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F.S. Roberts defined the boxicity of a graph G as the smallest positive integer n for which
there exists a function F assigning to each vertex x€ G a sequence F(x)(1), F(x)(2),...,
F(x)(n) of closed intervals of R so that distinct vertices x and y are adjacent in G if and only if
F(x)i)NF(y)i)#® for i=1,2,3,...,n. Roberts then proved that if G is a graph ‘having
2n+1 vertices, then the boxicity of G is at most n. In this paper, we provide an explicit
characterization of this inequality by determining for each n =1 the minimum collection %, of
graphs so that a graph G having 2n + 1 vertices has boxicity n if and only if it contains a graph
from €, as an induced subgraph. We also discuss combinatorial connections with analogous
characterization problems for rectangle graphs, circular arc graphs, and partially ordered sets.

1. Introduction

In this paper all graphs are finite and have no loops or multiple edges. For a
graph G, we write x Ly in G when x and y are adjacent vertices in G and x+ y in
G when x and y are nonadjacent. We denote the number of vertices in G by |G|.
A graph H is called an induced subgraph of a graph G when the vertex set of H is
a subset of the vertex set of G and distinct vertices oi H are adjacent in H if and
only if they are adjacent in G. When H is an induced subgraph of G, we will also
say G contains H. We do not distinguish between isomorphic graphs.

A graph G is an inierval graph when there is a function f which assigns to each
vertex x € G a closed interval f(x) of the real line R so that x Ly in G if and only
if f(x)Nf(y)#9 and x#y. Alternatively, an interval graph is the intersection
graph of a family of closed intervals of the real line R.

The concept of an interval graph extends very naturally to higher dimensions by
considering the intersection graph of a family of “boxes” in n-dimensional
Euclidean space R". Ruverts [3] defined the boxicity of a graph G, denoted
Box (G), as the smallest positive integer n for which G is the intersection graph of
a family of boxes in R". Formally, Box (G) is the smallest positive integer n for
which there exists a functivn F which assigns to each vertex x € G, a sequence
F(x)(1), F(x)(2),...,F(x)(n} of closed intervals of R so that x Ly in G if and
only if x#y and F(x)({))NF(y)(i)#§ for i=1,2,..., n. The function F is called
an interval coordinatization of length n for G. By convention, we define
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Box (G)=0 when G is a complete graph. Therefore, a graph G is an interval
graph if and only if Box (G)=<1.

Roberts proved that if G is a graph having 2n + 1 vertices (where n=1), then
Box (G) =< n. The principal result of this paper will be an explicit characterization
of this inequality. For each n= 1, we will determii:c the minimum collection €, of
graphs so that if G is a graph and |G|=2n+1, then Box (G)=n if and only if G
contains a graph from €, as:an induced subgraph.

2. Some inequalities for boxicity

If A is a subset of the vertex set V(G) of a graph G, we denote by G— A the
subgraph of G with vertex set V(G)—A. It is obvious that if H is an induced
subgraph of G, then Box (H)<Box (G).

We now state without proof two elementary lemmas due to Roberts [3].

Lemma 1. If x is a vertex of G, then Box (G)<1+Box (G —{x}).
Lemma 2. If xt+y in G, then Box (G)<1+Box (G —{x, y}).

It is easy to verify that every graph on three vertices is an interval graph and
thus has boxicity at most one. The following inequality then follows from Lemma
2 by induction on n.

Theorem 1 (Roberts). If |G|=2n+1 where n=1, then Box (G)<n.

The join of two graphs G and H, denoted G@®H, is the graph formed by
2dding to disjoint copies of G and H all edges with one endpoint in G and the
other in H. We illustrate this definition with the graphs shown in Fig. 1.

Fig. 1.

The following lemma shows that boxicity is additive with respect ‘o the join
operation on graphs.

Lemma 3. Box (G® H) =Box (G)+Box (H) for every pair of graphs G and H.

Prooi. Let t, =Box (G), t,=Box (H), and t;=Box (G® H). We further assume
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that t,=1 and that t,=1, i.e., neither G nor H is complete. The argument when
t, =0 or t,=0 will follow with minor modifications.

