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The rank (resp. dimension) of a poset P is the cardinality of a largest (resp. smallest) set of
linear orders such that its intersection is P and no proper subset has intersectior: P. Dimension
has been studied extensively. Rank was introduced recently by Maurer and Rabinovitch in [4],
where the rank of antichains was determined. In this paper we develop a general theory of
rank. The main result, loosely stated, is that to each noset P there corresponds a class of graphs
with easily described properties, and that the rank of P is the maximum number of edges in a
graph in this class.

1. Introduction

A partially ordered set (X, P) consists of a set of elements X, always finite in this
paper, and a binary, transitive, irreflexive relation P on X. For short, we speak of
the poset P, or just P. When (a, b) € P, we think of a as over b. A realizer L of Pis
aset {L,,L,,...,L,} of linear orders on X whose intersection is P, i.e., P=
NL={(a, b)|(e. b)e L for every L € L}. An early result of Szpilrain [9] implies
that every poset has a realizer. A realizer L of P is minimal if no proper subset of
L is also a realizer. The dimension of P, d(P), is the cardinality of a minimum
(smallest) a realizer. Dimension has been studied extensively and is generally hard
to compute; see [10] for many references. It is relatively easy to find a minimal
realizer for a given P, but not all minimal realizers are minimum. How big can a
minimal realizer be? This question prompted the first two authors to define r(P),
the rank of P, to be the cardinality of a maximum (largest) minimal realizer in [4].
There the rank of the antichain of n elements was determined, and the ranks of a
few other posets were announced.
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In this paper we develop a general theory of rank. This theory allows us to
determine rank for many more posets. Most of the concepts of the theory are
refinements of ideas in [4]. The key refined concept is that of a “critical digraph”
on X as vertex sct. The key additional idea is that of a “‘nonforcing” edge. Each
critical digrapis D of P is constructed from a realizer L, using nonforcing edges,
and the number of edges of D is always |L|. Moreover, D necessarily satisfies
certain easily stated graph-theoretical properties which depend on P but not L. In
important cases. these properties are also sufficient for D to be a critical digraph.
Specifically, the Main Theorem is: if D has the largest number of edges of a graph
meeting these properties, then D is a critical digraph and the number of edges is
the rank of P. The significance of this result is that one can compute r(P) by
examining digraphs; the explicit construction of realizers is entirely bypassed.

The purpose of this paper is to p.ove this Main Theorem and to give a few brief
but representative examples of its applications. Other applications and further
results in the theory of runk appear elsewhere [6,7]. Additional material is
available n the preliminary manuscript [5], which also gives an eariier version of
the material included here.

The proof of the Main Theorem is quite lengthy. Therefore, we organize the
matcrial as follows: First, in Section 2, we state the Main Theorem. Actually, we
state three different forms. Sections 3-5 provide the proof. Section 3 contains the
basic resuits on the central ideas of forcing and criticality. Section 4 is the proof of
a key result we call the Preparation Lemma. This result is stated at the beginning
of the section for easy reference. It is then straightforward, in Section 5, to prove
the various forms of the Main Theorem. In Section 6 we give the promised
applications, with indication of the further results which eppear elsewhere.
Specifically, we compute the rank of several classes of posets; we subsume the
results of Rabinoviich and Rival on rank of distributive lattices [8] under our
general theory; we give a counter-exaniple to a conjecture of Golumbic that rank
depends only on the comparability graph; and we characterize those poseis on n
clements which have the largest rank. It is possible to read the applications in
Section 6 immediately after Section 2.

Further notation and terminology. Let B(X)=B, for binary, denote
{ta.b)|a,be X, a# b}. Ordered pairs (a,r) are always in B. We will find it
convenient to interpret B as a digraph. Thus ae X is an element or a vertex
interchangeably, and (a. b) is a pair or a :lirected edge from a to b. A sequence
(a,.a,).(a,, a3),....(a,_,;, a,), where the a; are distinct and n =2, will therefore
be called a (directed) path. If the a; are distinct except that a, = a,, we nave a
(directed) cycle. If the a; are not known to be distinct, we have a (directed) walk.
We may abbreviate such sequences as a,---a,, and we will omit the word
“directed”, but in all cases it is understood that all edges are directed uniformly
from a, ! a,. By a largest (di)graph with some property, we always mean one with
the mes. edges. Similarly, for a digraph D, |D| is the number of edges.

For any S< B, Tr(S) denotes the transitive closure of S. Let I(P)= I be the set
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of incomparable pairs of P, i.e., all (a, b)e B with both (a, b}, (b, a)¢ P. For
(a,b)e I, Tr(PU(a, b)) is always a poset.

If P, Q are posets and P< Q, we say Q extends P. Unless otherwise indicated, P
and Q are defined on X. The poset induced on A < X by P is denoted P,, and is
called a subposet of P.

Let n denote a chain (linear order) on n elements. Let /i denote an antichain (P
empty). For any two posets (X, P), (Y, Q) with XNY =0, the join PO Q is the
pocat on X U'Y with pairs PUQU(X X Y).

