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ABSTRACT 

In this paper we discuss a generalization of the familiar concept of an 
interval graph that arises naturally in scheduling and allocation problems. 
We define the interval number of a graph G to be the smallest positive 
integer t for which there exists a function f which assigns to each 
vertex u of G a subset f (u)  of the real line so that f (u)  is the union of t 
closed intervals of the real line, and distinct vertices u and v in G are 
adjacent if and only if f (u)  and f ( v )  meet. We show that (1) the interval 
number of a tree is a t  most two, and (2) the complete bipartite graph 
Km,n has interval number [(mn + 1 ) / (m + n ) l .  

1. INTRODUCTION 

A graph G is called an internal graph if there is a function f that assigns 
to each vertex u of G a closed interval of the real line R so that distinct 
vertices y 21 of G are adjacent if and only if f(u) n f(u) # 0. Structural 
characterizations of interval graphs have been provided by Lekkerkerker 
and Boland [7] who specified the forbidden subgraphs, Gilmore and 
Hoffman [2] in terms of cycles, and Fulkerson and Gross [l] in terms of 
matrices. Definitions not given here can be found in Ref. 5. 

In this paper, we consider a generalization of the concept of an interval 
graph; we are motivated by scheduling and allocation problems that arise 
when a graph is used to model constraints on interactions between 
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components of a large scale system. For a graph G, we define* the 
interval number of G, denoted i(G),  as the smallest positive interger t for 
which there exists a function f which assigns to each vertex u of G a 
subset f(u) of R which is the union of t (not necessarily disjoint) closed 
intervals of R and distinct vertices u, of G are adjacent if and only if 
f(u) nf(v) f 0. The function f is called a t-representation of G. Thus G is 
an interval graph if and only if its interval number is one. Obviously every 
graph G with p vertices has an interval number i ( G ) s p - 1 ,  and thus 
i(G) is well defined. 

A number m is called an upper bound for a representation f of a graph 
G when m > r for every number r in f(u) and every vertex u of G. 

We will frequently find it convenient to impose an additional restriction 
on a representation of a graph. A t-representation f of a graph G is said 
to be displayed if for every vertex u of G, there exists an open interval I, 
contained in f(u) so that I, n f ( v )  = 0 for every vertex v in G with u # v. 

Recall that for any tree T, the tree T' is obtained by removing all the 
endvertices of T. A caterpillar is a tree T for which T' is a path. It was 
noted in Harary and Schwenk [6] that T is a caterpillar if and only if T 
does not contain the subdivision graph of Kl,3 as a subtree. 

Theorem 1. If T is a tree, then i(T) = 1 if T is a caterpillar and i(T) = 2 
if it is not. 

Proof. If T is a tree and does not contain the subdivision graph of 
Kl,3 as a subtree, then it follows from the forbidden subgraph characteri- 
zation of Ref. 7 that T is an interval graph. On the other hand, if T 
contains this subdivision graph, then T is not an interval graph and 
i (T)s2 .  

Now we proceed by induction on the number of vertices to show that 
every tree has a displayed 2-representation. If T is the one point tree, the 
result is trivial. Next assume that for some k 2 1, every tree on k vertices 
has a displayed 2-representation and let T be a tree with k + 1 vertices. 

Choose an endvertex u of T and let f be a displayed 2-representation 
of the tree T -  u. Let v be the unique vertex adjacent to u in T and let I ,  
be an open interval contained in f ( v )  so that I ,  n f ( w )  = 0 for every 
vertex w in T -  u with w # v. Choose a closed interval A contained in I,,. 

* Roberts [8] has studied another generalization of interval graphs. He defines 
the boxicity of a graph G as the smallest positive integer t for which there exists 
a function f which assigns to each vertex u of G a sequence f ( u ) ( l ) .  f ( u )  
2). . . . , f ( u ) ( t )  of closed intervals of R so that distinct vertices u, v of G are 
adjacent if and only if f ( u ) ( i )  n f (v)( i )  # 0 for i = 1,2,3, . . . , t. 
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Now choose an upper bound rn for f and define g(w) = f(w) for every 
vertex w in T - u  and g(u)=A U[m, rn+l ] .  It is clear that g is a 
displayed 2-representation of T and our proof is complete. I 

2. COMPLETE BIPARTITE GRAPHS 

We now derive our main result. We use the notation [XI to represent the 
smallest integer among those which are at least as large as x. 

Theorem 2. The interval number of the complete bipartite graph K,,,, is 
given by 

i (K,,,,,,) = r(mn + l)/(rn + n)i. 

Proof. We first show that i(Km,,,) I [(rnn + l)/(rn + n)l . Suppose that f 
is a t-representation of K,,,. Without loss of generality, we may assume 
that for each vertex u in K,,,, f (u)  is the union A,(u) U A,(u) U * * * U 
A,(u) of t pairwise disjoint closed intervals. 