We first show that t;<t,+1¢,. Let F; be an interval coordinatization of length ¢,
for G and let F, be an interval coordinatization of length ¢, for H. Then choose
an interval [a, b] of R so that F,(x)(i)U F,(y)(j)<(a, o] for every xe G, yeH,
i<t, anc j=<t,. For each vertex ze€ G® H and each positive integer k <t, +t, we
then define a closed interval F5(z)(k) of R by the following rule.

F,(z2)(k) if zeG and 1<k=t,,
F3(Z)(k)= [a, b] if zeG and t1+1s.k$t1+t2,

[a, b] if zeH and 1s<kst,,

F(z)(k—t) if zeH and t+1sks<t +t,.

It follows immediately that F; is an interval coordinatization of length ¢, +¢, for
G@H, and thus t;<t,+t,.

We now show that t;=t, +t,. Let F be an interval coordinatization of length t;
of GO H. Then let S; and S, be the subsets of {1,2,3,..., 1} defined by

S:={i: There exist nonadjacent vertices x,;,x,€ G
so that F(x)(i) N F(x,)(i) =@}

and
S,={i: There exist nonadjacent vertices y,,y,€ H
so that F(y,)(i) N F(y,)(i)=0}.

We show that S,N S, =@, |S;|=t, and |S,|=t,. This will allow us to conclude that
t:=|S|=|S:|+1S.1= 1, + ..

To see that S,NS,=0, we observe that if ieS,, x,, x,€G, and
F(x,)(i)N F(x,)(i)=9, then

F(x,)(i)) N F(y)(i) # @ # F(x)(i) N F(y)(i)

for every yeH, i.e., the interval F(y)(i) contains the open interval of R lying
between the disjoint closed intervals F(x,)(i) and F(x,)(i). Hence F(y,)(i)N
F(y,)i)# 0 for every y,, y,€ H and thus i€ S,.

To see that |S;|=t,, let |S;|=m and S,={iy,is,...,in}. Then the funciion F'
defined by F'(x)(j)= F(x)(j) for every x€ G and every j<m is an interval
coordinatization of length m for G; hence, m =t,. The same argument shows that
|S,|=1t,, so that our argument is complete in the case when t;=1 and t,>1.

We now consider the case when t, =0 or t, = 0. First, if both ¢, and t, are zero,
then G,H, and G®H are complete graphs so that Box(GOH)=0=
Box (G)+Box (H). By symmetry, it remains only to consider the case where ¢, =0
and t,>0. Then Box (G® H)=Box (H) since H is a subgraph of G® H. To show
that Box (G® H)<Box (H), we choose an arbitrary interval representation F of
length t, for H. We then select an interval [a, b] of R so that F(y)(i)<[a, b] for
every y € H and i <t,. Finally, we extend F to G® H by defining F(x)(i)=[a, b]
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for every x € G and i <t,. It is clear that we have obtained an interval representa-
tion of G H of length ¢, so that Box (G® H)=<Box (H), and with this observa-
tion, the proof of the lemma is complete.

Let G, be the graph consisting of two nonadjacent vertices. For n =1, we then
define G, inductively by G, ;= G, ®G,. It follows immediately that |G,|=2n
and Box (G,) = n. Therefore, Roberis’ inequality (Theorem 1) is best possible. We
now use the graph G, for n=1 to examine the sharpness of the following
inequalities which follow easily from Lemmas 1 and 2.

Lemma 4. If K is a complete subgraph of G with |K|=k, then Box(G)<
k +Box (G - K).

Lemma 5. If I is an independent induced subgraph of G with |I|=i, then
Box (G)={i/2} +Box (G --1).

Label the vertices of G, with the symbols a,, a,,...,a,, b, b,,...,b, so that
the subgraphs A ={a,,a,,...,a,} and B={b,, b,,..., b,} are complete and q;
and b; are adjacent if and only if i#j. Now suppose 1<sk<n and let K be the
k-element complete subgraph {a,,a,,...,a.}. It follows immediately from
Lemma 3 that Box (G) =k +Box (G — K) so that Lemma 4 is also best possibl'e.