«~ny set L of linear orders is a realizer of (L. When L is a minimal realizer of
ML, we say L is irredundant. The distinction between minimal and irredundant is
that a minimal L realizes a predetermined poset, usually P, whereas an irredun-
dant L need not. Even so, “minimal realizer of P’ and “irredundant realizer of
P mean the same thing, and are used interchangeably in our papers.

Throughout this paper, a path will always be R rather than P to avoid
confusion with P for poset. Families of orders will always be boldface L.

2. Main theorems

Definition. Given distinct pairs (a, b), (¢, d)e I(P), (a, b) forces (c, d) if (c, d)e
Tr(PU (a, b)). Call (a, b) unforced if no pair forces it. Call (a, b) nonforcing if it
forces no pair. Let N= N(P) be the set of nonforcing pairs of I(P).

Thus (a, b) forces {(c, d) iff either

(1) (c,a).1b,d)eP;

(2) c=a and (b,d)eP; or

(3) b=d and (a,c)eP.

We sometimes need to use this longer equivalent in proofs. Also, note that
(a, b)e I is nonforcing iff Tr(PU (a, b)) = PU(a, b).

It is easy to verify that forcing is a poset with ground set I, and that (a, b) forces
(c, d) iff (d, c) forces (b, a). Hence (a, b) is uniforced iff (b, a) is nonforcing.

The forcing relation and unforced pairs were introduced by Rabinovitch and
Rival [8]. In light of the duality between unforced and nonforcing puirs. it might
seem appropriate to foliow their lead and use the former only. However, we will
use the latter only. As we show in Section 3, it is N(P) which interacts nicely with
P. The unforced pairs do not. Of course, the unforced pairs do interact nicely with
P, the dual of P, but it is not natural to think in terms of P.

We now introduce the key graph-theoretical property, alluded to earlier, such
that graphs with this property are intimately related to realizers of P.

Definition. A digraph D < B is unipathic relaiive to P, abbreviated Up, if
v/henever there are two edge-disjoint paths from a to b in D, then (a, b)e P.
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For instance, if P=#, to be Up is simply to be unipathic.
Note: we do not consider single vertices to be null paths; in particular, a U,
graph may have cycles.

Main Theorem (Form 1). Let P be a poset which is not a subposet of any n@®3® m.
Let N be the set of nonforcing edges for P. Then the rank of P is the largest number
of edges in any acyclic Up subgraph of N.

We call subposets of n€D3@m rank degenerate.

Main Theorem (Form 2). Let P Le any nonlinear poset. Then r(P) is the largest
number of edges in any subgraph of N which is either a cycle or is acyclic Up.

Form 2 is appcaliiig, since there are no exceptional posets, except linear orders,
for which N=# but r= 1. However, Form 2 requires looking at a larger class of
graphs to cover what is after ail a very small and well-behaved set of exceptions.
Form 1 also has the advantage that it leads to Form 3. Namely, although N can
have many cycles, when P is not rank degenerate one can restrict attention to a
subset of N so as to destroy all cycles and still compute the rank.

Definition. Let L be any linear order on X. L need not extend P. As usual, let
N = M(P). Define N* = N*(P)={(a, b)e N|either (b, a)¢ N or (a, b)e L}.

Later we will show easily that N* is acyclic and independent of L (up to graph
isomorphism).

Main Theorem (Form 3). Let P be any poset which is not rank degenerate. Then
r(P) is the largest number of edges in any Up subgraph of N*.

Although there will be little use of Form 3 in this paper, Form 3 is nonetheless
the motivating force behind the development of still further structure and further
applications [6].

3. Criticality and nonforcing

In this section we first give the basic definitions and results concerning critical
edges and critical digraphs. Then we give the main result abo.i the interaction of
the poset P and the nonfercing edges N. The principal result of this section is that
every critical digraph of 2 is either acyclic Up or a cycle.

Definiiion. Edge (a, b) is critical for Le L if (a, b)¢ L but for ..ery L'e L—-L,
(a,b)e L'. That is, L alone excludes (a, b) from (L.
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Lemma 3.1. Let L be a minimal realizer of (X, P), where |X|=2. Then for each
LeL, there is at least one edge which is critical for L. Moreover, distinct linear
orders in L have disjoint sets of critical edges.

.

Lemma 3.2. Let L be a minimal realizer of P. Assume |L|=2, i.e., P is nonlinear.
Then every L € L has at least one critical edge in N.

Proof. By Lcmma 3.1, any L € L has a critical edge (a, b). Since |L|:=2, (a, b)e I.
If (a, b)e I - N, choose any (c, d)e Tr(PU(a, b)) N N. For each L'e L — L, we have
(c,d)eL’. But (c,d)& P= NL. Hence (c,d)€ L. Thus (c, d) is criticai for L.

Corollary 3.3. If P is nonlinear

2$F(P)$iAV‘. {1)
Definition. Let L be a minimal realizer for a nonlinear P. A critical digraph of L,
abbreviated CD, is a subgraph of N with one edge for each L € L and such that
each edge is critical for its corresponding L. Digraph D is a CD of P if it is a TD of
some minimal realizer of P.

