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ABSTRACT 

The Cartesian product of two hamiltonian graphs is always hamiltonian. 
For directed graphs, the analogous statement is false. We show that the 
Cartesian product C,,, x C,, of directed cycles is hamiltonian if and only if 
the greatest common divisor (g.c.d.) d of n,  and n, is a t  least two and 
there exist positive integers d,, d, so that d, + d, = d and g.c.d. (n,,  d,) = 
g.c.d. (n,, d,) = 1. We also discuss some number-theoretic problems 
motivated by this result. 

1. INTRODUCTION 

Let G, = (V,, El) and G, = (V,, E,) be graphs. The Cartesian product (see 
p. 22 of [l]) of GI and G,, denoted G,x G2, is the graph G = ( V , E )  
where V =  V, X V, and 

A graph G = (V, E )  is hamiltonian if there exists a listing u, ,  u2, . . . , u, of 
the vertex set V so that {ui, U ~ + ~ } E  E for i = 1,2 ,  . . . , n - 1 and {v,,, U , } E  

E. It is elementary to show that if G, and G, are hamiltonian, so is 
G, x G,. 

Now let G, = (V,, El) and G, = (V,, E,) be directed graphs, i.e, El and 
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E ,  are sets of ordered pairs of V, and V,, respectively. The Cartesian 
product G, X G2 is the directed graph G = (V, E )  where V = V, X V, and 

A directed graph G =(V, E )  is said to be harniltonian if there exists a 
listing u1 u 2 , .  . . , u,, of V so that (ui, q+,) E E for i = 1 ,2 , .  . . , n - 1 and 
(u,,, u , )  E E. As we shall see, the Cartesian product of hamiltonian directed 
graphs need not be hamiltonian. 

2. DIRECTED CYCLES 

For an integer n z 2 ,  let C,, be the directed graph with vertex set 
{0,1,2, . . . , n - 1) and edge set {(i, i + 1) : i = 0, 1 ,2 ,  . . . , n - 1 (mod n)}. 
In this section we will determine when the Cartesian product Cnl X Cn2 of 
directed cycles is hamiltonian. We begin by dzveloping some necessary 
conditions. We suppose that u l ,  u 2 , .  . . , unln2 is a hamiltonian cycle in 
Cnl X Cn2. Without loss of generality we may assume that u1 = (0,O). 

For an integer n L 2, we denote by Z,, the cyclic group of order n. We 
use the symbols (0, 1 , 2 , .  . . , n -  l} for the elements of Z,, with the 
operation being addition modulo n. We denote the direct sum of Znl and 
Znz by Zn,@Z,,, and adopt the natural convention of using group notation 
for the elements of Cn,xCn2. In particular note that for each i =  
1 ,2 , .  . . , nln2, either ui+, = ui + ( l ,  0) or ui+, = ui +(O,  1). 

We let V denote the vertex set of Cnl x Cn2 and then set 

Note that V, and V, are nonempty and their union is V. 

Lemma 1. U E  V, if and only if u + ( l , n , - l ) ~  V,. 

Proof. For each vertex u E V, there are exactly two vertices ul, u2 E V 
for which (u,, U)E E and (u,, u )  E E, i.e., 

Now suppose U E  V, and let u =  ui; then U ~ + ~ = U ~ + ( ~ , O ) .  If 
u + ( l , n , - l ) ~  V, and u+(1,n2-1)=ui ,  then i # j  but U ~ + ~ = U ~ + ~ .  This 
contradicts the assumption that u,, u,, . . . , unln2 is a hamiltonian cycle in 
Cni x C,,, i.e., each vertex appears exactly one time in this list. 
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On the other hand, if u + (1, n, - 1) E V, and u E V,, then u + (1,O) does 
not appear in the list since u + ( 1 , O )  = uitl and ui = u + (1, n, - 1) require 
u + (1, n2 - 1) E V, whereas ui = u requires u E V,. 

Let (a, b )  E Zn$Zn2 and let ((a, b ) )  denote the subgroup generated by 
(a, b) .  Then the order of ((a, b ) )  is the least common multiple of the 
integers O(a)  and O(b)  which are the orders of a and b in Z,,, and Znz, 
respectively. Let H=((l, n2-1))=((n,-1, 1)). Then /HI= 
1.c.m. (n,, nz)  = nlnz /d  where d = g.c.d. (nl ,  n,). [l.c.m.-least common 
multiple; g.c.d.-greatest common divisor.] 

I t  follows from Lemma 1 that V, and V, are both the union of distinct 
cosets of H. Since they are nonempty and disjoint,we see that the greatest 
common divisor d of n ,  and n, must be at least two. However, as we shall 
see, the condition that d be at least two is not sufficient. 

I 

Lemma 2. ui E V,  if and only if U , + d  E V,. 

Proof. Note that for each i, there exist el, e,  so that e l +  e,= d and 
u ~ + ~  = ui +(el, e,). We now show that {(el, e2)  : el + e, = d} c H. It suffices 
to show that (d, O ) E  H. Choose integers q1 and q2 which satisfy the 
Diophantine equation n,q, + n,q, = -d. Then 

tn,q,+d)( l ,  %-I)= t-nzqJtL n2-1) 

= (n,q, + d, -nzq,n, + nzq,) 
= (d, 0). I 

Now let ud+, = u ,  + (dl, d,). Then d ,  + d, = d and d,, d,> 0 since 
neither V ,  nor V, is empty. 

