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ABSTRACT

In this paper we discuss a generalization of the familiar concept of an
interval graph that arises naturally in scheduling and allocation problems.
We define the interval number of a graph G to be the smallest positive
integer t for which there exists a function f which assigns to each
vertex u of G a subset f(u) of the real line so that f{u) is the union of t
closed intervals of the real line, and distinct vertices u and v in G are
adjacent if and only if f(u) and f(v) meet. We show that (1) the interval
number of a tree is at most two, and (2} the complete bipartite graph
Ko has interval number [(mn+1)/(m +n)].

1. INTRODUCTION

A graph G is called an interval graph if there is a function f that assigns
to each vertex u of G a closed interval of the real line R so that distinct
vertices u, v of G are adjacent if and only if f(u)Nf(v)# . Structural
characterizations of interval graphs have been provided by Lekkerkerker
and Boland [7] who specified the forbidden subgraphs, Gilmore and
Hoffman (2] in terms of cycles, and Fulkerson and Gross [1] in terms of
matrices. Definitions not given here can be found in Ref. 5.

In this paper, we consider a generalization of the concept of an interval
graph; we are motivated by scheduling and allocation problems that arise
when a graph is used to model constraints on interactions between
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components of a large scale system. For a graph G, we define® the
interval number of G, denoted i(G), as the smallest positive interger ¢t for
which there exists a function f which assigns to each vertex u of G a
subset f(u) of R which is the union of ¢ (not necessarily disjoint) closed
intervals of R and distinct vertices u, v of G are adjacent if and only if
fw)Nf(v) # J. The function f is called a t-representation of G. Thus G is
an interval graph if and only if its interval number is one. Obviously every
graph G with p vertices has an interval number i(G)<p—1, and thus
i{G) is well defined.

A number m is called an upper bound for a representation f of a graph
G when m>r for every number r in f(u) and every vertex u of G.

We will frequently find it convenient to impose an additional restriction
on a representation of a graph. A t-representation f of a graph G is said
to be displayed if for every vertex u of G, there exists an open interval I,
contained in f(u) so that I, N f(v) = J for every vertex v in G with u# v.

Recall that for any tree T, the tree T’ is obtained by removing all the
endvertices of T. A caterpillar is a tree T for which T is a path. It was
noted in Harary and Schwenk [6] that T is a caterpillar if and only if T
does not contain the subdivision graph of K ; as a subtree.

Theorem 1. If T is a tree, then i(T)=1 if T is a caterpillar and i(T)=2
if it is not.

Proof. If T is a tree and does not contain the subdivision graph of
K, ; as a subtree, then it follows from the forbidden subgraph characteri-
zation of Ref. 7 that T is an interval graph. On the other hand, if T
contains this subdivision graph, then T is not an interval graph and
i(n=2.

Now we proceed by induction on the number of vertices to show that
every tree has a displayed 2-representation. If T is the one point tree, the
result is trivial. Next assume that for some k=1, every tree on k vertices
has a displayed 2-representation and let T be a tree with k + 1 vertices.

Choose an endvertex u of T and let f be a displayed 2-representation
of the tree T—u. Let v be the unique vertex adjacent to u in T and let I,
be an open interval contained in f(v) so that I, Nf(w)= for every
vertex w in T —u with w# v. Choose a closed interval A contained in L.

* Roberts [8] has studied another generalization of interval graphs. He defines
the boxicity of a graph G as the smallest positive integer t for which there exists
a function f which assigns to each vertex u of G a sequence f(u}1), flu)
2), ..., flu)(t) of closed intervals of R so that distinct vertices u, v of G are
adjacent if and only if flu))NFVINAZD fori=1,2,3,....t
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Now choose an upper bound m for f and define g(w)=f(w) for every
vertex w in T—u and gu)=AU[m, m+1]. It is clear that g is a
displayed 2-representation of T and our proof is complete. 1

2. COMPLETE BIPARTITE GRAPHS

We now derive our main result. We use the notation [x] to represent the
smallest integer among those which are at least as large as x.

Theorem 2. The interval number of the complete bipartite graph K, . is
given by

(K, )= [(mn+1)/(m+n)].