Note: for an edge to be in a CD it must be in N. This is a refinement of the
definition of CD in [4]. However, for the edge simply to be critical for some L it
need not be in N. The reason for allowing this is that we will often take a subset
N'< N(P) and create an irredundant set L for which each edge of N’ is zritical as
defined. We will want to refer to the edge in N’ which is critical for a given Le L
and vice versa. Yet at that stage we will not know, and may never know, if
L = P. If not, then it may be that N'#Z N(NL) so that N’ is not a CD for L.

The key point about CDs is that the cardinality of L is the same as the number
of edges in any of its CDs. Thus, whenever P is not linear, r(?) is the cardinality
of any largest CD of P; d(P) is the cardinality of any smaiiest CD. The ideal
situation would be to characterize CD subgraphs of N graph-theoretically.
Although we have not done this, we come close enough to handle rank. We give
necessary conditions to be a CD which, for maximal graphs with these properties,
are also sufficient.

Theorem 3.4. Suppose D is a CD for a minimal realizer L of P. Then D is either
acyclic Up or a cycle.

Proof. For (a, b) e D, let L(a, b) be the linear order in L not containing (a, b). Since
D—(a, b)< L(a, b} for each (a, b), D can contain a cycle C only if D = C. Now
suppose R,, R, are edge-disjoint paths from a to b in D. For any (¢, d)eR,,

(a, b)e Tr(PURy)<= L(c, d).
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For any (c¢’,d')e D—R,,
(a,b)e Tr(PUR,)< L(c', d").
Thus (a,b)e (VL =P. So D is Up.

When P is an antichain, it is easy to find cyclic CDs, acyclic Up CDs, and an L
with many different CDs. Also, the converse of Theorem 3.4 is false. If D consists
of k vertex-disjoint edges, D is acyclic Up whatever P is. But if {P)>k, D
cannot be a CD. Posets with high dimension and mary vertex disjoint edges in N
are easv to construct.

The proof of Theorem 3.4 does not use the fact that D < N. Also, by essentially
the same argument, it is easy to give necessary conditions on a CD D which seem
much stronger. Specifically,

(i) if PUD contains a cycle, all es of D are on it.
(Up) if PU D contains two paths fro o b with no D edges in common, then
(a,b)eP.

Indeed, we will use (i) and (Uj) implicitly in constructing realizers from subsets
of N in Section 4 (see Lemma 4.2). Fortunately, for D< N, these seemingly
stronger conditions are not stronger. This is implicit in Lemmas 3.6 and 3.7
below.

Lemma 3.5. Suppose R = a,a, - - - a, is a walk in PU N. Suppose at least one edge
is in P. Then (a,,a,)€P.

Proof. We induct on the number k of edges of N in R. For k = 0, the result holds
since P is transitive. For k=1, recall that (a, b)e N means Tr(PU(a, b))=
PU(a, b). Since PNR#@ and P contains no cycles, (a,, a,) € P. Finally, assume
the lemma for k <m:. If R has m edges from N, pick a subwalk g;a;., - - - q; which
has at least one edge from P and exactly one from N. Then (a;q;) € P. Thus the
walk a,a; - - - aq; - - - a, satisfies the Fypotheses for k =m—1.

Lemma 3.6. For any D< N, if C is a cycle in PU D, then in fact C< D.
Proof. If not, b’ the previous lemma # would contain pairs of the form (a, a).

Lemma 3.7. For any D < N, the condition Up (above Lemma 3.5) is equivaient io
Up.

Proof Clearly Up implies Up. As for the converse, suppose R, R, are paths of
PUL satisfying the hypotheses of Ujp. If either path contains an edge of P,
(a, b)e P by Lemma 3.5 and we are dene. So suppose R,, R, < D. The hypothesis
of Up then says that R, R, are edge-disjoint. Thus by Up, (a, b)e P.
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Note: if we weakened Up by replacing the conclusion (a, b) € P with (a, b)# N,
then for subsets D of N the weakened U, would still be equivalent to the original
U; and hence to Uj. The proof appears as part of the first paragraph of the proof
of the next lemma. Since acyclicity and U, are essentially the only properties we
will look for, and since we will only look for them in subsets o N, we could switch
to the weakened form of Up. It has the advantage that, once N is found, we could
completely ignore P. However, we choose to continue with the original definition
of Up.

Lemma 3.8. Tr(PUN)=PUN, except that the left-hand side will also include
those pairs (a, a) such that N contains cycles through a. Moreover, if there is a path
a,a,-+-a, in N, and (a,, a,)€P, then for all i,j with 1<i<j=<n, we have
(a, a))eN.

Proof. By Lemma 3.5, Tr(PU N)=PUTr(N). So to prove the first sentence of
the lemma, consider any path R from a to b in N. If (a, b)€ P, then either
(b,a)eP, or (a,b)eI-N, or we are done. In the first case, the cycle R'J(b, a)
violates Lemma 3.6. In the second case, Tr(PU(a, b)) includes some (c, 4)& N.
Consequently, there is a walk from ¢ to d in PU R using at least one edge from P.
By Lemma 3.5, (c, d) € P, a contradiction.

As for the second sentence of the lemma, we have just shown that all
(a;, ;)€ PUN. If some (a;, a;) were in P, then applying Lemma 3.5 to the path
a.a,* - aq - a, we get (a;, a,) € P, contradicting the hypothesis.

