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The rank (resp. dimension) of a poset P is the cardinality of a largest (resp. smallest) set of 
linear orders such that its intersection is P and no proper subset has intersectior: P. Dimension 
has been studied extensively. Rank was introduced recently by Maurer and Rabinovitch in [4], 

where the rank of antichains was determined. In this paper we develop a general theory of 
rank. The main result, loosely stated, is that to each poset P there corresponds a clas\ of graphs 
with easily described properties, and that the rank of P is the maximum number of edges in a 
graph in this class. 

1. Introduction 

A partially ordered se? (X, P) consists of a set of elements X, always finite in this 
paper, and a binary, transitive, irreflexive relation P on X. For short, we speak of 
the pose? P, or just P. When (a, 6) E P, we think of a as over 6. A realizer L of P is 
a set {L,, Lz, . . . , L,} of linear orders on X whose intersection is P, i.e., P = 
nL = {(a, b) 1 (a, 6) E L for every L E I,). An early result of Szpilrai*a [9] implies 
that every poset has a realizer. A realizer E of P is minimal if no proper subset of 
L is also a rea!izer. The dimension of P, d(P), is the cardinality of a minimum 
(smallest) a realizer. Dimension has been studied extensively and is generally hard 
to compute; see [lo] for many references. It is relatively easy to find a minimal 
realizer for a given P, but not all minimal realizers are minimum. How big can a 
minimal realizer be? This question prompted the first two authors to define r(P), 
the rwk of P, to be the cardinality of a maximum (largest) minimal reali.zer in [4]. 
There the rank of the aqtichain of y1 elements was determined, and the ranks of a 
few other posets were announced. 
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In this paper we develop a general theory of rank. This theory allows US to 

determine rank for many more posets. Most of the concepts of the theory are 
refinements of ideas in [4]. The key refined concept is that of a “critical digraph” 
on X as vertex I;;c;t. The key additional idea is that of a “nonforcing” edge. Each 
critical digraph D of P is constructed from a realizer I+ using nonforcing edges, 
and the number of edges of II is always lI,l. Moreover, D necessarily satisfies 
certain easily stated graph-theoretical properties which depend on P but not x1. In 
important cases, these properties are also sufficient for D to be a critical digraph. 
Specifically, the Masn Theorem is: if D has the largest number of edges of a graph 
meeting these properties, then D is a critical digraph and the number of edges is 
the rank of P. The significance of this result is that one can compute r(P) by 
examining digraphs; the explicit construction of realizers is entirely bypassed. 

The purpose of this paper is to plove this Main Theorem and to give a few brief 
but representative examples of its applications. Other applications and further 
results in tl,e thecry of r;lnh appear elsewhere [6,7]. Additional material is 
available rn the preliminary manuscript [SJ, which also gives an earher version of 
the material included here. 

The proof of the Main Theorem is quite lengthy. Therefore, we organize the 
material as follows; First, in Section 2, we state the Main Theorem. Actually, we 
state three different forms. Sections 3-S provide the proof. Section 3 contains the 
basic resuPts on the central ideas of forcing and criticality. Section 4 is the proof of 

a key result we call the Preparation Lemma. This result is stated at the beginning 
of the section for easy reference. It is then straightforward, in Section 5, to prove 
the various forms of the Main Theorem. In Section 6 we give the promised 
applications, with indication of the further results which r-ppear elsewhere. 
SpcciFca!!y, we compute the rank of several classes of posets; we subsume the 
results of Rabinovitch and Rival on rank of distributive lattices [8] under our 
general theory; we give a counter-example to a conjecture of Gofumbic that rank 
depends only on the comparability graph; and we characterize those pose% on n 
elements which have the largest rank. It is possible to read the applications in 
Section 6 immediately after Section 2. 