To test the accuracy of Lemma 5, it is first necessary to modify the graph G,.
For each n=1, let G* be the graph obtained from G, by removing all edges
between distinct vertices of A.

‘Theorem 2. Box (G¥)={n/2} for ull n=1.

Proof. Suppose first that n=2m. For each ism, let F(a, _,)i)=][0,1],
Fla, Xi)=[4, 5], F(bs;_)(i)=[2, 4], F(by)i)=[1, 3], and if j#2i—1, j#2i, then
F(b,)(i)=[0, 5], and F(a;)(i)=[2, 3]. Clearly the function F is an interval coor-
dinatization of length m for G¥,. Therefore, Box (G%,)<m for all m=1. The
orneral result Box (G¥)<{n/2} now follows from Lemma 2.

On the other hand, suppose Box (G},) = 5, and let F be an interval coordinatiza-
tion of length s for G*. For each i<2, let

M(i) ={j: F(a;)(i) N F(b;)(i) = }.

We first observe that |[M(i)|<2 for each i=<s, for if fj,j,, and j, are distinct
elements of M(i), we may assume by symmetry that F(b, )(i) lies entirely to the
left of F(a;)(i), F(b,)(i) lies entirely to the left of F(a;)(i), and that the right
endpoint of F(b, )(i) is at least as large as the right endpoint F(b, )(i). But this
would imply that F(a,}(i) N F(b; )(i) = 0. Therefore, |M(i)|=<2.

Since we must clearly have Y:_, |M(i)|=n it follows that s={n/2} and the
argume .t is complete.
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Now suppose 1<k=<n and I is the independent induced subgraph
{ity, @z, . .., @} in G¥. It follows from Theorem 2 and Lemma 3 that Box (G* -
1)={(n—1i)/2}. Therefore,

Box (G¥)={i/2}+Box (G* - 1),

and the inequality in Lemma 5 is also best possible.

3. A characterization of Roberts’ inequality

Let H, be the 5 element cycle {c,, c,, ¢3, ¢4, cs} wWith ¢; Lc;+1 for i=1,2,3,4
and c¢s 1 c,. For n=2, we then define H, inductively by H, ., = H, ® G,. Since an
interval graph does not contain a cycle of 4 or more vertices as an induced
subgraph, we note that Box (F,)=.. By Lemma 3, we then conclude that
Box (H,)=n for every n=2.

Ccnsider the graph W, shown in Fig. 2.

Fig. 2.

We will now show that this graph has boxicity 3. First, note that Box (W;)<3
since |W;| = 7. Now suppose that Box (W;)<3 and let F be an interval coordinati-
zation of length two for W,. For i =1, 2, let

E; ={{vj1 n) 1sj<k =7, F(U,-)(i)ﬂ F(v )(i) =0}

It is easy to see that |E, U E,|=7 but that |E;!=3 and |E,|<3. The contradiction
completes the argument.

We then define W, for n=3 by W, ,,= W, ®G,; by Lemma 3, we conclude
that Box (W,)=n for every n=3.

The remainder of this section will be devoted to proving that the graphs G,, H,,,
and W, provide an explicit characterization of Roberts’ inequality for boxicity. In
order to simplify the argument, we develop several preliminary lemmas. These
lemmas will require the following result which follows from Lekkerkerker and
Boland’s characterization of interval graphs [2].

Lemma 6. If |G|<35, then Box(G)=2 if and only if G contains G, or H.,.

Lemma 7. If n=1 c¢d |G|=2n, then Box (G)= n if and only if G =G,
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Proof. For n=1, we note that the complete graph on two vertices has boxicity
zero while the independent graph on two vertices G, has boxicity one. The result
follows from LLemma 6 when n=2.