The subset A< X is said to have duplicate holdings if for all a,a’e A and
xeX, (a,x)e P& (a', x)e P, and (x, a)e P& (x, a’) e P. 1t follows that P|, is an
antichain and that, for all xe X— A, (a,x)eI&(a’,x)elL

Lemma 3.9. For any A < X with |A|=2, the following are equivalent:

(1) A has duplicate holdings.
(2) Nla is a complete two-way digraph.
(3) N contains a cycle whose vertex set is A.

In particular, the maximal two-way complete subgraphs of N are vertex-disjoint.
Proof. (1)&(2) is a direct application of the definitions. (2)=> (3) is im-
mediate. As for (3)=>(2), let a,a, - - - a,a, be the cycle. No (a; ;) is in P by

Lemma 3.6. Thus they are all in N by Lemma 3.8. The last statement in the
lemma follows because duplicate holdings provide an equivalence relation on X.

4. The preparation lemma

Theorem 4.1 (The Preparation Lemma). Suppose N = N(P) is neither enpty nor a
2-cycle. Let N' be any maximal acyclic Up subgraph of N, that is, aiy proper



304 S.B. Maurer, I. Rabinovitch and W.T. Trotter Jr.

supergraph of N' in N either contains a cycle or violates Up. Then N' is a critical
diagraph of P.

Given this theorem and Theorem 3.4, it should be clear that the Main
Theorems are noi far away. Incdeed, if the Preparation Lemma also asserted that
every cycle in iV is a CD, or even that just some largest cycle in N is also a CD,
then Form 2 of the Main Theorem would be immediate. Unfortunately, these
strengthenings can be false, as we show in the next section.

The proof of the Preparation Lemma is the rest o: this section. The proof
involves two steps:

(1) Show that the assumptions imply the existence of some irredundant L
containing |N’| linear orders, all extending P, such that each edge of N’ is critical
for one [ € L. This step is easy; in fact, the use of N instead of I is only a
simplifying convenience here. Necessary and sufficient conditions for a set N N
(or D<) to allow this step to work are implicit in the proof of Lemma 4.3 (and
the remarks before Lemima 3.5).

(2) Show that the assumptions imply that one such L realizes P. This step is
harder. Also, the use of N here seems to be crucial.

Definition. For N'< N ana (a, b)e N', let N'(a, b)=PUN'U(b, a)—(a, b).

Lemma 4.2, If N’ is a CD of a minimal realizer L of P, then each N'(a, b) is
acyclic. Conversely, if each N'(a, b) is acyclic, then there is an irredundant L with
|N'| linear orders, all extending P, such that each edge of N' is critical for one L € L.

Proof. First assertion: if (a, b) is critical for L € L, then N'(a, b)< L by definition
of a CD. Thus N'(a, b) is acyclic. Converse: any acyclic set is contained in a linear
order. For now, let L(a, b) be any linear order extending N'(a, b). Since P<
N'(a, b), L{a, b) cxtends P. Let L ={L(a, b)!(a, b)e N'}. L(a, b) is the only order
in L which excludes (a, b). Thus L is irredundant and (a, b) is critical for L(a, b*
in L.

Lemma 4.3. If N'c N is either acyclic Up or a cycle, then for eack (a, b)e N',
N'(a, b) is acyclic.

Froof. Suppose C were a cycle in N'(a, b). If (b, a)¢C, then CcPUN’, so
C< N’ by Lemma 3.6. Hence CU(a, 5)< N', so N' is neither acyclic nor a cycle.
If (b, a):C, then PUN’ contains twe: edge-disjoint paths from a to b, namely

(a. b) and C—~(b, a). Since N' is Up, This conciusion about PU N’ violates lemma
3.7.

"Me¢ now treat Step (2).
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Lemma 4.4. Suppose L is a set of linear extensions of £, and each edge of N'= N is
critical for some Le L. Then (\L=P iff (NL)N(N-N')=0.

Procf. “Only if” is obvious. For “if” we need to show that (NL)N(PUI) =g,
where P is the dual of P. (NL)NP=0 because P< (L and (L is a poset.
Suppose (a, b)e (M L)N(I- N). We know that some (c, d)€ N is forced by (a, b).
Hence, for each LeL, (c,d)eTr(PU(a, b)) <L, that is, (c,d)e L. Since we
assume ((NL)N(N—-N')=#, (c,d)e N'. But (c, d) is not in the L for which (c, d)
is critical, a contradiction. Thus (NL)NI=4.

The following result is a special case of a lemma of Bogart [1]. We omit the
straightforward proof.

Lemma 4.5. Let Q be a poset on X. For x € X, define Q(x)={(y, x)|(y, x)€ I(Q)}.
Then for any (b, a)e Q, there exists a linear order L(Q, a, b) which extends

QU Q(a)U Q(b).

Definition. Let N'(a, b) be as before and suppose it is acyclic. Let Q=
Tr(N'(a, b)) @ P. Then Ly(a, b) shall denote any linear order L(Q, a, b) as in the
previous lemma.