Further notation and terminology. Let B(x) = B, for binary, denote 
a, h E X, a f 6). Ordered pairs (a, b) are alwa;rs in B. We will find it 

convenient to interpret B as a digraph. Thus a E X is an element or a vertex 
interchangeably, and (a. 6) is a pair or a tlirected edge from a to 6. A sequence 

(a,. a,), (a,, a,), . . . . (a,_, , a,,), where the ai are distinct and n 2 2, will therefore 
be called a (directed) path. If the ai are distinct except that a, = a,, we nave a 
(directed) cycle. If the ai are not known ttl be distinct, we have a (directed) walk. 

abbreviate such sequences as a, l l l a,, and we will omit the word 
*‘, but in all cases it is understood that all edges are directed uniformly 

f mm a i I ) a,. By a largest (di)graph with some ,property, we always mean one with 
the ml%9. edges. Similarly, for a digraph !KJ 101 is the number ,of edges, 

For any SC B, Tr(S) denotes the transisive closure of S. L,et I(P) = I be the set 
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of incomparable pairs of P, i.e., all (a, b)E B with both (a, b‘,, (6, a) ti P. For 
(a, b) E I, Tr(PU (a, b)) is always a poset. 

If P, Q are posets and P c Q, we say Q extends P. Unless otherwise indicated, P 
and Q are defined on X. The poset induced on A c X by P is denoted PA, and is 
called a subposet of P. 

Let c denote a chain (linear order) on n elements. Let ii denote an antichain (P 
empty). For any two posets (X, P), (Y, Q) with X f7 Y = 0, the join P@ Q is the 
pocst on X U Y with pairs PU Q U (XX Y). 

1’ iny set L of linear orders is a realizer of n L. When L is a minimal realizer of 
n L, we say L is irredundant. The distinction between minimal and irredundant is 
that a minimal L realizes a predetermined poset, usually P, whereas an irredun- 
dant L need not. Even so, “minimal realizer of P” and “irredundant realizer of 
P” mean the same thing, and are used interchangeably in our papers. 

Throughout this paper, a path will always be R rather than P to avoid 
confusion with P for poset. Families of orders will always be bl)ldface L. 

2. Main theorems 

Definition. Given distinct pairs (a, b), (c, d) E I(P), (a, b) ftvces (c, ;i) if (c, d) E 
Tr(P U (a, b)). Call (a, b) unforced if no pair forces it. Call (a, b) nonforcing if it 
forces no pair. Let N = N(P) be the set of nonforcing pairs of I(P). 

Thus (a, b) forces (c, d) iff either 

(1) k, ah 9, 4 E P; 

(2) c=a and (b,d)EP; or 
(3) b=d and (a,c)~P. 
We sometimes need to use this longer equivalent in proofs. Also, note that 

(a, b)E I is nonforcing iff Tr(PU(a, b)) = PU(a, &). 
It is easy to verify that forcing is a poset with ground set I, and that (a, b) forces 

(c, d) iff (d, c) forces (b, a). Hence (a, b) is uniforced iff (b, a) is nonforcing. 
The forcing relation and unforced pairs were introduced by Rabinovitch and 

Rival [8]. In light of the duality between unforced and nonforcing pairs., it might 
seem appropriate to follow their lead and use the former only. However, we will 
use the latter only. As we show in Section 3, it is N(P) which interacts nicely with 
P. The unforced pairs do not. Of course, the unforced pairs do interact nicely with 
P, the dual of P, but it is not natural to think in terms of P. 

We now introduce the key graph-theoretical property, alluded to earlier, such 
that graphs with this property are intimately reldted to realizers of P. 

efiinition. A digraph DC B is unipathic relariue to P, abbreviated Up, if 
whenever there are two edge-disjoint paths from a to b in D, then (a, b! E P. 
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For instance, if P = 0, to be UP is simply to be unipathic. 
IWe: we do not consider single vertices to be null paths; in particular, a U, 

graph may have cycles. 

Main Theorem (Form 1). Let P be a poset which is not a subposet of any n@s@ 5. 
Let N be the set of nonforcing edges for P. Then the rank of P is the largest number 
of edges in any acyclic UP subgraph of N. 

We call subposets of IZ@~@ QI rank degenerate. 

lWn Thearam (Form 2). Let P Ez any nonlinear poset. Then r(P) is the largest 
number of edges in any subgraph of N which is either a cycle or is acyclic Up. 

