply $F(y) \cdot \because(y)$ Then F can be extended to X. i.e. for each $x \in X \quad Y$ an interval (alternitely, a unit intercal) $F(x)$ may be chosen so that $x_{1}, x_{2} \in X$ and $x<x$ imply $F\left(x_{1}\right)<F\left(x_{2}\right)$.

We will find it convenient to adopt the onvention of saying that the dimension. weak dimension. intersal dimension, and semiorder dimension of a one point poset is ecro.

3. A Hiraguchi theorem for interval dimension

In 1955 Hiraguchi $|9|$ proved that $\operatorname{dim}(X)<1|X| f o r ~ a l l \mid X$ with $\mid X 4$. A simple proof of Hiraguchis theorem may be found in [15]. It has been conjectured that an even stronger result holds, namely that every poset of three or more points contains a pair of points whose removal lowers the dimension at most one. There are many conditions under which such a pair is known to exist. As an example, Hiraguchi [9] proved that if a and b are incomparable, a is maximal, and b is minimai, then $\operatorname{dim}(X) \leq 1+\operatorname{dim}(X-\{a, b\})$. To extend this notion, we say that (a, b) satisfies property M if $a I b$ but $z \geqslant a$ implies $z \because b$ and $z<b$ implies $z<a$. In a finite poset which is not a chain, an ordered pair (a, b) satisfying property M exists. To see that this is the case, choose an incomparable pair $(a . b)$ with the cardinality of $\{z: z \geqslant a\} \cup\{z: z \leqslant b\}$ as small as possible. We conjecture that for any poset \mathbf{X}, the
removal of a pair satisfying property M reduces the dimension at most 1 . In support of this conjecture we offer the following theorem.

Wheorem 3.1. Suppose X is a pose't and (a,b) satisfis property M; then the removal of a and b reduces the interval dimersion of X at most one, i.e. $\operatorname{ldim}(X) \leqslant$ $1+\operatorname{Ifm}(X-\{a . b\})$.

Proof. Suppose $\operatorname{Idim}\{X=\{a . b\}=t$, then choose an interval coordinatization F of \mathbf{X} - \{a. b \} of length t. We use this coordinatization to construct an intervat cerordinatiation G of X of length $t+1$.

For cach $x \in X-i a . b\}$. $1: 1 G(x)(i)=F(x)(i)$ for all $i \leqslant t$. By the interpolation fomma. We may choose for each $i \leqslant t$ intervals $G(a)(i)$ and $G(b)(i)$ on that : $1 \in \mathbb{E}$ ad $x \cdot y$ imply $(i(x)(i): G(y)(i)$

Sou partition $\mathbf{X}-\{a, b ;$ nto five subposets:

$$
\begin{aligned}
& \mathbf{X}_{1}=\{x \in X: x>a\} . \quad \mathbf{X}_{1}=\{x \in X: x l a . x>b\} . \quad \mathbf{X}_{1}=\{x \in X: x \mid a, x l b\}, \\
& \mathbf{X}_{:}=\{x \in X: x<a . x \mid t\}, \quad \mathbf{X}_{0}=\{x \in X: x<b\} .
\end{aligned}
$$

Lef $m=\mathbf{N}$ for each $; 5$. Then define the following open intervals:

$$
\begin{aligned}
& U_{1}=(2 x) \quad U_{3}=(1,2), \quad U_{3}=(-1,1) . \\
& U_{4}=\left(-2, \quad U_{1}=(-x,-2) .\right.
\end{aligned}
$$

Fot each $\rho \leqslant$ S. choose m, point, $P_{1:}<P_{1:}<\ldots<P_{m,}$, from $U_{\text {, }}$ and let $x_{i}<x_{1}:<$

- I- he any linear extension of the subposet \mathbf{X}_{1}.