Lemma 4.6. Suppose N' is an acyclic Up subgraph of N. Suppose N' contains a
path a,a,---a, with n>2. Suppose further thar (a,,a,)¢P. Then (a, a;)e
LO(al’ a2) and (ah an)E Lo(an—h an)-

Proof. To show that (a,, a,)eLy(a,, a,), we must show that (a,,a,)€Q=
Tr(N'{a,, a,)); for then (a,, a,) is in Q or I(Q), and in either case, for different
reasons, (a,, a,) € Ly(a,, a,), (In fact, the latter case holds.) So suppose there were
a path R from a, to a, in N'(a;, a,). Clearly, (a,, a,)¢ R, and it is given that
(ay, a,)€ P. Hence, by Lemma 3.5, R< N'—(a,, a,). Let a, be the first vertex
among a,, a;, . . . , a, which R reaches after leaving a,. Let R’ be the segment of R
from a, to a,. Then R’ and a,a, - - - a, are disjoint paths in N’ from a, to a,.
Since N’ is Up, (a,, a )€ P. By Lemma 3.5, {a,, a,)€ P, a contradiction.

Similarly, to prove that (a,, a,)) € L((a, _;. a,,), suppose there were a path R from
a, toa,in N'(a,_,, a,). If (a,, a,_,) ¢ R, then a, - - - a, followed by R is a cycle in
PUN', or contains one. if (a,.a,_,)<R, then a,---a, , followed by
R —(a,, a,_,) is a cycle in PUN’, or contains onc (here we use n >2). Eithei way,
N’ contains a cycle by Lemma 3.6, contradicting the first senitence of this lemma.

Proof of the Preparation Lemma. We show that {L,(a, b)|(a, b)€ N'} is a minimal
realizer of P with N’ as a CD. Given the previous lemmas, it suffices to show that
for each (c,d)e N— N', there is some (a, b)& N’ such that (c, d) € Ly(a, b).
N'U(c, d) either violates U, or it contains a cycle. Suppose it contains cycle C.
Then (c, d) € C. If there exists an (a, b)e N'— C, ihen it is easy to see that (c, d) is
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not contained in any linear extension of N'(a, b), so (c, d) € Ly(a, b). If N'cC, we
argue that |[N'|=2. Otherwise N’ would be a single edge, but since IN|=2 by
inequality (1), and N is not a 2-cycle by hypothesis, a single edge cannot be
maximal acyclic Up. Consequently, N'c C implies that N' is a path a, - - - a,, with
n>2 and (¢, d)=(a,, a,). Hence (c, d)€ Ly(a,_;, a,) by Lemma 4.6.

Suppose N'U(c, d) violates Up. Thus N'U(c, d) contains two edge-disjoint
paths between some x, y, where (x, y)€ 2. One of these paths, call it R, is entirely
in N'. Write R=a, - - - a,, where x=a,, y = a,. If n=2, that is, i (x, y)€ N', then
we consider the other path to conclude that (c, d) is not in any linear extension of
N'(x,y). if n>2, (x,y)€ Ly(a,, a,) by Lemma 4.6. Therefore (c, d)€ Lo(a,, a)
either.

§. Proof of the main theorem

Form 1. Define a poset to be rank degenerate if it is linear or if every largest
CD is a cycle. Recall that if D is a CD of L, then |D|=|L|. Thus Theorem 3.4 and
the Preparation Lemma tell us immediately that the conclusion of Form 1 holds
for every poset which is not rank degenerate. (Note that the one nonlinear
exception to the Preparation Lemma, N a 2-cycie, can only arise from a rank
degenerate P.) It happens that rank degenerate posets, as defined here, are
precisely the subposets of n@®3@m excluded in Form 1 and already called rank
degenerate there. That the subposets of n®3@®m are all rank degenerate as
defined Yere is straightforward to check directly. As for the converse, let k be the
length of a largest CD cycle C of a rank degenerate posct (X, P). Let A be the
vertex set of C. By Lemma 3.9, all edges between vertices of A are in N. Suppose
k =4. Partition A into A,, A, with [3k] and |3k| elements, and let N'=
{(b, c)|be A,, c€ A,}. note |[N'|= |k?] = k. Moreover, N' is acyclic Up, since N’
contains no consecutive edges. Thus some acyclic Up supergraph of N' is a CD by
the Preparation Lemma, contradicting rank degeneracy. Thus k=<3. Moreover,
there cannot be any other edge e€ N except those between elements of A. For
otherwise pick any e’ < C and consider C+e—e'. This is acyclic Up, so again the
Preparation Lemma says that some supergraph violates rank degeneracy. Thus,
except for A, P is linear. That is, P is a subposet of n€3@®m.

It is equally easy to characterize thos:: posets such that some largest CD is a
cycle [5]

Form 2. It suffices to show that, for any P, no cycle in N has more edges than
the largest CD. If every cycle in N were a CD, this would be immediate.
However, this is false. Suppose A is the largest set with duplicate holdings in
(X. P) i nd suppose |A| < d(P). Then by L.emma 3.9, every set of 2 or more points
in A forms a cycle, but no cycle in N is a CD. Moreover, it is easy to construct P
with |A| large but less than d(P).
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Fortunately, we need only that every cycle in N as large as some CD is itseif a
CD.

Lemma S.1. LetC=a, - - - a, be any cycle in N with n=d(P). Then C is a CD of
P.

