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Résumé. — Nous présentons quelques résultats récents en théorie de la dimension des ensembles
partiellement ordonnés. Parmi les sujets abordés nous considérons des problémes de construction
d’ensembles partiellement ordonnés irréductibles, doublement irréductibles et des inégalités concer-
nant des opérations telles que coupures, amalgamations et produits cartésiens. Nous donnons égale-
ment une liste de quelques problémes irrésolus dans ce domaine des mathématiques combinatoires.

Abstract. -— We present some recent results in the dimension theory of partially ordered sets.
Among the topics discussed are construction problems for irreducible posets, doubly irreducible |
posets, and inequalities involving splits, amalgamations, and cartesian products. We also give a list
of some unsolved problems in this area of combinatorial mathematics.

1. Introduction and notation. — A parrially ordered
set (poset) is a pair (X, P) where X is a set, always
finite in this paper, and P 1s a reflexive, anti-symme-
tric, and transitive relation on X. The relation P is
called a partial order on X, The notations {x, y) € P,
x Py, and x < y in P are used interchangeably. We
also write x < y in P when (x,y)e P and x # ».
When x < yory < xin P, we say the distinct points x
and y are comparable. When distinct peints x and y
are not comparable, we say x and p are incomparable
and write x I y in P.

If (X, P) and (¥, ) are posets, then a function
f 1 X — Yis called an embedding of (X, P)in (¥, )
when x; € x, 'in P if and only if f(x;) < f(x,)
in @ for all x,, x; € X. The posets are said to be iso-
morphic and the embedding £ is called an isomorphism
when f is also a surjection. In this paper we do not
distingnish between isomorphic posets.

If (X,P)is a poset and ¥ « X, then the poset
(¥, Q) where 0 = P (¥ x Y) is called a subposet
of (X, P}. Frequently we will find it convenient to
use a single symbol to denote a poset. This notation
is particularly useful in any discussion involving
subposets. For example when Y is a subposet of X,
we will say ¥ is contained in X and write ¥ < X.

A poset A is called an antichain if ¢, Ia, in A for
each distinct pair of points from 4. The width of a
poset X, denoted W(X), is the maximum number of
points in an antichain contained in X. A poset C is
called a chain if each distinct pair of points from C
is comparable. The length of a poset X, denoted L(X)
is the maximum number of points in a chain contained

in X. A chain {X, P) is also called a rotally ordered
set or linearly ordered set. In this case the partial order
P is called a total order or linear order. ‘

If Pand @ are partial ordersona set Yand P < Q,
we say (I is an extension of P. If  is also a linear order,
then we say Q is a linear extension of P. A theorem of
Szpilrajn [10] asserts that if P is a partial order on X
and € is the collection of all linear extensions of P,
then € # &J and mn G = P. Dushnik and Miller [3]
defined the dimension of a poset (X, P), denoted
Dim (X, P), as the smallest positive integer n for
which there exist linear extensions L,, L,, ..., L,
of Psothat P=L, nL,n...nL,.

We consider n-dimensional Euclidean space R”"
as a poset with ordering

(ala |25 PIERPH an) < (bl: b2= Al bn.)

ifandonlyifa; < b;in Rfori = 1,2, ..., n. We then
have the following alternate definition due to Ore [8].
Dim (X} is the smallest positive integer n for which
X < R"

If P is a partial order on X, thenthe relation
P=1{(y,x):(x,y)eP} is a partial order on X
and is called the dual of P. We will sometimes write X
to denote the dual of the poset X. A poset and its dual
have the same width, length and dimension.

A poset X is said to be irreducible if

Dim (¥ — x) < Dim (X)

for each x e X.
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2. Doubly irreducible posets. — In 1955 Hira-
guchi {4] proved the following result.

Theorem 1.— Dim (X) < | X [[2when | X | = 4

Much simpler proofs of this theorem have been
provided by Bogart [1], Rabinovitch [9], and Trot-
ter [12]. Trotter’s proof is based on the following
inequalities.

Theorem 2 [4]. — Dim (X) < W(X).

Theorem 3 [12). — If A is an antichain of a poset X
and | X — A| = 2, then Dim (X) < [ X — A4 |.