Form 2 is appzinkjg, since there are no exceptional posets, except linear orders, 
for which N = 0 but r = 1. However, Form 2 requires looking at a larger class of 
graphs to cover what is after ail a very small and well-behaved set of exceptions. 
Form 1 also has the advantage that it leads to Form 3. Namely, although N can 
have many cycles, when P is not rank degenerate one can restrict attention to a 
subset of N so as to destroy all cycles and still compute the rank. 

IMnition. Let L be any linear order on X. L need not extend P. As usual, let 
JV = N(P). Define IV* = N*(P)={(a, b)EN/either (b,a)$N or (a, b)EL). 

Later we will show easily that N* is acyclic and independent of L (up to graph 
isomorphism). 

Ma& Theorem (Form 3j. Let P be any poset which is not rank. degenerate. Then 
r(P) is the largest number of edges in any Up subgraph of N? 

Although there will be little use of Form 3 in this paper, Form 3 is nonetheless 
the motivating force behind the development of still further structure and further 
applications [6]. 

3. Criticality and nonforcing 

In this section we first give the basic definitions and results concerning critical 
edges and critical digraphs. Then we give the main result aborit the interaction of 
the poset P and the nonfcs-cing edges IV. The principal result of this section is that 
every critical digrapn of P is either acyclic UP or a cycle. 

C 

q . Edge (a, b) is cr:‘tical for L E L if (a, b) ~2 L but for c . ery L’ E L - L, 
(a, b)E L’. That is, L alone excludes (a, b) from nL. 
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Lemma 3.1. Let L be a minimal realizer of (X, P), where 1x13 2. Then for each 
L EL, there is at least one edge which is critical for L. Moreover, distinct linear 
orders in L have disjoint sets of critical edges. 

The following is the dual of a statement ir. Rabinovitch and Rival [8]. 

Lemma 3.2. Let L be a minimal realizer of P. Assume IL1 22, i.e., P is nonlinear. 
Then every L E L has at least one critical edge in N. 

Proof. By Lemma 3.1, any L E C has a critical edge (a, b). Since IL1 ~3 2, (a, b) E I. 
If (a, b) E Z - N, choose any (c, d) E Tr(P U (a, b)) n N. For each L’ E L - L, we have 
(c, d) E Z.‘. But (c, d) & P = n L. Hence (c, d) & L. Thus (c, d) is critical for L. 

Corollary 3.3. If P Is nonlinear 

(1) 

Definition. Let L be a minimal realizer for a nonlinear P. A critical &graph of L, 
abbreviated CD, is a subgraph of N with one edge for each L E L and such that 
each edge is critical for its corresponding L. Digraph D is a CD of P if it is a CD of 
some minimal realizer of P. 

Note: for an edge to be in a CD it must be in N. This is a refinement of the 
definition of CD in [4]. However, for the edge simply to be critical for some L it 
need not be in N. The reason for allowing this is that we will often take a subset 
N’ c N(P) and create an irredundant set L for which each edge of N’ is critical as 
defined. We will want to refer to the edge in N’ which is critical for a given L E L 
and vice versa. Yet at that stage we will not know, and may never know, if 
n L = P. If not, then it may be that N’$ N( n L) so that N’ is not a CD for L. 

The key point about CDs is that the cardinality of L is the same a.s the number 
of edges in any of its CDs. Thus, whenever P is not linear, r(P) is the cardinality 
of any largest CD of P; d(P) is the cardinality of any smallest CD. The ideal 
situation would be to characterize CD subgraphs of N graph-theoretically. 
Although we have not done this, we come close enough to handle rank. We give 
necessary conditions to be a CD which, for maximal graphs with these properties, 
are also sufficient. 

Theorem 3.4. Suppose D is a CD for a minimal realizer L of P. Then D is either 
acyclic Up or a cycle. 

Proof. For (a, b) E D, let L(a, b) be the linear order in L not containing (a, b). Since 
D-(a, b)c L(a, bjli for each (a, En), D can contain a cycle C only if D = C. NOH. 
suppose R1, R2 are edge-disjoint paths from a to b in D. For any (c, d) E RI, 

(a, b)ETr(PU R,)c L(c, d). 