To complete the coordinatization let $G(a)(t+1)=[-1,2], g(b)(t+1)=$ 1 2.1. and $G\left(x, 1(t+1)=P_{n}\right.$ for $j=1,2,3,4.5$ atd $i=1,2 \ldots, m$. It is easy to berfy that G san interval coordinatization of X of length $t+1$ and it follows that $\operatorname{ldm}(X)<t+1$.

We note that the conjecture presented in this section has not been settled for semorder dimension.

4. Other inequalities

We hegin the section by proving some removal theorems analogous to the results appearing in [2, 4, 15].

Theorem 4.1. Let $x \in X$ ana let C be a chain in X. Then:
(i) $\operatorname{Idm}(\mathbf{X})<1+\operatorname{Idim}(\mathbf{X}-x)$.
(?) $\operatorname{Sdim}(X)=1+\operatorname{Sdim}(X-x)$.
(i) $\operatorname{ldim}(X)=2+\operatorname{ldim}(X-C)$.
(4) $\operatorname{Sdim}(\mathbf{X})-2+\operatorname{Sdim}(\mathbf{X}-C)$.

Proof. To prove statement (1) (statement (2)). suppose $\operatorname{Idim}(X \cdots x)=t$ (Sdim(S $-x)=0$). Then choose an (unit) interval coordinatization F of $X-x$ of length t For each $y \in X \quad x$ and each $i \leqslant 1-1$ let $G(y)(i)=F(x)(i)$. For each $i=t-1$, extend G to all of X by the interpolation lemma. Then define

$$
\mathbf{X}_{1}=\{y \in X: y>x\} . \quad \mathbf{X}_{1}=\{y \in X: y / x\}, \quad \mathbf{X}_{:}=\{y \in I: y<x\}
$$

and consider $X_{1}, X_{,}, X_{1}, X_{1} \cup X_{t}$, and $X_{:} \cup X_{,}$as posets by taking as partial ordering $a \cdot b$ iff $F(a)(t)<F(b)(t)$. Then let H and K he unit interval coordinatizations of
 tively.

For each $y \in \mathbf{X}$ let $G(y)(t)=H(y)$ and $G(y)(t+1)=K(y)$. It is easy to verify that G is a (unit) interval coordinatization of X of length $t+1$ and thus $\operatorname{ldim}(X) * 1+1(\operatorname{Sdim}(X) \leqslant t+1)$.

To prove vatement (3) (statement (4)) let F be any (unit) interval coordinatization of $X-C$ of length t. For each $y \in X-C$ and each $i \leqslant t$ let $G(y)(i)=F(y)(i)$. For each $: \leqslant i$. use the interpolation lemma to extend G to all of X. Now let $\left(X, L_{1}\right)$ and $(X, I$,) be upper and lower extensions of the chain C and let H and K be (unit) interval coordinatizations of $\left(X . I_{i}\right)$ and $\left(X, L_{\text {. }}\right)$. Then for each $x \in X$. let $G(x)(1+1)=H(x)$ and $G(x)(t+2)=K(x)$. It follows that G is an (unit) interval coordinatization of \mathbf{X} of length $t+2$.

If M denotes the set of maximal elements of a poset X. it is proved in [15] that $\operatorname{dim}(\mathbf{X}) \cdot 1-N(X-M)$ and a family of posets is constructed to show that this inequality in bev possible. It is straightiorward to modify the argument in [15] to show that the inequality $\operatorname{Sdim}(\mathbf{X})<1+W(\mathbf{X}-\boldsymbol{M})$ is also best possible. For interval dimenson we have:

Theorem 4.2. $\operatorname{ldm}(\mathbf{X})=W(X-M)$.

Proof. Let $W(\mathbf{X} \cdots \mathbf{M})=t$ and let $C \cup C: \cup \ldots \cup C$, be a decompesition of $\mathbf{X}-\boldsymbol{M}$ into chains provided by Dilworth's theorem [6]. For each $i \leqslant t$. let $\left(X-M, L_{1}\right)$ be a lower extension of C. Then let $P_{1}=P \cup L_{1}$. It follows that each poset $\left(X, P_{1}\right)$ is an interval order and for each $i \leqslant 1$ we choose an interval coordinatization H_{t} of (., P.). Then let $G(x)(i)=H(x)$. It follows that G is an interval coordinatization of X of lengeth t.

