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THE DIMENSION OF A COMPARABILITY GRAPH 

W. T. TROTTER, JR., JOHN I. MOORE, JR. AND DAVID P. SUMNER 

ABSTRACT. Dushnik and Miller defined the dimension of a partial order P 
as the minimum number of linear orders whose intersection is P. Ken Bogart 
asked if the dimension of a partial order is an invariant of the associated 
comparability graph. In this paper we answer Bogart's question in the 
affirmative. The proof involves a characterization of the class of comparabil- 
ity graphs defined by Aigner and Prins as uniquely partially orderable 
graphs. Our characterization of uniquely partially orderable graphs is 
another instance of the frequently encountered phenomenon where the 
obvious necessary condition is also sufficient. 

1. Notation and definitions. In this paper we consider a partial order as an 
irreflexive, transitive binary relation. With a binary relation R on a set A we 
associate a graph G(R) whose vertex set is A with distinct vertices x and y 
joined by an edge iffx R y ory R x. A graph G is called a comparability graph 
if there exists a partial order P for which G = G(P). Aigner and Prins [1] 
called a comparability graph G a uniquely partially orderable (UPO) graph if 
G = G(P) = G(Q) implies P = Q or P = Q where Q denotes the dual of Q. 

Let X be a graph and let {Gx I x E V(X )} be a family of graphs. Then the 
(Sabidussi) X-join [9] of this family is the graph with vertex set {(x,y)I 
x E V(X), y E V(G,)1 with (x, y) adjacent to (z, w) if x is adjacent to z in 
X or x = z and y is adjacent to w in Gx. Every graph X is isomorphic to the 
X-join of a family of trivial graphs. If a graph G is isomorphic to the X-join of 
a family {Gx I x E V(X )} where X is nontrivial and at least one Gx is nontrivial, 
then G is said to be decomposable; otherwise G is said to be indecomposable. 

Let G be a graph and let K be a subset of V(G). K is said to be partitive if 
for every vertex x with x M K, if there exists a vertex y E K such that x and 
y are adjacent, then x is adjacent to every vertex in K. A partitive subset K is 
said to be nontrivial when K is not the empty set, a singleton, or the entire 
vertex set. It is easy to see that a graph is indecomposable if it has no 
nontrivial partitive sets. 

Now let P be a partial order on a set A and let {Qala E A) be a family of 
partial orders. If we denote the set on which each Qa is defined by Aa, then 
the ordinal product [2] of this family over P is the partial order S on the set 
{(a,b)a A,b AEa} in which (al,b1)S(a2,b2) iff a Pa2 or a, = a2 and 

b, Qal b2. Clearly the comparability graph G(S) is the G(P)-join of the family 
{G(Qa)la E A). 

Let e andf be edges of a graph G. Gilmore and Hoffman [6] defined a strong 
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path from e to f as a sequence of (not necessarily distinct) vertices x0, xl ,x2, 
* xn with n > 2 satisfying: 
(i) {x0,x,} = e, {xn- xn} =f, 
(ii) {xi, xi+,)} E E(G) for 0 < i < n - 1, 
(iii) {xi,xi+2} : E(G) for 0 < i < n - 2. 

Edges e and f are said to be strongly connected, denoted e - f, when there 
exists a strong path from e to f. The binary relation - is an equivalence 
relation on E(G) and is used in [4] and [6] to provide a transitive orientation 
for a comparability graph (see also [7]). 

The following lemma is an immediate consequence of the results of Gilmore 
and Hoffman [6]. 

LEMMA 1. Let e be an edge of a graph G and let K be the set of all vertices of 
G which are endpoints of an edge in the equivalence class of e under -. Then K 
is a partitive set of vertices in G. 

For a binary relation R on a set A and a subset B C A, let R(B) denote the 
restriction of B to A. The following lemma is proved in [6]. 

LEMMA 2. Let e = {x,y} and f = {z, w} be strongly connected edges of a 
comparability graph G. Let P and Q be partial orders so that G = G(P) 
= G(Q). Then P({x,y}) = Q({x,y}) iff P({z, w}) = Q({z, w}). 

2. A characterization of UPO graphs. In this section we characterize UPO 
graphs. Our theorem will be another instance of the common phenomenon 
where the obvious necessary condition is also sufficient. We begin by repeating 
Aigner and Prins' observation [1] that a disconnected comparability graph is 
UPO if it has at most one nontrivial component and that component is also 
UPO. Consequently we restrict our attention to connected graphs. 

THEOREM 1. A connected comparability graph is UPO iff every nontrivial 
partitive subset is an independent set of vertices. 