Proof. We first show that i(K,,,)= [(mn+1)/(m+n)]. Suppose that f
is a t-representation of K, ,. Without loss of generality, we may assume
that for each vertex u in K, ,, f(u) is the union A;(W)UA,(w)U---U
A,(u) of t pairwise disjoint closed intervals.

We now use f to determine a graph G. The vertices of G are the
ordered pairs of the form (u, i) where u is a vertex in K,,,, and 1=si=<1¢
with distinct vertices (u,i) and (v,j) adjacent in G when A, (u)N
A;(v) # . The function g defined by g(u, i) = A;(u) is a 1-representation
of G so G is an interval graph. Since G is bipartite, it is triangle-free.
Since G is an interval graph, it does not contain a cycle of four or more
vertices as an induced subgraph. Therefore, G is a forest. Note that G
has (m+n)t vertices and at most (m+n)t—1 edges.

Now suppose that e={u,v,} is an edge of K, ,. Then there exist
integers i,j with A;(u)NA;(v)# D, and we may therefore define a
function h from the edge set of K,,, to the edge set of G by setting
h(e) =h{u, v}) ={(u, i), (v, j)}. Clearly, h is a one-to-one function and
since K, , has mn edges, we see that mn=(m-+n)t—1, ie., t=
[(mn+1)/(m+n)].

We will now show that (K, )=[(mn+1(m+n)]. Let t=
[(mn+1)/(m+n)]. We will construct an interval graph G with a 1-
representation g. We will then construct a t-representation f of K,, ., by
appropriately choosing, for each vertex u of K, ,, t intervals from the
range of g as the intervals whose union is f(u).

We begin by labeling the vertices of K, , with the symbols
ay,dz,...,04,, by, by ..., b, so that q; is adjacent to b; for all i and j.
Without loss of generality, we may assume m=n. Let A=
{1,2,3,...,m}land B={1,2,3,...,n}
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We next construct a graph T whose vertex set is
{uc: 1=sk=n}U{v: 1=k=nm—-1NU{w;: Isi=m,1=sj=<n},

where T has the following adjacencies: v, is adjacent to w, and u, ., for
k=1,2,...,nt—1 and w; is adjacent to u; for i=1,2,...,m and
j=1,2,...,n The graph T is a caterpillar and, by Theorem 1, is also an
interval graph. Consequently any induced subgraph of T is also an
interval graph.

The next step in the construction is to color some, but not all, of the
vertices of T using the elements of A as colors. We begin by assigning to
Uy, Uy, . - -, U, the colors

1,2,3,...,n,1,2,3,...,n,...,1,2,3,...,n

in order. Note that each color from B is used exactly ¢ times.

Now let s =n—t; then 2s =n — 1. Suppose that S is a set of either 2s or
2s — 1 consecutive vertices from the sequence vq, v, ..., v, ;. Consider a
subset S’ of S that contains s vertices, no two of which are consecutive.
Then let B’ be the subset of B consisting of those integers j for which
there is a vertex v from S’ and a vertex u adjacent to v with u having
color j. It is easy to verify that B’ must contain 2s elements, i.e., the s
vertices of S’ are adjacent to 2s distinctly colored vertices.

The next step is to assign colors to the first ms vertices in the sequence
Uy, Vg - - + 5 Upe—q. Note that ¢t = [(mn +1)/(m +n)] and s =n —t imply that
ms < nt—1. At this point, we must consider two cases depending on the
parity of m. If m is even, then assign the vertices v, v,,..., v, the
colors

1,2,1,2,...,1,2,3,4,3,4,...,3,4,..., m—1,
mm—1m,....m—1,m

in order. Note that each color in A is to be used exactly s times. If m is
odd, we modify this scheme as follows. We first assign color m to
D15 Unt3s Uopass - - - > Ds—1ymsy+1- INOte that for each j=1,2,3,...,25
there are integers k, | for which u, is adjacent to v, where v, has color m
and u, has color j. Next assign to the (m —1)s vertices in the sequence
Uy, Vs, - . . , Do, Which were not assigned color m, the colors

1,2,1,2,...,1,2,3,4,3,4,...,3,4,.... m—2,m—-1,.... m—2, m—1

in order. Again we note that each color in A is to be used exactly s times.