302 S.B. Maurer, 1. Rabinouitch and W.T. Trotter Jr. 

For any (c’, d’)E D- Ri, 

(a, b)ETr(PU R,)c L(c’, d’). 

Thus (a, b)c nL = I? So D is UP. 

When P is an antichain, it is easy to find cyclic CDs, acyclic Up CDs, and an L 
with many different CDs. Also, the converse of Theorem 3.4 is false. If D consists 
of k vertex-disjoint edges, D is acyclic Up whatever P is. But if Z(P) > k, D 
cannot be a CD. posets with high dimension and many vertex disjoint edges in N 
are easy to construct. 
The proof of Theorem 3.4 does not use the fact that D c N. Also, by essentially 
the same argument, it is easy to give necessary conditions on a CD D which seem 
much stronger. Specifically, 

(ip if YU D contains a cycle, all edges of D are on it. 
(Ul,, if BU D contains two paths from a to 6 with no D edges in common, then 

((1, b)E I? 

Indeed, we will use (i) and (Ul,) implicitly in constructing realizers from subsets 
of N in Section 4 (see Lemma 4.2). Fortunately, for D c N, these seemingly 
stronger conditions are not stronger. This is implicit in Lemmas 3.6 and 3.7 
below. 

Lemma3.5. SupposeR=a,a,- a,, is a walk in PU N. Suppose at least one edge 
is in P. Then (a,, a&z P. 

Roof. We induct on the number k of edges of N in R. For k = 0, the result holds 
since P is transitive. For k = 1, recall that (a, b) E N means Tr(P U (a, b)) = 
P U (a, 6). Since P n R # 18 and P contains no cycles, (aI, a,) E P. Finally, assume 
the lemma for k c I-E.. If R has m edges from N, pick a subwalk aiai+ 1 9 l l ui which 
has at least one edge from P and exactly one from N. Then (UiUj) E P. Thus the 
walk a1 a, l l l aiaj l l l a,, satisfies the b ypotheses for k = m - 1. 

E,emma 3.6. For any D c N, if C is a cycle in P U D, then in fact CC D. 

Roof. If not, 0:~ the previous lemma P would contain pairs of the form (a, a). 

32. For any DC N, the conldrtion Ub (above Lemma 3.5) is equivalent lo 

Clearly U$ implies Up. As for the converse, suppose RI, R2 are paths of 
satisfying the hypotheses of U’ P If either path contains an edge of P, 

(a, b) E P by Lemma 3.5 and we are doiie. So suppose RI, R, c D. The hypothesis 0. 
of I& then says that RI, R2 are edge-digjoint. Thus by Up, (a, b)~ P. 
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Note: if we weakened Up by replacing the conclusion (a, b) E P with (a, b) r$ N, 
then for subsets D of N the weakened Up would still be equivalent to the original 
UF and hence to U& The proof appears as part of the first paragraph of the proof 
of the next lemma. Since acyclicity and Up are essentially the only properties we 
will look for, and since we will only look for them in subsets o:i A’, we could switch 
to the weakened form of Up. It has the advantage that, once M is found, we could 
completely ignore P. However, we choose to continue with the original definition 

of up 

Lemma 3.8. Tr(PU N) = PU N, except that the left-hand side will also include 
those pairs (a, a) such bhat N contains cycles through a. Moreover, if there is a path 
ala2 l l 9 a, in N, and (a,, a,> & P, then for all i, j with 1 G i C j< n, we have 
(ai, ai) E N. 

Proof. By Lemma 3.5, Tr(PU N) = P UTr(N). So to prove the first sentence of 
the lemma, consider any path R from a to b in N. If (a, b) E! P, then either 
(b, a)E P, or (a, b)E I-N, or we are done. In the first case, the cycle R ‘J(b, a) 
violates Lemma 3.6. In the second case, Tr(PU (a, b)) includes some (c, d) E N. 
Consequently, there is a walk from c to d in PU R using at least one edge from I). 
By Lemma 3.5, (c, d) E P, :a contradiction. 