Now assume validity for all values of n <m where m=2 and let G be a graph
with |G|=2m+2 and Box (G)=m+1. If G is complete, then Box (G)=0, so G
has vertices x, y with x4 y. Then G —{x, y} has 2m vertices and boxicity m and is
therefore G,. Label G-—{x,y}=G, with the symbols a,, a,,...,a,,
by, by,...,b, so that a;1a;, b Lb, and a; L b, if and only if i#j for i,j=
1,2,...,m. Now the graphs G —{a,, b,} and G —{a,, b,} each have 2m points
and boxicity m and must also be copies of G,,. It follows that x and y are
adjacent to every vertex of G —{x, y} and therefore G ={x, y}#G,, =G,.., and
our proof is complete.

Suppose for some n=1, G is a graph with 2n +1 vertices. If G has a vertex x
of degrec 2n, then G ={x}® (G —{x}) so that Box (G)=Box (G —{x}) and thus
Box (G)=n if and only if G contains G,,.

Lemma 8. Let G be a graph with |G|=7. If G has a vertex of degree 5, then
Box (G)=3 if and only if G contains G5 or H,.

Proof. Choose a vertex x of degree 5 and then choose y with x4y. Now
G —{x, y} has § vertices and boxicity 2 and therefore contains G, or H,. If y is
adjacent to each vertex of G —{x,y}, then G ={x, y}®(G--{x, y}) so that G
contains (5, or H;.

Therefcre, we may assume that there exists a vertex z€ G —{x, y} with z+y.
Therefore, G —{z. y} has boxicity 2 and

07 —{z, y}={x}D(G —{x, v, z}):

thus, G ~{x, y, z} = G,. Label G —{x, y, z} = G, with the symbols a,, a,, by, b, so
that a,1l4a,, a,1b,, b,la,, and b,Lb,. If y is adjacent to each vertex in
G —{x,y, z}, then G contains G, so we may assume without loss of generality that
y+ a,. Then G —{a,, b,} has boxicity 2 and thus contains G, or H,, but this is not
possible since y has degree at most one and x has degree 3 in G —{a,, b,}. The
<ontradiction completes the proof.

Lemma 9. Let G be a graph with |Gl=7. Then Box(G)=3 if and only if G
contains G;, Hy, or W,

Proof. Let G be a graph with [G|=7 and Box (G)=3. If G contains a vertex of
degree 5 or 6, then G must contain G or Hs, so we may assume without loss of
generality that exch vertex of G has dugree at most 4.

* Suppose that there exist a nonadjacent pair of vertices x, y so that G —{x, y}=
H,. Labei the vertices of G —{x, y} with the symbols c,, c,, s, C4, c5 sO that
¢lc ,fori=1,2,3,4 and ¢sLc,. Since x has degree at most 4, we may assume
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that x+ c,. Then G —{c,, c;} has boxicity 2 but does not contain G, or H,. The
contradiction allows us to conclude that for every nonadjacent pair of vertices x, y
in G, G —{x, y} contains G, but not H,.

Now choose nonadjacent vertices x, y in G and a vertex z of G —{x, y} so that
G —{x, y, z} = G,. Label the vertices of G —{x, y, z} with the symbols a,, a,, b, b,
as in the proof of Lemma 8. Suppose that x4 z. If

G-y={x,y}®(G—{x,y,2})
ok
G -2 ={x’ Y}@(G _{xa Y, Z})g

then G contains G; so we may assume without loss of generality that v4-a,. Then
G —{a,, b,, y}=G, so that xLa,, x1b,, zL1la,, and z1b,. And since b, has
degree at most 4, we see that yx b,. Therefore, G —{y, b;, a,}=G,, x La,, x L b,,
zla,, z1b,, and we conclude that

G-y={x, 2}®(G—{x,y,z) =G..

The contradiction allows us to conclude that x 1 z and y 1 z.

Since y has degree at most 4, we may assume that yza,. Then
G —{a,, b,,a,}=G, and thus x1lbk,, ylb,, and zxb,. If yza,, then
G —{b,, z, y} = G, and thus x L a,, x L b,, and x=* a,. Therefore, G —{a,, b, a,} =
G, and thus y L b, and z+ b,. But G —{z, b,} does not contain G,. Therefore, we
may assume that y 1L a,. By symmetry, we may also assume y L b,.