When m is even, observe that each color i from A is assigned to s
nonconsecutive vertices in a block of 2s —1 consecutive vertices from the
sequence v,, U, ..., 1. When m is odd, we observe that distinct
vertices that have been assigned color m are at least n+2 apart in the
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sequence v, U,, ..., Uy,_;. Therefore, we observe that each color i from
A with i#m is assigned to s nonconsecutive vertices in a block of 2s or
2s—1 consecutive vertices in the sequence vy, v,,...,U,—;. For each
color i€ A, define the set

B(i)={j € B: There exist integers k, | with u, adjacent to v, for which u,
has been assigned color j and v; has been assigned color i}.

We conclude that for all values of m and for every color i from A, the set
B(i) contains exactly 2s elements.

The next step in the construction is to assign colors to some, but not all,
of the vertices in {w;: 1=<i=<m, 1=j=n}. The construction is the same
for all values of m. Let i be an element of A ; assign color i to vertex w;; if
and only if j is an element of B —B(i). Now let

U={v: 1=sk=nt—-1}U{w;: 1=i=m,1<j=n}
and let
U2={uk: 1Sk5nt}.

Observe that for each color i from A, exactly t vertices of U; have been
assigned color i, and for each color j from B, exactly t vertices from U,
have been assigned color j; furthermore, there exist adjacent vertices
u’, u” with u’ from U,, u” from U,, u’ having color i, and u” having color
j.

Now let G be the subgraph of T generated by the colored vertices and
let g be a 1-representation of G. The final step in the construction is to
use g to define a t-representation f of K, . But this is accomplished
simply by defining

f(a,) = U{g(u'): u' is a vertex from U, and u' has color i}

fori=1,2,...,m
and

f(b;) = U{g(u"): u" is a vertex from U, and u” has color j}
forj=1,2,...,n

It is trivial to verify that f is a ¢-representation of K, ,,. 1

3. OTHER RESULTS

A preliminary version of this paper included a proof of the following
resuit,
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Theorem 3. If G has p vertices, then i(G)= [p/3].

This theorem may be established using a two-part argument in which it
is proved inductively that a graph on 3n vertices has an n-representation
and a triangle-free graph on 3n vertices has a displayed n-representation.
The proof of the second part makes use of Turan’s theorem for the
maximum number of edges in a triangle-free graph.

However, the authors did not believe that the upper bound on the
interval number of a graph provided by Theorem 3 was best possible.
Motivated by the observation that the complete bipartite graph K, ,, has
4n vertices and interval number n + 1, the authors conjectured that if G
is a graph with p vertices, then i(G)= [(p +1)/4].

The concept of interval number has been independently investigated by
Griggs and West [4]. They obtained the formula given in Theorem 1 for
the interval number of a tree as well as the upper bound given in
Theorem 3. They also made the same conjecture concerning the max-
imum interval number of a graph with p vertices. And they also provided
an upper bound on the interval number of a graph in terms of the
maximum degree of a vertex in the graph. Specifically, they showed that if
the maximum degree of a vertex in a graph G is d, then i(G)=
j(d+1)/2]. This last result allowed them to determine that the interval
number of the n-cube Q, is [(n +1)/2], which answered a problem posed
in the preliminary version of this paper.

The authors have recently learned that Griggs [3] has established the
conjecture by proving that if G has 4n—1 vertices, then i(G)=n.

4. AN OPEN PROBLEM

Lekkerkerker and Boland [7] gave a forbidden subgraph characterization
of interval graphs by listing the collection .$, of graphs defined by
F,={G: i(G)=2buti(H)=1
for every proper induced subgraph H of G}.

We propose the general problem of finding for ¢t =3, the collection
$,={G: i(G)=t but i(H)=t—1 for every proper subgraph H of G}.

The problem for t =3 seems to both manageable and interesting since
from applied viewpoint, graphs that are the intersection graphs of a
family of sets each of which is the union of two intervals of the real line
have practical significance, e.g., two work periods separated by a lunch
break. By double interval graphs, we mean graphs with interval number
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two. Theorem 2 shows that K, ,, is in $,., for every n=1 and that
Ky 1on42 18 in $, ., for every n=2. In particular, we note then that a
forbidden subgraph characterization of double interval graphs will include
K, ., and K;gq.
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