As for the second sentence of the lemma, we have just shown that all 
(ai, aj) E PU N. If some (a, aj) were in P, then applying Lemma 3.5 to the path 

ala2 l l ’ ai@i l ’ l a,,, we get (a,, a,,,) E P, contradicting the hypothesis. 

The subset A c X is said to have duplicate holdings if for all a, a’ E A and 
x c.. X, (a, x) E P@ (a’, x) E P, and (x, a) E Pe (x, a’) E P. It follows that PIA is an 
antichain and that, for all x E X - A, (a, x) E 1e (a’, x) E I. 

Lemma 3.9. For any A c X with IAl a 2, the following are equivalent: 

(1) A has duplicate holdings. 
(21 NIA is a complete two-way digraph. 
(3) N contains a cycle whose vertex set is A. 

In particu!ar, the maximal two-way complete subgraphs of N are vertex-disjoint. 

Proof. (1) e (2) is a direct application of the definitions. (2) =$ (3) is im- 
mediate. As for (3)+(24, let ala2 l l l anaB be the cycle. NO (ai, t+) is in P by 
Lemma 3.6. Thus they are all in N by Lemma 3.8. The last statement in the 
lemma follows because duplicate holdings provide an equivalence relation on X. 

4. The preparation lemma 

eore (The Preparation Lemma). Suppose N = N(P) is neither empty nor a 
‘L-cycle. Let N’ be any maximal acyclic UP subgraph of N, that is, my proper 
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supergraph ~1 JV’ in N either contains a cycle or violates Up. Then N’ is a critical 
diagraph of I! 

Given this theorem and Theorem 3.4, it should be clear that the Main 
Theorems arc not far awa.y. Indeed, if the Preparation Lemma also asserted that 
every cycle in i;J’ is a CD, or even that just some largest cycle in N is also a CD, 
then Form 2 of the Main Theorem would be immediate. Unfortunately, these 
strengthcnings can be false, as we show in the next section. 

The proof of the Preparation Lemma is the rest OJ this section. The proof 
involves two steps: 

(1) Show that the assumptions imply the existence of some irredundant L 
containing IN’1 linear orders, all extending P, such that each edge of N’ is critical 
for one i(,~ L. This step is easy; in fact, the use of N instead of I is only a 
simplifying convenierrcc here. Necessary and sufficient conditions for a set N’c N 
(or D c I) to allow tXs step to work are implicit in the proof of Lemma 4.3 (and 
the remarks before Lemma 3.5). 

(2) Show that the assumptions imply that one such L realizes P. This step is 
harder. Also, the use of N here seems, to be crucial. 

Definition. For N’cN and (a,b)EN’, let Nf(a,6)=PUN’U(6,a)-(a,&. 

Leumta 4.2. If N’ is a CD of a minimal realizer L of P, then each N’(a, 6) is 
acyclic. Conversely, if each N’(a, 6) is a,S,L ---lie, then there is an imdundant L with 
N’l linear orders, all extending P, such that each edge of N’ is critical fur one L E: L. 

Pmof. First assertion: if (a, b) is critical for L E L, then N’(a, b) c L by definition 
of a CD. Thus N’(a, 6) is acyclic. Converse: any acyclic set is contained in a linear 
order. For now, let L(a, b) be any linear order extending N’(a, 6). Since P c 
N’(a, b), Lda, 6) extends P. Let L = {L(a, b)!(a, 6) E N’}. L(a, b) is the only order 
in L which excludes (a, b). Thus L is irredundant and (a, b) is critical for L(a, 61 
in L. 

W 4.3. tf N’ c N is either acyclk Up or a cycle, then for each (a, 6) E N’, 
N’(a, b) is acyclic. 

F’HB& Suppose C.’ were a cycle in N’(a, 6). If (b, a) ~6 C, then C c P U N’, so 
cc JV’ by Lemma 3.6. I-Ience CU (a, I?) c N’, so N’ is neither acyclic nor a cycle. 
If (6, a) c C, then PU LN’ contains two edge-disjoint paths from a to b, namely 
(a. 6 J and C- (6, a). Since N’ is Up, This conclusion about P U N’ violates lemma 
3.7. . .- 

e now mat Step (2). 
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Lemma 4.4. Suppose L is a set of linear extensions of P, and each edge of N’ c N is 
critical for some L E L. Then n L = P if (n L) n (N - N’) = 0. 