PROOF. Let G be a connected comparability graph with a nontrivial partitive 
subset K which contains an edge of G. Choose a vertex x0 E K, a partial order 
P0 on (G - K) U {x0}, and a partial order P1 on K. Then define a partial 
order P on G by: If x,y E K, then x Py iff x Py, if x,y E G -K, then 
xPy if xP0y, if x E K,y E G-K, then xPy if x0P0y, and if x 
E G - K, y E K, then x P y iff x P0 x0. Then define a partial order Q on G 
by Q = (P - P(K)) U P(K). It follows easily that P # Q and P # Q and 
thus G is not UPO. 

On the other hand, let G be a connected comparability graph in which every 
nontrivial partitive subset is an independent set of vertices. We prove that G 
is UPO. To accomplish this, we first prove that there is only one equivalence 
class in E(G) under -. The fact that G is then UPO follows immediately from 
Lemma 2. 

Choose an arbitrary edge e in G. It follows from Lemma 1 and the fact that 
G is connected that every vertex in G is the endpoint of an edge from the 
equivalence class of e. Suppose that there exists an edgef = {x,y} which is not 
strongly connected to e. Choose an edge el = {x, z} with e - el. Then 
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e2= {Y,z} E E(G) for if {y,z} M E(G), then z, x, y is a strong path from el 
tof. 

Suppose first that e2 - el. We now show that z is adjacent to every other 
vertex in G. Assume that this is not the case and choose an arbitrary vertex 
w with w not adjacent to z. Then choose an edge e3 = {t, w} with f - e3 and 
a strong path xO, xI, x2, . . ., xn from f to e3. We prove by induction that 

{z,xi} E E(G) and {z,wi} - el for 0 < i < n. First note that each edge 

{xi,xi+l} is strongly connected to f for 0 < i 6 n - 1. We then note that 
{z, xO} and {z, x1 } are edges in G and each is strongly connected to el. Now 
suppose that for some i with 1 < i < n - 1 we have {z,xi} E E(G) and 

{z,xi} - ei. Then if {z,xi+1} : E(G), it follows that z, xi, xi+, is a strong 
path from {z,xi) to {xi,xi+I} and, hence, f- {xi,xi+I} - {z,xi)} el - e. 
We conclude that {z, xi+1 } is an edge in G. Furthermore, we may conclude that 

{z, xi+i } - el since {z, xi+ I} - {z, xi- I}. The inductive argument shows that z 
is adjacent to w and hence to every other vertex in G. It follows that the set 
K = V(G) - {z} is a nontrivial partitive set containing the edge f. The 
contradiction shows that e2 -+- el. 

However it is straightforward to repeat the argument to show that the 
assumption that e2 -+ el leads to the conclusion that y is adjacent to every 
other vertex in G and thus the set V(G) - { y} is a nontrivial partitive set 
containing el. The contradiction completes the proof of our theorem. 

3. The dimension of a comparability graph. Dushnik and Miller [3] defined 
the dimension of a partial order P, denoted Dim P, to be the minimum number 
of linear orders whose intersection is P. We note that if P is a partial order on 
a set X, then Dim P(Y) < Dim P for every Y C X and Dim P = Dim P. We 
refer the reader to [3] and [10] for elementary properties of the dimension of 
partial orders. 

If P and Q are partial orders for which G(P) = G(Q), Bogart asked if it is 
always true that Dim P = Dim Q. The characterization of UPO graphs given 
in the preceding section will allow us to answer this question in the affirmative. 

A partial order P on a set X is said to be irreducible if Dim P(X - x) 
< Dim P for every x E X. Hiraguchi [8] proved that if P is a partial order on 
a set X = {xI , x2, ... , xn} and S is the ordinal product over P of the family 

{Qx 1 < i < n} of partial orders then 

Dim S = max{ Dim P, Dim Qx., Dim Qx,, Dim Qx}). 

It is easy to show that the comparability graph of an irreducible partial 
order is indecomposable! 

THEOREM 2. If P and Q are partial orders so that G(P) = G(Q), then 
DimP = DimQ. 

PROOF. Suppose the theorem is false and choose partial orders P and Q on 
a set X so that DimP < DimQ but IXI is minimum, i.e. Dim P(Y) 
= Dim Q(Y) for every proper subset Y C X. It follows then that Q is 
irreducible since Dim Q(X - x) = Dim P(X - x) < Dim P < Dim Q and 

thus G(Q) is indecomposable. Since G(Q) is indecomposable, it is UPO and 
thus either P = Q or P = Q. In either case Dim P < Dim Q is not possible. 
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ADDED IN PROOF. The authors have learned that Theorem 1 was discovered 
previously by Shevrin and Filippov, Partially ordered sets and their comparabil- 
ity graphs, Siberian Math. J. 11 (1970), 497-509. 
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