If x4+a,. then G—{x,a,,y}=G, so z1la, and z Lb,. Therefore, x+a, and
x+b,. But G—{x,b,} does not contain G,. The contradiction allows us to
conclude that x La,. Since x has degree at most 4, we may then assume that
x+a,.

It follows that G —{x, a,, b;}=G, and thus z ia,, z+b,. Also we see that
G —{y, a,, b,} = G, and thus z 1 a,. Finally we note that if x+ /,, then G —{x, by}
does not contain G, so that we must have x L b,. it follows that all adjacencies of
G have been determined and that G = W,.

We are now ready to establish our characterization of Roberts’ inequality for
boxicity. Theorem 3 will provide for vach n=1 the minimum collection €, of
graphs so that if |G|=2n+1, then Box (G)=n if and only if G contains a graph
from 4, as an induced subgraph.

Theorem 3. Let n=1 and let G be a graph with |G|=2n+1.
(i) If n=1, then Box (G)=n if and only if G contains G,.
(ii) If n=2, then Box (G)=n if and only if G contains G, or H,.
(iii) If n=3, then Box (G)=n if and only if G contains G,, H, or W,

Proof. Part (i) is trivial since a complete graph has boxicity zero; part (ii) is
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Lemma 6. We now proceed to prove part (iii) by induction on n. We first note

that part (iii) is valid for n =3 in view ¢f Lemma 9. We then assume validity for

all n<m where m is some integer with m=3. Then let G be a graph with

|G|=2m+3 and Box(G)=m+1. We will now show that G contains G,..,,
"H, ., 0r W, ..

Let x, y be any pair of nonadjacent vertices in G. Then G —{x, y} has 2m +1
vertices and boxicity m + 1 and therefore must contain G,,, H,,, or W,,. Suppose
first that there exists a nonadjacent pair of x,y of vertices of G so that
G —{x,y}=H,, Label the vertices of G —{x, y} with the symbols a,, a,, ..
Ap_2, b1 by . .., b3, €y, Ca, €3, €4y C5 in the obvious fashion.

As in the proof of Lemma 9, if x4 c,, then G —{c,, c;} has boxicity m but does
not contain G,,, H,,, or W,, since c, has degree at most 2m —3 and x has degree
at most 2m—2 in G —{c,, c;}. We may therefore conclude that x and y are both
adjacent to ¢y, 5. C3, C4, and cs.

Now consider the graph G —{c,, c;} which has boxicity m. Since c, and cs have
degree 2m—1 in G —{c,, c3}, c, £ ¢, and cs+ c,, we see that G —{c,, c;} is not
W,, or H,.. And therefore, G —{c,, c;} must contain G,,. It is easy to see that we
must have either G —{c,,cs,cs}=G,., or G —{c,, ¢3, ¢s} = G,,. In either case, x
and y are both adjacent to a,,a,....Qu_>, by, bs, ..., b,_> so that

G ={x, Y}G(G_{xa y})=Hm §e

Now suppose that x and y are nonadjacent vertices of G and that G —{x, y}=
W,.. Suppose first that m =3 and label G —{x, y} with the symbols v, v;,..., v,
as shown in Fig. 2. Suppose further that x4 v,. Then G —{v,, v,} has boxicity 3
but v, has degree at most 3 so G —{v., v,} 1s neither W, or H,. But it is easy to
see that G —{v,, v,} does not contain G, either. We may therefore conclude that x
and y are adjacent to v,, v,,...,v; and therefore, G = W,.

Now suppose that m =4 and label the vertices of G —{x, y} with the symbols
a,,a....a, 3, b, b,y,..., b, 1 vy, v, ..., 0, in the obvious fashion. As in the
preceding paragraph, we may conclude that x and y are adjacent to v,, v,, ..., V.
Now consider the graph G —{v,, v,} which has boxicity m.