Proof. Let A={qa,,...,a,}. Let X'=(X~- A)U{a,}. For any P and any X’'< X. it
is an easy standard result that d(P|x)<d(P). So let m = d(P|x.). (In fact, in the
case at hand, m =d(P) except when m =1, in which case d(P)=2.) Let L=
{L.....L,} be a set of linear orders on X' which realize P|y.. For i=
1,2,..., m—1 we will extend L; to a linear order L! on X, and we will extend L,,
to linear orders L}, L/, .,..., L, on X, so that L'={L/,..., L’} realizes P with
CasCD. Fori=1,...,n,let L] be the unique linear ordsr on A which extends
CU(a;,1, a;))—(a;, a;1y). L is constructed by inserting A with order L' in place of
a, in L; (or in L, if i>m). It is easily seen that (\L'= P, and that (a, q;,,) is
critical for L/. Since C< N by hypothesis, C is 2 CD for L'.

Form 3. First we show that for any P and any acyclic U, subgraph N’ of N,
there is a Up subgraph of N* isomorphic to N'. Then, by Form 1. for posets
which are not rank degenerate, we need only find the largest acyclic U, suigraph
of N*. Seccnd we show that N* is acyclic. Thus we need only find the largest U,
subgaph of N*.

Let L be the arbitrary iinear ordering of X used to define N*. Let L' be any
linear extension of PU N'; such exists by Lemma 3.8, since N' is acyclic. For each
equivalence class A <X of points with duplicate holdings under P, L and L'
impose linear orders on A. Define f: X — X as the unique map such that for each
such A, and i=1,2,...,f maps the ith element irom the top of A under L' to
the ith from the top under L. Clearly f is an automorphism of P, so the induced
map on N is also an automorphism, one which maps Up subgraphs to Up subgraphs.
Finally, note that f(N')< N*. (In fact, if N** is the “version” of N* obiained by
using L’ in the definition instead of L, f induces an isomorphism of N** and N*.)

For the second claim, set N¥={(a, b)e N*|(b, a)e N}. By definition of V¥,
N#¥c L, so N¥ is acyclic. But by Lemma 3.9, any cycle in N¥ is entirely in N¥. so
N* is acyclic.

6. Sampie applications

(1) Computation of some ranks. We preface our examples with some useful
facts.

Corollary 6.1. If P is nonlinear, r(P)=|N| iff N is either a cycle or acyclic Up.

Proof. Immediate from the Main Theorem, Form 2,
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It might seem an unlikely event that r(P)=|N|, but in fact it happens in a
number of interesting posets.

For the next definition and theorem, recall that we have chosen (a, b)e P to
mean that a is over b.

Definition. Let I,, = I(P) be defined as
{(a, b)e I(P)| b minimal in P, a maximal and not minimal in P}.

Unless P contains isolated elements, incomparable to everything else, we need
merely require of a that it be maximal in P.

Theorem 6.2. I, is always an acyclic Up subgraph of N. Thus r(P)=|L,,|.

Proof. No (a, b)e I, is on any path whose edges are in P, by the definition of
maximal and minimal. So I,, = N. There are no paths with more than one edge in
1,, by definition. So I, is acyclic and Up. Now use the main Theorem, Form 2 (if
N =@, our present result is trivial).

Corollary 6.3. I, = N iff

forall (a,b)el, Te(PU(a,b)NI, #0. 2)
Thus, if (2) holds, r(P)=|1,|.
Proof. For any (a, b)e I, Tr(PU(a, b)) N N# @. Thus I, = N implies (2). If I, # N,

pick (a,b)e N—1,. Then Tr(PU(a, b))= PU(a, b), which is disjoint from I,
contradicting (2). If I,, = N, then r(P)=|I,,| follows from the previous theorem.

There is much more that can be said about necessary conditions and sufficient
conditions for r(P) to equal |I,,| (see [5)).

Boolean Posets. Let X be an n-set. Let S, and § represent the collections of all
k-subsets and all subsets of X. Let S, ; = S, US;. Denote by B,, B, . and B, ; the
partial orders induced by set inclusion on S, S,, and S, ; respectively.

Theorem 6.4. Supvose 0<j<k<n. Let S’ be any subset of S such that S, ;< S’
and S;NS'=9 forall i<jand all i> k. Let B’ be the poset of set inclusion on S’

en ,(B’)=(;)[(:)—(::;)]. 3)

In particular, if S'=J/L,S.;. where 0<j=k(1)<k(2)< -+ <k(m)=k<n,
then B’ satisfies (3).

Proof. Clearly §, is the set of all minimal elements in B’ and S, is the set of all
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maximal elements. Since every j-set is included in (%~} k-sets, the quantity on the
right of (3) is just |, |. It is enough now to verify condition (2) of Corollary 6.3.
Suppose Y, Ze S’ end (Y, Z)e I(B’). Then there is an element ze Z- Y. Let Z'
be any j-subset of Z contzining 2. Let Y’ be any k-superset of Y not containing
z. Since 0<j and k<n, Y’ and Z' exist. Moreover there are in S’. Thus
(Y',Z')eTr(B'U(Y, Z))NI,,.