In $\mid 1+]$. the crow S_{n}^{k} is defined and the formula $\operatorname{dim}\left(S_{n}^{k}\right)=\{2(n+k) /(k+2)\}$ is established. We note that the same formula holds for the weak dimension, interval dimension. and semiorder dimension of S_{n}^{k}. Thus for $k=0$. $\operatorname{Idim}\left(S_{n}^{u}\right)=n=$ $W\left(S_{n}^{\prime \prime}-M\right)$, i.e. the inequality in Theorem 4.1 is best possible. Note that for $n \geqslant 3$, the poset $S_{n}^{\prime \prime}$ is isomorphic to the collection of 1 -element and $(n-1)$-element subsets of an n-element set ordered by inclusion.

For a poset X. we define the breadth of X, denoted $B(X)$, to be 1 if X is a chain. If

X is not a chain but does not contain a subposet isomorphic to $S_{n}^{\prime \prime \prime}$ for $n \geqslant 3$, we dellee the hreadth of X to be 2 . If X contains a subposet isomorphic to S_{n}^{\prime} for some n - a. ue define $\mathbf{B}(\mathbf{X})$ to be the largest integer m such that $S_{m}^{0} \subseteq \mathbf{X}$. If \mathbf{X} in a lattice. this definition agrees with the usual detinition of breadth for a lattice. It follows then that the inequalities $\mathbf{B}(\mathbf{X}) \leqslant \operatorname{dim}(\mathbf{X}) \leqslant \boldsymbol{W}(\mathbf{X})$ hold and are best possible.

If A is an antichain of X. it is proved in $[15]$ that the inequality $\operatorname{dim}(X) \leqslant$ 2W $(X-A)+1$ always holds and a family of posets is produced to show that the result is best possible. The arguments in this paper can be modified to show that the :cyuality $\operatorname{Sdim}(X)=2 W(X-A ;+1$ is also best possible. Once again for interval dimensoon the result is slightly different.

Theorem 4.3. $\operatorname{Idim}(X) \leq 2 W(X-A)-1$.

Prool. If $W(X-A)=1$. then X does not contain $2+2$ and is therefore an interval order. For $W(X-A)=1 \% i$, the theorem follows from induction on t and statement (3) of Theorem 3.1.

We note that it is not known whether or not the result of Theorem 4.3 is hest powshle.

5. Inequalities involving length

In this section we derive some inequalities which show the relationship hetween Idim(X). Sdim(X), and I.(X).

Suppose X is a poset whose length is n. Let A_{n} be the set of maximal elements of \mathbf{X}. If A_{i}, has been defined, then let A_{k} be the maximal elements of $\mathbf{X} \cdots A_{n}$ $A_{n}: \ldots-A_{k}$, . This construction partitions X into n antichains. For each $x \in \mathbf{X}$ we define the level of x denoted $L(x)$ as the unique i for which $x \in A_{i}$. We note that $x>y$ in P implies $L(x) \geqslant L(y)$. We also note that in a semiorder $L(x) \geqslant$ $1 .(1)+2$ implies $x>y$ in P.

The results developed in this section are motivated by the following pair of theorems discovered by Rabinovitch [11].

Theorem 5.1. If \mathbf{X} is a semiorder, then $\operatorname{dim}(X) \leqslant 3$.