We now use f to determine a graph G. The vertices of G are the 
ordered pairs of the form (u, i) where u is a vertex in K,,, and 1s i 5 t 
with distinct vertices (u, i) and (u, j )  adjacent in G when Ai(u) n 
Ai(u) it 0. The function g defined by g(u, i) = Ai(u) is a 1-representation 
of G so G is an interval graph. Since G is bipartite, it is triangle-free. 
Since G is an interval graph, it does not contain a cycle of four or more 
vertices as an induced subgraph. Therefore, G is a forest. Note that G 
has (rn + n)t vertices and at most (rn + n)t - 1 edges. 

Now suppose that e = {u, v,} is an edge of K,,,,. Then there exist 
integers i, j with Ai(u)nAi(u)# 07 and we may therefore define a 
function h from the edge set of K,,, to the edge set of G by setting 
h(e)  = h({u, u})  ={(u, i), (u, j ) } .  Clearly, h is a one-to-one function and 
since K,,,, has rnn edges, we see that rnns(rn+n)t-1, i.e., t r  

We will now show that i(K,,,Js [(rnn+l)(rn+n)l. Let t =  
[(rnn+l)/(rn+n)l. We will construct an interval graph G with a 1- 
representation g. We will then construct a t-representation f of Km,n by 
appropriately choosing, for each vertex u of K,,,, t intervals from the 
range of g as the intervals whose union is f(u). 

We begin by labeling the vertices of K,,, with the symbols 
a,, a,, . . .,a,,,, bl, b,,. . . , b,, so that a, is adjacent to bi for all i and j .  
Without loss of generality, we may assume r n ~ n .  Let A = 
{1,2,3,. . . , rn} and B ={l, 2,3,. . . , n}. 

T(mn + l)/(rn + n)l .  
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We next construct a graph T whose vertex set is 

{Uk: 1 5  k 5 nt}U{Uk: 1 s  k 5 nt-l}U(wij: 1 s  i 5 m, 1 sj 5 n}, 

where T has the following adjacencies: u k  is adjacent to u k  and uk+l for 
k = l , 2 , .  . . , nt-1 and wii is adjacent to uj for i = l , 2 , .  . . , m and 
j = 1 ,2 ,  . . . , n. The graph T is a caterpillar and, by Theorem 1, is also an 
interval graph. Consequently any induced subgraph of T is also an 
interval graph. 

The next step in the construction is to color some, but not all, of the 
vertices of T using the elements of A as colors. We begin by assigning to 
ul, u2 , .  . . , U.,,~ the colors 

1 , 2 , 3  ,..., n , 1 , 2 , 3  ,..., n , . . . ,  1 , 2 , 3  ,..., n 

in order. Note that each color from B is used exactly t times. 
Now let s = n - t; then 2s 5 n - 1. Suppose that S is a set of either 2s or 

2s - 1 consecutive vertices from the sequence vl, v2, . . . , v , , - ~ .  Consider a 
subset S’ of S that contains s vertices, no two of which are consecutive. 
Then let B’ be the subset of B consisting of those integers j for which 
there is a vertex u from S’ and a vertex u adjacent to v with u having 
color j .  It is easy to verify that B‘ must contain 2s elements, i.e., the s 
vertices of S’ are adjacent to 2s distinctly colored vertices. 

The next step is to assign colors to the first ms vertices in the sequence 
ul, v2, . . . , u , , - ~ .  Note that t 5 [(mn + l)/(m + n)l and s = n - t imply that 
ms I nt - 1. At this point, we must consider two cases depending on the 
parity of m. If m is even, then assign the vertices vl, v 2 , .  . . , v, the 
colors 

1 , 2 , 1 , 2  ,..., 1 , 2 , 3 , 4 , 3 , 4  , . . . ,  3 , 4  ,..., m-1,  
m , m - l , m , . .  . , m - l , m  

in order. Note that each color in A is to be used exactly s times. If m is 
odd, we modify this scheme as follows. We first assign color m to 
vl, v, ,+~,  vZn+*, . . . , z)(~-~)(,,+~)+~. Note that for each j = 1 , 2 , 3 ,  . . . ,2s, 
there are integers k, 1 for which uk is adjacent to ul, where ul has color m 
and uk has color j .  Next assign to the (m-1)s vertices in the sequence 
vl, v2, . . . , u-, which were not assigned color m, the colors 