Now v, has deg-se 2m -1 and v, v, and vs+ v, in G —{v,, v,} so G —{v,, v5}
s not W, or H,,. Therefore, G —{v,, v,} must contain G,, Clearly this requires
G —{v,,v;,0:}=G,, and thus, x ard y are adjacent to a,,dz ..., Q.3
hy. b>....,b, ;. Therefore,

G ={x. Y}Q(G —{x~ y}): “/m ap

*

We may now assume that whenever x and y are nonadjacent vertices of G, the
graph G —{x, y} contains G,,, but no: H,, or W,,. Choose a nonadjacent pair of
vertices x,y and a vertex z so that G -{x,y,z}=G,. Label the vertices of
G —{x, v, z} with the symbols a,, a,,...,a,, b, by,..., b, in the usual fashion.
Now suppose that x+ z. If y+a,, theyr G —{a,, b,} does not contain G,, so we
may assume that y is adjacent to a,, a,,. .., a,, b, b, ..., b,. Similarly, if x+ a,,
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then G —{a,, b,} does not contain G,,, so we may assume that x is also adjacent to
@1, 03, . .., Gy, by, by, ..., b,. But this implies that G —z = G,,,,. We may there-
fore assume that x 1 z. By symmetry, we may also assume y 1 z.

Now suppose that x4 a,. Then we must have G —{a,, b,, a,} = G —{as, b,, a;} =
G,. and thus, G —a, = G,,.,. We may therefore assume by symmetry that x and y
are both adjacent to a,, a,,..., @y, by, by, ..., b, and, therefore, G —z = G,,.,.
With this case, the argument is complete.

4. The characterization of rectangle graphs

A graph G with Box (G)=<2 is the intersection graph of a family of rectangles
(with sides parallel to the x and y axes) in the plane, so it is natural to refer to a
graph with boxicity at most 2 as a rectangle graph. In this section, we discuss the
problem of providing a forbidden subgraph characterization of rectangle graphs.
While this is a very difficult ensolved combinatorial problem, we will solve the
subproblem of determining a forbidden subgraph characterization for rectangle
graphs with clique covering number two. We accomplish this by establishing
combinatorial connections between this problem and characterization problems
for partially ordered sets and circular arc graphs as discussed in [6]. In the
interests of brevity, we provid:: only the key definitions here and refer the reader
to [6] for details. If [a, b] and [c, d] are closed intervals of the real line R, we
write [a, b]<[c, d] when b <c in R. The interval dimension of a partially ordered
set X, denoted I Dim (X), is then the smallest positive integer n for which there
exists a function F assigning to each point xeX a sequence
F(x)(1), F(x)(2),..., F(x)(n) of closed intervals of R so that x<vy in X if and
only if F(x)(i)<F(y)(i) fori=1,2,3,...,n

A partially ordered set X is said to be t-interval irreducible when I Dim (X) =t
and IDim‘X—x)=t—1 for every xe X. Let P, denote the collection of all
3-interval irreducible partially ordered sets of height 1.

A graph G is called a circular arc graph when it is the intersection graph of a
family of arcs of a circle. Let &, denote the collection of all graphs with clique
covering number two which are not circular arc graphs but have the property that
the removal of any vertex leaves a circular arc graph. Also, let 3B, denote the
collection of all graphs with clique covering number two which have boxicity 3,
but have the property that the removal of any vertex leaves a subgraph with
boxicity 2.

For a graph G, we denote by G, the complement of G, ie., x Ly in G if and
only if x£y in G. Now let X be a partially ordered set of height one with
maximal elements a,, a,,...,a, and minimal elements b, b,,...,b,. We as-
sociate with X, graphs Gx and G¥%, each having

{au Azyee ey r"-':m}'l*-){bl! b2’ v ’bn}
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as vertex sets. In Gx and G%, the subgraphs induced by {a,, a,,...,a,} and
{b,, bs,....b,}are complete. In Gx we define a; L b; if and only if b; <a; while in
G% we define a;+ b, if and only if b;<a,.

Dually, for a graph G with vertex set{a,, a,, . . ., @} U{by, b, . . ., b,} for which
the subgraphs induced by {a,, a,,...,a,} and {b,, b,, ..., b,} are complete, we
denote by X the partially ordered set of height one for which G = Gx_. Among
the results established in [6] is the following theorem relating circular arc graphs
to partially ordered sets.