Proof. i.et $A=\{x \in \mathbf{X}: \mathcal{L}(x)$ is even $\}$ and let $B=\{x \in \mathbf{X}: \mathbf{L}(x)$ is odd $\}$. Then A and B are disjoint subsets of an interval order and in view of L.emma 1.3, there exists an injection L_{1} of A over B and an injection L_{2} of B over A. Now suppose $L(X)=n$ and let $X=A: \cup A: \cup \ldots \cup A_{n}$ be the natural partition of X into antichains. For each i with $1 \leqslant i \leqslant n$. let A be the dual of the restriction of I : to $A_{\text {}}$. Then define $I=A:=A: \oplus \ldots G \cap A: A_{A} \in A ;$ It follows immediately that $I_{1} \cap I_{2} \cap L_{1}=$ P and thus $\operatorname{dim}(X) \leqslant 3$.

The inequality of Theorem 5.1 is hest possible as there exist three dimensional semierders. Rabinovitch |11] has also given a characterization theorem for such poncts.

Theorem 5.2. There exists a function $f(x)$ so that if \mathbf{X} is an interval order of length n, then $\operatorname{dim}(\mathbf{X}) \leqslant f(n)$.

We do not include a proof of Theorem 5.2 although the reader may easily establish Rabinovitch's original result that the dimension or an interval order of lenoth n is at mont $\{1+\log , n\}$. We note that this bound was improved by the authors and Rabinovitch [3]. Sutsequently Trotter [18] proved that there is a postive constant c so that an interval order of length n has dimension at most c log log: n. Trotter aloo proved that for each $n>1$, there exists an interval order of length n whose dimenvion is at least $2 \log \log , n$. In view of the intimate connection betueen Trotter's bounds and Ramsev theory. it is not likely that a computation of the bert possible value of $f(n)$ in Theorem 5.2 is feasible.

If is powible, however, to extend Rabinovitch's theorems as follows:
Theorem 5.3. If $\operatorname{Sdm}(X)<$ t. then $\operatorname{dim}(X)<3$.

Proof. Suppose that $\operatorname{Sdim}(X)=t$ and let F be a unit interval coordinatization of length t of X. For each $i \leqslant t$. let $(X, P$,$) be the poset defined by x<y$ in P, iff $\left.F(x)(1) \cdots H^{\prime} y\right)(i)$. Then each poset $\left(X_{1}, P_{1}\right)$ is a semiorder and we may choose linear orders I_{1}, I_{i} and L_{1}, w that $P_{i}=L_{11} \cap L_{1,} \cap I_{, 1}$. Since $P=$ P P $P_{:} \cap \ldots \cap P_{\text {. }}$ it follows that $\operatorname{dim}(X) \leqslant 3 t$.

Theorem 5.4. There exists a function $g(n . t)$ so that if X is a poset of length n and intercal dimension t. then $\operatorname{dim}(X) \leq g(n, t)$.

The proof of Theorem 5.4 is quite similar to that of Theorem 5.3. As we shall see in the next section, determining the hest possible values of the function g is a hopelessly difficult problem.

6. Cartesian products

One of the well known elementary inequalities for posets is $\operatorname{dim}(\mathbf{X} \times \mathbf{Y}) \leqslant$ $\operatorname{dim}(\mathbf{X})+\operatorname{din}(\mathbf{Y})$. Not so well known is the following result (see Exercise 7, page 101 of Birkhoff [1]).

Theorem 6.1. If X and Y are posets with distinct universal bounds, then $\operatorname{dim}(\mathbf{X} \times \mathbf{Y})=\operatorname{dim}(\mathbf{X})+\operatorname{dim}(\mathbf{Y})$ and $\mathbf{B}(\mathbf{X} \times \mathbf{Y})=\mathbf{B}(\mathbf{X})+\mathbf{B}(\mathbf{Y})$.

We will next derive a variant of Theorem 6.1 for interval dimension.

Theorem 6.2. I.et $\mathbf{X}=(\mathbf{X} . \mathrm{P})$ and $\mathrm{Y}=(\mathrm{Y} . Q)$ be posets with distinct untersai bounds. If neither \mathbf{X} nor \mathbf{Y} is a chain. then $\operatorname{Idim}(\mathbf{X} \times \mathbf{Y}) \geqslant \operatorname{dim}(\mathbf{X})+\operatorname{dim}(\mathbf{Y})$.