Rabinovitch’s proof of theorem 1 is one of many
simple proofs that can be fashioned by combining
appropriate removal theorems together with some
case work to show that the result holds for posets of
small order. However, it is not known whether or
not every poset with at least three points contains
a pair of points whose removal decreases the dimen-
sion at most one. If this does not hold, then there
exists an irreducible poset X so that X' — x 18 irreduci-
ble for every x e X. Such posets are calted doubly
irreducible posets.

Problem 1. — Determine whether doubly irredu-
cible posets exist.

We note that forbidden subposet characterizations
have been provided for theorems 1 and 3 ([21, [6], [14]).

- Problem 2. — Give a forbidden subposet characteri-
zation of theorem 2.

3. Irreducible posets of large length, — Trotter 13
proved that irreducible posets with arbitrarily large
length exist. In {5], Kelly and Rival constructed
3-dimensional irreducible posets of length n for
every n = 2.

‘Yheorem 4. — For every m = 3 and n 2 2, there
exisis an m-dimensional irreducible poset with length
Z n

Proof. — We proceed by induction on m using Kelly
and Rival's construction when m = 3 together with
the well known result that if X and ¥ have universal
bounds, then Dim (X x Y) = Dim (X) + Dim (¥).
Let 2 denote the 2-element chain 0 < 1.

Now suppose that the theorem holds for m = k.
Then choose a k-dimensional irreducible poset X
having length at least 2n. Let X denote the poset
obtained from X by attaching universal bounds
to X. Then let ¥ be a k + 1-dimensional irreducible
subposet of the k + l-dimensional poset ¥x2
We now show that Y has length at least n.

Let X < Xz < X3 < =+ < X, b€ A 2 n-element
chain of X. Now let i be chosen so that 1 <i<2n
if neither {x;, 0) or (x;, 1} belongs to ¥, then Y is a
subposet of m x 2 and thus has dimension at
most k. The contradiction shows that Y contains at

Jeast one of the points (x;, 0) and (x; 1). It follows
that ¥ contains at Jeast half of the points from

{(x,0):1<i<2n}

or at least half of the points {(x, 1) : 1 < i< 2nj.
In cither case Y contains an r-glement chain.

Problem 3. — For each m = 3 and n 2 2, cons-
truct an irreducible poset with dimension m and
length n.

4. Splits and rooted posets. — R. Kimble [7] defined
the split of a poset X, denoted S(X), as the poset
of length two with maximal elements {x’ :x€ X }
and minimal elements {x”:xeX}. The partial
order on S(X) is given by the rule x" <y’ in S(X)
if and only if x < y in X. Kimble proved the follow-
ing result.

Theorem 5. —
Dim (X) € Dim S(X) < 1 + Dim (X) .

Proof. — Suppose L,, L, ..., L, generate the partial
order on S(X). For each i < ¢, let

S = {(x,y)eX:(X’,y")ELi}.

It follows that there exists a linear order M; on X
so that Pu S; « M; where P denotes the partial
order on X. Also it is easy to see that

P=M nnM,n...n M,

and thus Dim (X) £ Dim S(X).

Now let f 1 X > R be an embedding of the chain
(X, M,) in R. Let x, denote the maximum element.of
(X, M) and let f(xo) = ro. Then let x, denote the
minimum element of (X, M) and let f{x;} = rp.
Now consider the function ¢ SX)- X xR
defined by

g(x) = (x, F(x)) and g(x) = (x, f(X) + 1+ o — 1)

It is easy to see that g is an embedding and therefore
Dim S(X) < Dim (X x R) € 1 + Dim (X).

Problem 4. — Determine conditions on X which |
insure that Dim S(X) = 1 + Dim (X).

The question arose immediately as to whether
the repeated splitting of a poset could increase the
dimension without bound. Let us denote the a-th
split of a poset by S"(X}, i.e.

SX) =X, S'(X)=S(X),
SHX) = S(S(X)), et
The question then becomes whether there exists
a constant k so that Dim S*X) < & + Dim (X)
for every X and every n 2 0. '

If a one point poset is split four times, a 3-dimen-
sional poset-is obtained. Note that the Fasse diagram
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of S"(X) is always a tree in the graph theoretic sense
when X is a one point poset. It was this observation
and its application in the proof of theorem 7 that
led Trotter and Moore {15] to investigate the relation-
ship between dimension and planarity. One of the
results of this investigation was the following theorem
(see [16] for additional results).

Theorem 6. — If the Hasse diagram of a poset X
is a tree in the graph theoretic sense, then Dim (X) < 3.