When §'=S, , this result was announced in [4]. For every B', d(B')<n since
d(B,) = n (see [3]). Thus (3) once again indicates how much greater rank can be
than dimension. However, when j=1 and k=n-1, (3) gives r(B, ,_, ) =n. It is
also well-known that d(B,, ,_. ;) = n (see [3]). Indeed, we have now characterized
all posets for which rank equals dimension [7]. They are essentially the subposets
of B, containing B, ,_, ;, except that elements may be stretched into chains.

Rank of joins. Recall the definition of the join from Section 1.

Theorem 6.5. Suppose P=P,@ - - - ®P, where P is not rank degenerate and k of
the P; are rank degenerate. Then

i

r(P)= Y r(P)~k.

i=1

Proof. Clearly, N(P)=|JN(P,) and the union is disjoint. Since P is not rank
degenerate, we seek the largest acyclic Up subgraph of N(P). Clearly, N'< N(P)
is acyclic Up iff each piece N'NN(P,) is. Thus if P, is not rank degencrate, we
may pick r(P,) edges from N(P,) for N'. Ii P, is rank degenerate, it is easily seen
that we may pick only a path of r(P,) —1'edges from N(P,) for N'.

This result contrasts with the fact d(P)=max{d(P,)}.

A weak crder, a concept found in the literature [2], may be defined as any poset
of the form m,® - - - ®m,. In [4] it was proved that r(m)= |3m?] if m=4, and
rim)=m if m=1,2,3. The cases m=1, 2, 3 are also the cases where m is rank
degenerate. Thus Theorem 6.5 immediately gives.

Corollary 6.6. If the weak order m,@® - - - @m, is not rank degenerate, then its
rank is 3.f(m;), where f(m)=|3m?] if m=4 and f(m)=m—-1 if m=1,2,3.

The join is a special case of poset composition. For partial results on composi-
tion and rank, see [5].

Rank of distributive lattices. In [8], Rabinovitch and Rival derive a several part
formula for the rank of an arbitrary distributive lattice D. They use (indeed
introduce) the idea of forcing, but then their argument involves decomposing the
lattice into linearly nondecomposable parts, and a lattice characterization of when
linear extensions of D may contain exactly one unforced edge. By using the
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general results of our theory, we can shorten both the derivation and the
statement of their result.

For xe D, let f(x) =V {y|x% y}. It is well-known that, for a distributive lattice,
if f is restricted to the set J(D) of join irreducible elements, then f is an order
isomorphism between J(D) and the mer irreducible elements M(D). Also, for
x € J(DY, f(x) is the unique maximal element of D not equal or above x. From
this, it is not hard to show that

N=N(D)={(f(x), x)| xe J(D) and f(x)% x}.

So far, all this is explicit or implicit in [8].

Suppose x#y in D have the property that every other ze€ D is either above
both or below both, If x and y are comparable, call {x, y} a dividing pair. If they
arc incomparable, call {x, y} a complementary pair. Then it is also not hard to
show the following.

(1) The pairs {x, f(x)} with x e J(D) and f(x) <x are precisely the dividing pairs
of D. '

(2) Every cycle in N is a 2-cycle, and the pairs of vertices in such 2-cycles are
precisely the complementary pairs.

(3) Since cach vertex x has at most one edge of N exiting from it, N is Up,.

Thus, if D is rank degenerate, D is a subposet of some m@®2@®n, with rank 1 if
D is lincar, 2 otherwise. If D is not rank degenerate, then the largest acyclic Up,

subgraph of N is obtained by removing one edge from each cycle, i.e., N* is Up,
Summarizing, we have

Theorem 6.7. Let D be a finite distributive lattice which is not rank degenerate. Let
m, n, p respeciively be the number of join irreducible elements, dividing pairs, and
co:uplementary pairs. Then r(D)=m —n— p.

This is equivalent to the main Theorem 2 in [8].

Rank and Turan type preblems. Consider the poset (X(n, m), P(n, m)) with
Xin.m)={1,2,....n} and (}, j)e P(n, m) iff i=j+m. We were led to this class
through the subclass P(2n, ), which arose naturally as the class of height one
posets which are as far as possible from satisfying a certain condition (omitted
here) for r(P) to equal |I,|. Not surprisingly, r(P(n, m)) is fairly difficult to
compute, even with the machinery developed here. What is surprising is that both
the problem and the form of the soluticn can be viewed as a generalization of
Turan’s theorem on largest k-clique free subgraphs of K, (sece [12]). The
evaluation of r(P(n, m)) will appear elsewhere [6], but we now briefly suggest the
connection to the Turan problem.

Consider P=P(n,n)=#. if P is not rank degenerate (n:=4), we may pass
immediately to N*, which is a linearlv directed K,. A small part of the U,
conditicn for N'< N* is that N’ does not contain triangles. Nonetheless, the largest
graphs V' satisfying U, and the largest with no triangles are the same: complete
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bipartite subgraphs with |[3n] and [in] vertices on the two sides. (For the U,

nrahlans hhara Aiennties ermsriond Alhmncn dlaa Lfoo.oal 24l oo o gezeime

pPLuowliil, Wiici¢ aireciion LUUIIID, WC must LuUUbC lllc Ulpdl 110N SO dll arrows
point to the same side.) This observation for P=0 goes back to [4] and will be
used again later.