Proof. Suppose $\operatorname{Idim}(\mathbf{X} \times \mathbf{Y})=t$ and let F be an interval coordinatization of $\mathbf{X} \times \mathbf{Y}$ of length t. We denote the universal bounds of \mathbf{X} by 0 and I : similarly we denote the untersal bounds of Y by 0^{\prime} and 1^{\prime}. Then we may assume without loss of generality that there exists an integer s with $1 \leqslant s \leqslant t$ so that the right end point of $f\left((1) . l^{\prime}\right)(i)$ is greater than or equal to the right end point of $F\left(\left(1,0^{\prime}\right)\right)(i)$ iff 1 . 1 . We now show that $s \geqslant \operatorname{dim}(Y)$.

Iet 1 be an integer with $1 \leqslant i \leqslant s$: then define a subset $S \subseteq A_{0}$ by $S_{1}=$ f(,.$v) \in \mathcal{Z}_{1,}:$ right end point of $\left.F\left(0, y_{:}\right)\right)(i)$ is at least as large as the left end point of $f(1, v, l(1)\}$. Sיppose that some S, contains a strong TM-cycle $\left\{\left(a, b_{i}\right): 1<j \leqslant\right.$ m \}oflength m. Then for each; with $1 \leqslant j \leqslant m$ we know that the right end point of $\boldsymbol{F}((1) . \boldsymbol{b}, \mathbf{)}(1)$ in at ase large in \mathbf{R} as the left end point of $F((1, a))(i)$. Since h - a in O, : whows that $\left(0, b_{1}\right)<(1, a, .$,$) in \mathbf{X} \times \mathbf{Y}$ and therefore
 pornt of $F(1, a, .)\},(i)$ i. latger than the left end point of $F((1, a)),(i)$. Clearly. this s not powsible. We may conclude that for each i with $1 \leqslant i \leqslant s$, the relation $\mathbf{O}=O \cup S$ is a paraie order on Y. Now for each i with $1 \leqslant i \leqslant s$, let M, he a linear extenson of Q. We rext whew that $O=L_{1} \cap L_{:} \cap \ldots \cap I \ldots$
 follow, shat $F(0, y, l)(i) \quad F((1, y))(i)$ for all i with $1 \leqslant i \leqslant s$. Now ($1, y, y /(1, y, i n$ $X \times Y$ hut ($0, y, 3 \cdot\left(0, \|^{\prime}\right)$ and $\left., i, 0\right)<(1, y ;)$ Furthermore the right end point of $\left.f(1,1)^{\prime}\right)(1)$ is larger than the right end point of $F\left(\left(0.1^{\prime}\right)\right)(i)$ for each i with , $i<t$. This in turn implies that $F\left(\left(0, y_{2}\right)\right)(i) \propto F\left(\left(1, y_{i}\right)\right)(i)$ for all i with $1 \leqslant i * t$ The contradiction shows that there must exist some i with $1 \leqslant i \leqslant s$ so that $(y, v) \in S$. It follows immediately that $Q=L_{1} \cap L_{2} \cap \ldots \cap L$, and therefore $s \rightarrow \operatorname{dim}(\mathrm{Y})$

Tr. argument that $t-s \geqslant \operatorname{dim}(\mathbf{X})$ is dual and is therefore omitted.

We note that it follows immediately from Theorem 2.2 that $\operatorname{ldim}(2 \times 2)=$ $\operatorname{Idm}(2 \times 3)=1$ while $\operatorname{Idim}(2 \times 4)=\operatorname{Idim}(3 \times 3)=2$. It is then trivial to modify the proof of Theorem 6.2 . to obtain the following corollaries.

Corollary 6.3. Idim $(X \times 2) \geqslant \operatorname{dim}(X)$ for every poset X.
Corollary o.4. Let X be a poset with distinct universal bounds. If X contains at least ? petnts. then $\operatorname{ldim}(X \times 3)=1+\operatorname{dim}(X)$.