We call a poset a rooted poset when a single point
from the poset has been designated as a root. Now
consider the following general situation. Supposc
we have a poset X and for each x e X, suppose we
also have a rooted poset Y, with root r,. We form
a poset Z called the amalgamation of { ¥, :xe X'}
by identifying the points x and r, for each xe X.
For example, consider an arbitrary poset X. For
each x € X, let ¥, be a 3-element chain x" < r, < x'.
Then the amalgamatmn of {¥,:xcX} has S{X)
as a subposet. _

Theorem 7. — Let Z be the amalgamation of
{Y,:xeX} If

1, = Dim(X), t, = max {Dim(Y,):xeX},

,andt—max{tl,t2}¢ then t <« Dim(Zy € t + 2.

Proof. — The 1nequal1ty t < Dim (Z) is trivial
since X and each Y, are subposets of Z. On the other
hand, let L;, L,, ..., L, be liriear orders which generate
the partial order on X and for each x € X, let My,
- M3, ..., M¥ be lincar orders which generate the
partial order on Y,. For each i < ¢, define a linear
order X; on Z by the following rules. If w, e ¥,
and w, € Y,, with x; # x,, then w; <w; in K;
if and only 1f X, < X, in Ly If wy, wye Y, with
w, # w,, then w, < w, in K; if and only if w, < w,
m MpX

The remainder of our proof relies heavily of the
concept of TM-cycles as introduced in [15]. We refer
the reader to [17] and [18] for similar applications
of this concept.

Let S; = {(w,wy):w, e€¥, wye¥, w Iw,in
Z,x>yinX,w,<yin Y, }and §, = { (W, wy) :
wieY, w,eY, wilw,inZ, x>pyin X, w, £y
in ¥, }. We next show that neither S, nor S, contains
any TM-cycles. Suppose first that §; contains a
TM-cycle { (a;, b)) : 1 < i < m }. We choose for each
i< mpoints x, ye X withaq,e Y, e ¥, x> ¥
in X, and b; < y; in ¥,. Now choose an arb1trary
mteger i < m. Since «; ] b; in Z, we conclude that
a; } x;in Y, and w < g; in Z implies that

{x}

we Y, —

and that w < a; in Y,. Hence b,_, € ¥,, and thus
X; = y;_,. However, it is clear that this cannot
hold for each isince it would imply cyclically y;_, > ¥;
fori =2,3,..,maswellasy, > y;.

Now suppose that S, contains a TM-cycle

{(a, b):1 <

Choose the points x; and y,; as in the preceding para-
graph. Then b; # y; and b; < a4, in Z imply that
a;41€ Y, te X1 =y and again a coniradiction
has been obtained.

Therefore there exist linear extensions K,,, and
K,,, of Zsothat S, « K,y and §; = K45 It is
straightforward to verify that K; n Ky n...mn Ky,
is the partial order on Z. Thus Dim (Z) <1+ 2
and our proof is complete.

We note that if X < ¥, then S(X) = S(¥). Now

<mj.

_consider an arbitrary poset X to which we repeatedly

apply the amalgamation process described earlier
where we replace each point by a 3-clement chain
rooted at the middle point. The net effect of a finite
number of such operations is the amalgamation
of a family { ¥, : xe X} of rooted trees. We there-
fore have the foilowmg theorem.

Theorem 8. — If X is a poset of dimension three
or more, then Dim S"(X) < 2 + Dim (X) for all
nz2

We note that theorem & also holds for all posets

“although for reasons of brevity we do not include
the details here.

5. Splits and cartesian products. — One of the best
known inequalities in dimension theory is

Theorem 9. —
max { Dim (X), Dim (Y) } <

< Dim (X x ¥) < Dim (X) + Dim (¥) .

The problem is to determine just how accurate
the lower bound on Dim (X x Y} really is. In par-
ticular we may ask the following question.

Problem 5. — For each n = 1, does there exist
an n-dimensional poset X for which X x X is also
n-dimensional ?

If in general we seek posets for which Dim (X x X7}
is substantially less than 2 Dim (X), we may confine
our attention to posets of length 2 for if X is such
a poset but the length of X is large, then we may
consider the split of X instead. The author and
J. L. Moore did prove as a starting point that for the
standard example of an n-dimensional poset, the
crown S? (see {11]), we have

Dim (S° x $Hy=2n-2.
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