1 , 2 , 1 , 2 , .  . . , 1 , 2 , 3 , 4 , 3 , 4 , .  . . , 3 , 4 , .  . . , m - 2 ,  m - 1 , .  . . , m-2 ,  m - 1  

in order. Again we note that each color in A is to be used exactly s times. 
When rn is even, observe that each color i from A is assigned to s 

nonconsecutive vertices in a block of 2s - 1 consecutive vertices from the 
sequence vl, v 2 , .  . . , vnte1. When m is odd, we observe that distinct 
vertices that have been assigned color m are at least n +2  apart in the 
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sequence ul, u2 , .  . . , untP1. Therefore, we observe that each color i from 
A with i # rn is assigned to s nonconsecutive vertices in a block of 2s or 
2s - 1 consecutive vertices in the sequence ul, u2, . . . , wntP1. For each 
color i E A, define the set 

B(i) = { j  E B: There exist integers k, 1 with u k  adjacent to ul for which uk 

We conclude that for all values of rn and for every color i from A, the set 
B(i) contains exactly 2s elements. 

The next step in the construction is to assign colors to some, but not all, 
of the vertices in {wii: 15 i 5 rn, 1 sj 5 n}. The construction is the same 
for all values of m. Let i be an element of A ; assign color i to vertex w, if 
and only if j is an element of B -B(i). Now let 

has been assigned color j and uI has been assigned color i}.  

U1 ={uk: 1 5  k 5 nt-  1) U{wij: 1 c: i 5 m, 1 s j  5 n }  

U2={uk:  l s k s n t } .  

Observe that for each color i from A, exactly t vertices of Ul have been 
assigned color i, and for each color j from B, exactly t vertices from U2 
have been assigned color j ;  furthermore, there exist adjacent vertices 
u’, u” with u’ from U,, u” from U,, u’ having color i, and u” having color 

Now let G be the subgraph of T generated by the colored vertices and 
let g be a l-representation of G. The final step in the construction is to 
use g to define a t-representation f of K,,,n. But this is accomplished 
simply by defining 

and let 

i- 

f(q) = U{g(u‘): u’ is a vertex from U1 and u’ has color i} 

for i = l ,  2,. . . , m 
and 

f(bi) = U{g(u”): u” is a vertex from U2 and u” has color j }  
for j = l , 2 , .  . . , n. 

It is trivial to verify that f is a t-representation of K,,,n. I 

3. OTHER RESULTS 

A preliminary version of this paper included a proof of the following 
result. 
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Theorem 3. If G has p vertices, then i ( G ) s  [p/31. 

This theorem may be established using a two-part argument in which it 
is proved inductively that a graph on 3 n  vertices has an n-representation 
and a triangle-free graph on 3n vertices has a displayed n-representation. 
The proof of the second part makes use of Turin’s theorem for the 
maximum number of edges in a triangle-free graph. 

However, the authors did not believe that the upper bound on the 
interval number of a graph provided by Theorem 3 was best possible. 
Motivated by the observation that the complete bipartite graph K2n,2n has 
4n vertices and interval number n + 1, the authors conjectured that if G 
is a graph with p vertices, then i (G)s  [(p + 1)/41. 

The concept of interval number has been independently investigated by 
Griggs and West [4]. They obtained the formula given in Theorem 1 for 
the interval number of a tree as well as the upper bound given in 
Theorem 3. They also made the same conjecture concerning the max- 
imum interval number of a graph with p vertices. And they also provided 
an upper bound on the interval number of a graph in terms of the 
maximum degree of a vertex in the graph. Specifically, they showed that if 
the maximum degree of a vertex in a graph G is d, then i ( G ) s  
[(d+1)/21. This last result allowed them to determine that the interval 
number of the n-cube 0, is [(n + 1)/21, which answered a problem posed 
in the preliminary version of this paper. 

The authors have recently learned that Griggs [3] has established the 
conjecture by proving that if G has 4n - 1 vertices, then i(G) S n. 

4. AN OPEN PROBLEM 

Lekkerkerker and Boland [7] gave a forbidden subgraph characterization 
of interval graphs by listing the collection 92 of graphs defined by 

9,=(G: i (G)=2 but i(H)=l 
for every proper induced subgraph H of G}. 

We propose the general problem of finding for t z 3 ,  the collection 

9* = { G :  i(G) = t but i(H) 5 t - 1 for every proper subgraph H of G}. 

The problem for t = 3  seems to both manageable and interesting since 
from applied viewpoint, graphs that are the intersection graphs of a 
family of sets each of which is the union of two intervals of the real line 
have practical significance, e.g., two work periods separated by a lunch 
break. By double interval graphs, we mean graphs with interval number 
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two. Theorem 2 shows that K2n,2n is in ,a,,+, for every n r l  and that 
K2n--1,2n+2 is in ,a,,+, for every n 2-2. In particular, we note then that a 
forbidden subgraph characterization of double interval graphs will include 
K4,4 and &,6. 
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