Eorollary 6.5. Let \mathbf{X} be a poset with distirct universal botinds. If X contains at least 4 points. then $\operatorname{ldim}(\mathbf{X} \times 2) \geqslant 1+\operatorname{dim}(X)$.

Theorem 6.2 and the corollaries reveal that interval dimension does not behave well with respeet to the algebraic operation of cartesian product. Intuitively, we would prefer that if \mathbf{X} and \mathbf{Y} are relatively simple pose's. then each of the posets $\mathbf{X}+\mathbf{Y} . \mathbf{X} \in \mathbf{Y}$. and $\mathbf{X} \times \mathbf{Y}$ should also be relative!y simple. However, we see that the cartesian product of an interval order and a 2 -element chain can have arbitrarily large interval dimension This obvious drawhack for interval dimension must be weiglied against its many advantages. For example, Theorems 2.2 and 2.4 show that the inequality $\operatorname{ldim}(\mathbf{X})=X$ heid for all X. Furthermore we invite the reader to compare the characterization of this inequality for interval dimension [21] with the corresponding result for dimension [4]. Moreover. the removal theorems for interval dimension are much more elegant than the corresponding theorems for dimension

7. Concluding remarks and open problems

Origmally. the authors motivation for sudying such concepts as interval dimenston and semorder dimension came from our desire to merge the applications of semiorders and interval orders in the theory of measurement with the concept of dimension theors. However, certain unexpected mathematical benefits have surfaced. First. the concept of interval dimension has proved to be a key link between a number of combinatorial problems. In [20] Tiotter and Moore use interval dimeoston to relate problems involving posets to important characterization prohlems involving circular are graphs. comparability graphs, and planar lattees. Furthermore, the concept of interval dimension bas been used in the construction of irreducible pe sets of arbitrary cardinality [17].
finally we note that the results in the preceding section impart further signiticance to determining whether or not for each pair of positive integers m and n with $m \geqslant n$. there exists posets X and Y with $\operatorname{dim}(X)=m, \operatorname{dim}(Y)=n$ and $\operatorname{dim}(\mathbf{X} \times \mathbf{Y})=m$.

References

[1] (, Brkhoff, Iathe Theory. Am Math Soc Colloy Publ. Vol 25 (A.M.S. Providence. R.I. 1ヶヶ7)
12 KP Bogat, Maxmal dimensonal partally ordered sets I. Disorete Math 5 (1973) 21-32
[3 K.P. Bogart. I Rabmottch and W. T. Trotter. A bound on the dimension of interval orders. J. Combin. Theory A. le appear
[4] K.P Bogart and W.T Trotter. Maximal dimensional partally ordered iets II. Discrete Math. S (1973) 33.44
[5] R.A. Dean and G. Keller. Naturat partial orders. Can J. Math. 20 (1968) 535-554
|h| R.P. Dilworth. A decompositon theorem for patially ordered sets. Annals of Math 5! (1950) [6] 1 Ith
[7] 13. Dushnik and E. Miller Partially ordered sets. Am. J. Math. 6.3 (1941) 6mb-610
isf Pe Fwhburn. Intranwtise inditierence wish unefual indifference intervak. J. Math Psochol 7 (10701144 1.43

IIII I Sabmowth. The dimensisn theory of semodicrs and interval orders. Ph.D. Thesis. Dartmouth (aile ze. 107?
 (105x) 111^{2} L'm

fis) W 1 Troi :r. Dimensom of the crown S_{n}^{2} Ditircte Math. 8 (1974) 85103
ficf W I Trocer. Inequalite in dimension theory 'or posets. Proc. AMS 47 (1975) 311-316.

 Inv of so: : 1 a whom (mombia. SC (1975):

 apmay

[^0]: Sah proets are dincused in a different setting by Dean and Kellet [5] who showed that the number of semendere an n ments is $\binom{2 n}{n} /(n+1)$. They called semiorders natural partal, orders.