Lemma 3. The order of ((dl, d,)) in Znl@Znz is n,n,ld. 

Proof. Let t=order  ((d,, d,)). It follows from Lemma 2 that u ~ + ~ ~  = 
U, + k(dl, d2). Since u ,  + t(d,, d,) = u1 and we visit exactly d vertices 
between ui and u , + ~ ,  we see that td = nln2, i.e., t = n,n,/d. I 

Lemma 4. g.c.d. (n,, d,) = g.c.d. (nz,  d,) = 1. 

Proof. Suppose that there exists a prime p so that p 1 d,  and p I n,. Let 
t ,  = O(d,) and t ,  = O(d,) in Znl and Znz, respectively. Let us also suppose 
that p I d,. Then p I d and pn,. Then the order of ((dl,  d,)) in Zn,$Znz is 
1.c.m. ( f l ,  f,). Since d,  - ( n , / p )  = ( d , / p )  . n,  and rl is the least integer for 
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which n1 1 d,t,, we see that t, 1 ( n J p ) ;  similarly t, 1 (n,/p). Therefore 

contradicting Lemma 3. 

t ,  1 (nl/p) and f2 I n2 and 
On the other hand, suppose that p Y  d,. Then p 4' d and p 4' n2. Then 

again contradicting Lemma 3. 

1. I 
We conclude that g.c.d. (n,, d , )  = 1 and dually we have g.c.d. (n2,  d,) = 

We are now ready to present the principal result of the paper. 

Theorem 1. The Cartesian product C,,, X Cn2 of directed cycles is hamil- 
tonian if and only if d = g.c.d.(n,, n2) 2 2  and there exist positive integers 
d , ,  d,  so that d ,+d ,=d  and g.c.d.(n,,d,)=g.c.d.(n,,d,)=l. 

Proof. The necessity has been established by the preceding Lemmas. 
Sufficiency is established by constructing the hamiltonian cycle in the 
obvious fashion. Let u1 = (0,O) and U d + l =  (d , ,  d,). Then choose any 
directed path u l ,  u 2 , .  . . , ud,  'udSl between (0,O) = u1 and (dl, d,) = u d + l ;  

( d l ,  2), . . . . Then construct the remaining part of the cycle using (as 
required by Lemma 4) the rule ui+d = ui + ( d , ,  d,). It is straightforward to 
verify that the construction produces a hamiltonian cycle (see [2] for 
details). 

e.g.7 let uz = (1, 01, u3 = ( 2 ,  01, . . . , Ud,+ l  = (d1, 01, U d , + z =  (di, 11, ud,+3 = 

Example 1. Cd0x C,, is hamiltonian. In this case d = 8 and we may 
choose either (3,5) or ( 7 , l )  for ( d , ,  d,). Note that there are then (:)+(;I 
different hamiltonian cycles. 

Example 2. Let n,  = 24.  5 * 11 and n2 = 24 - 3 7 . 13. Then C,, x Cn2 is 
not hamiltonian. This is .[he smallest example where d 2 2 but the product 
is not hamiltonian since it is relatively easy to show that if g.c.d ( n , ,  n2) = 
d and 2 5  d s  15, then suitable d ,  and d ,  can always be found. 
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Klerlein [3] has shown that the Cayley color graph of the direct product 
of cyclic groups using the standard presentation is the Cartesian product of 
directed cycles of appropriate orders. Theorem 1 can then be applied to 
determine when this Cayley color graph is hamiltonian. 

3. SOME NUMBER THEORETiC RESULTS 

Following [2], we say that an integer d is prime partitionable if there exist 
n,, n2 with d =g.c.d. (nI, a,), so that for every d,, d 2 > 0  with d , + d , =  d 
either g.c.d. (nl, d , ) #  1 or g.c.d. (n,, d 2 ) #  1. The first ten prime partiona- 
ble numbers are 16, 22, 34, 36, 46, 52, 56, 64, 66, and 70. Note that all 
these values are even. In [2] it is asked whether infinitely many prime 
partionable number exist and whether there are any odd prime partiona- 
ble numbers. We settle these questions in the affirmative. 

Theorem 2. There exist infinitely many prime partionable numbers. 

Proof. It follows from a theorem of Motohashi [4] that there exist 
infinitely many primes pairs pl, p2 with p1 > 3 and p2 = 2p, + 1. To see that 
for such primes, d = p1 + p2 is always prime partionable, let n, = d * p, pz 
and n, be the product of d with all the primes other than p1 and p2 which 
are less than d. I 

We also found several odd prime partionable numbers by computer 
search for solutions to Diophantine equations. These values are d = 15, 
395; d = 397, 197; d = 1,655,547; d = 2,107,997; and d = 2,969,667. 

Example 3. For the value d = 15, 395 let n,  = dplp2p3 where p ,  = 197, 
p2 = 317, and p 3  = 359. Then let n2 he the product of d with all primes 
other than pl, p2, and p, which are less than d. Then observe that 
d-p,  = 48 p2; d-p, = 42 p3; d-p, = 84 p, ;  and d-1 = 86 p l .  Furthermore 
each of the terms p:, pz,  p:, p1p2, p,p3, and p 2 p 3  is larger than d. Thus d 
is prime partionable and C,,, X C, is not hamiltonian. 
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