Theorem 4. Let X be a particlly ordered set of height one. Then X € P, if and only
if G¥e oA,

Now let G be a graph with vertex set {a,,a,,...,a,}U{b,, b,,...,b,} for
which the subgraphs induced by {a,, a,,...,a,} and {b,, b,,...,b,} are com-
plete. Suppose that Box (G) =2 and let F be an interval coordinatization of length
two for G. Since Box (G) =2, assume by symmetry, that for k = 1, 2 there exist
iis jr with 1<i, <m and 1<j, <n so that F(a, )(k)<<F(b,)(k). Clearly, we may
further assume that F(x)(k) is a subset of the open interval (0, 1) for each vertex x
of Gand k=1,2.

Now consider the function F' which assigns to each vertex x of G a pair
F'(x)(1), F'(x)(2) of closed intervals of R defined as follows; For i=1,2,...,m
and k=1,2, let F'(a,)(k)=[r, 1] where r is the right end point of F(a,)(k); for
j=1.2.....n and k=1,2, let F'(b)(k)=[0, 1] where [ is the left end point of
F(h){k). 1t follows that for k=1,2,i=1,2,...,m, and {=1,2,..., 1, we have
FlaY k)N F(b)k)#§ if and only if F'(b)k)<F'(a,)(k) and therefore, F' is an
interval representation of length two for the partially ordered set X,,. This proeess
is casily seen to be reversible and we have thus established the following theorem
relating rectangle graphs to elreular are graphs and partially ordered sets.

‘Theorem 8., Let X be a par:ially ordered set of height one. Then the following
statements dre equivalent.
i Xe®,,
(i Gye %ga
Ui Gfe o,

The reader Is referred to [6] where a eomplete determination of @, Is given.

8. Some related toples

We conclude this paper with some references to related papers. Flrst, we note
that the author and K.P. Bogart [4] have proved o eharacterlzation theorem for
inte val dimension which is unalogous to Theorem 3, For an Integer n=12, let §))
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denote the partially ordered set Y of height one for which G, = G,. Ther it
follows that for each n=2, if X is a partially ordered set having 2n +1 points,
then I Dim (X)=n if and only if X contains S°.

We also refer the reader to [1] where Feinberg has extended the concept of
boxicity to arcs on a circle by defining the circular dimension of a graph, D(G), as
the smallest positive integer n for which there exists a function F assigning to
each vertex x of G a sequence F(x)(1), F(x)(2),..., F(x)(n) of arcs on a circle so
that x Ly in G if and only if x#y and F(x)({)NF(y)(i)#0 for i=1,2,...,n.
Since D(G)<Box (G), we have the analogous inequality D(G)=<[|G|/2]. How-
ever, Feinberg observed that D(G,)=1 for all n=1. Feinberg constructed for
each n=1 a graph with 2" + n—1 vertices and circular dimension n and conjec-
tured that this family characterized graphs with maximum circular dimension. This
conjecture is incorrect, since it is straightforward to prove, using Erdos’ prob-
abilistic methods, that for large n, there exists a graph with n vertices whose
circular dimension exceeds n/(4logn). However, the general question of the
relative accuracy of D(G)<[|G|/2] is unanswered.

Finally, we mention the paper by Trotter and Harary [5], who defined the
interval number of a graph G, denoted i(G), as the smallest positive integer n for
which there exists a function F assigning to each vertex x of G a sequence
F(x)(1), F(x)(2),...,F(x)(n) of closed intervals of R so that distinct vertices x, y
of G are adjacent in G if and only if F(x)(i)NF(y)j)#y for some i,j with
I<i<n and 1<j=sn. Alternately, i(G) is the smallest n for which G is the
intersection graph of a family of sets whete each set is the uniont of n interve.s of
R. Trotter and Harary showed that the complete bipartite sraph K,,, ,, has interval
number {(mn + 1)/(m + n)}. :
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