It is possible to use the material developed in Sections 2-5 to formulate the
problem of computing the rank of P(n, m) as an extremal problem which is clearly
a generalization of the Turan problem. In [6], the authors solve this extremal
problem and characterize the extremal graphs. As is the case with Turan’s
problem, the extremal graphs are complete multipartite graphs. However, in our
problem, the part sizes need not be uniform.

(2) Disproof of a conjecture on rank and the comparability graph. The compara-
bility graph of (X, P) is the set of undirected edges ab such that either (a, b) or
{b, @) is in P. Different posets on X can have the same comparability graph, bui
surprisingly, they all have the same dimension [11]. Indecd, all have the same
nuniber of linear extensions.

M. Golumbic conjectured to us orally that all posets with the same comparabil-
ity graph also have the same rank. However, this is false. Let P, be obtained by
putting n incomparable elements under a single additional element. For conveni-
ence below, take n odd =3. For any posets (X, P), (Y, Q) with XNY =4, let
PU Q denote the poset (XU Y, PUQ). Let P be the dual of P. Consider P, UP,
and P,UP,. Clearly they have the same comparability graph and tiie same
dimension, 2. Since neither is rank degenerate, we need only consider N¥(P, U
P,), which is the vertex-disjoint union of two complete linearly directed graphs on
n+ 1 vertices each, and N*(P, U B,), which is the vertex-disjoint union of an edge
and a linearly directed K,,. Using the comments about Turan’s theorem in the
previous application, one gets that r(P, UP,)=%4(n+1)> and r(P,UP,)=n?+1.
What is true, by the Main Theorems and the remarks after Lemma 3.7, is that
r(P) depends only on N.

(3) Posets of Maximum rank. Let n=|X|=2. Define M(n)=max{{in?|, n}.
Implicit in [4] is the fact that for any poset (X, P), r(P)< M(n). The proof is that n
is a bound on the number of edges in a cycle on X, and |3n?] is a bound on the
number of edges in an acyclic U, subgraph on X by Turan’s theorem. Nofe that
M(n)=n for n<4, and M(n) = |in?] for n=4.

Let us say P is of maximum rank if r(P) = M(n). All antichains are of maximum
rank [4].

Theorem 6.8. For n= 2,3, the antichain ii is the only poset of maximum rank. For
i=4, (X, P) is of maximum rank iff P is of the following form: (a, b)e Piffac W,
be Z, where Y, Z, W is a partition of X, and | Y|= [in] or [3n]. W= is allowed.

This means that a maximum rank n-element poset can have up to {gn” edges,
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more than § the edges of any n-element poset. However, note that all maximum
rank posets have dimension 2.

Proof. All posets described in the theorem have maximum rank: if n<4 or
W=, P is an antichain. Otherwise N(P)= N, UN,, where N, is a 2-way
complete digraph on Y and N, is a bipartite graph with bipartition ZUW, Y
and with all edges directed from W or to Z. Clearly N, is acyclic U, with M(n)
edges, so r(P)= M(n).

Conversely, suppose (X, P) has maximum rank. A cyclic CD on the n-set X can
have M(n) edges iff it is a Hamilton cycle and n=2, 3, 4. By Lemma 3.9, P must
be an antichain. So suppose every CD N’ with M(n) edges is acyclic Up. N’ must
be triangle free, so by Turan’s theorem, N' is a complete bipartite graph with |3n]
and [}n] vertices in the two parts, and n=4.

We must determine how the edges of N’ are directed. If they all face from the
same side (0 the other, call the receiving side Z, the sending side Y, and set
W=46. If the edges are not all uniformly directed, there must exist vertices a, b, ¢
with (a, b), (c, a)e N'. Let the side of N’ containing a be called Y and define

Z={xe X|(a,x)e N}, W={xeX|(x,a)ecN'}.

Henceforth, y, z, w are always in Y, Z, W respectively. Clearly Z, W partition
X ~-Y. We claim that every edge between W and Y goes from W and every edge
between .Z and Y goes to Z. Suppose not. Then either some (z, y) or some (y, w)
is in N'. We disprove the first possibility; the second is similar. Clearly y# a. Thus
there is in N’ a path R = cazy. Since N’ is complete bipartite, either (y, ¢) or (c, y)
is in N’. In the former case RU(y, ¢) would form a cycle, but N’ is assumed
acyclic . in the latter case, R and (c, y) are edge-disjoint paths from c to y,
violating Up whatever P is. This proves the claim.

We can now show that the conditions in the theorem on P when n=4 are
necessar:. First, P|y = P|, = P}y, =9. For instance, if some (y, y’) were in P, the
path yy’'z would vivlate Lemmaz 3.5 for any 2. Likewise, if (w, w’) or (z, z') were
in P, then the path ww’y, or yzz’, would violate Lemma 3.5 for any y. (Note:
since n >4, both Y and Z are non-empty.) Next, every edge of the form (w, z) is
in P. This is because | Y|=2, so between each pair w, z there are two edge-disjoint
paths wyz and wy’z in N'. Since N’ is Up, (W, z)e P. The only pairs not yet
considered for P are of the form (z, w), which cannot be in P since P must be
acyclic.
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