Pro& “Only if” is obvious. For “if” we need to show that (n L) n (p U I) = 0, 
where P is the dual of P. (n L) n p = 0 because PC nL and n L is a poset. 
Suppose (a, b) E (n L) n (I- N). We know that some (c, d) E N is forced by (a, 6). 
Hence, for each L EL, (c, d) ET~(PU (a, b))= L, that is, (c, d) E n L. Since we 
assume (n L)n(N- N') = 0, (c, d)E N’. But (c, d) is not in the L for which (c, d) 
is critical, a contradiction. Thus (nKJ O I = 0. 

The following result is a special case of a lemma of Bogart [l]. We omit the 
straightforward proof. 

Lemma 4.5. Let 0 be a pose? on X. For x E X, define Q(x) = {(y, x) 1 (y, x) E I(Q)}. 
Then for any (b, a) E Q, there exists a linear order L(Q, a, 6) which extends 
Q U Q(a) U QW. 

Definition. Let N’( a, b) be as before and suppose it is acyclic. Let Q = 
Tr(N’(a, 6)) 3 P. Then Z&a, b) shall denote any linear order I.( Q, a, 6) as in the 
previous lemma. 

Lemma 4.6. Suppose N’ is an acyclic Up subgraph of N. Suppose N’ contains a 
path ala2 9 9 l a,, with n > 2. Suppose further that (a,, a’,) ti P. Then {a,, a :) E 
LO(al, a,) and (a,, a3 LO(a,+ a,). 

Proof. To show that (a’,, a& LO(al, a,), we must show that (a,, a,)eQ= 
Tr(N’@,, a2)); for then (a,, al) is in Q or I(Q), and in either case, for different 
reasons, (a,, a,) E L,( a 1, a2), (In fact, the latter case holds.) So suppose there were 
a path R from a, to a, in N’(a,, u2). Clearly, (a2, a,)& R, and it is given that 
(al, a,)& P. Hence, by Lemma 3.5, R c N’- (a,, a,). Let uk be the first vertex 
among a2, a3, . . . , a, which R reaches after leaving a,. Let R’ be the segment of R 
from a, to ak. Then R’ and ala2 l l - ak are disjoint paths in N’ from aI to a& 

Since N’ is Up, (a,, a&P. By Lemma 3.5, (a,, a& P, a contradiction. 
Similarly, to prove that (a,, a,) E Lo(~-l, a,), suppose there were a path R from 

q, to a, in N’(%_,, a’,). If (u,,, a,,_,)$ R, then a, l 9 l a, followed by R is a cycle in 
P U N’, or contains one. If (a,, a’,- 1) F R, then a, l l l a,_ l followed by 
R - (a,,, a,,_l) is a cycle in P U N’, or contains one (here we use n > 2). Either way, 
N’ contains a cycle by Lemma 3.6, contradicting the first sentence of this lemma. 

Proof of the Preparation Lemma. We show that { L,(a, b) 1 (a, 6) E N’} is a minimal 
realizer of P with N’ as a CD. Given the previous lemmas, it suffices to show that 
for each (c, d)E N-N’, there is some (a, b)~ N’ such that (c, d)& Lo(a, b). 

N’ U (c, cl) either violates Up or it contains a cycle. Suppose it contains cycle C. 
Then (c, d) E C. If there exists an (a, 6) E N’ - C, ihen it is easy to see that (c, d) is 
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not contained in any linear extension of N’( a, b), so (c, d) ti L&z, b). If N’c C, we 
ue that IN’1 2: 2. Otherwise N’ would be a single edge, but since INI 2 2 by 

inequality (l), and N is not a 2-cycle by hypothesis, a single edge cannot be 
maximal acyclic Up Consequently, N’c C implies that N’ is a path al l l l Q, with 
n > 2 and (c, d) = (a,, a,). Hence (c, d) & L&.z,_,, a,) by Lemma 4.6. 

Suppose N’ U (c, d) violates Up. Thus N’ U (c, d) contains two edge-disjoint 

paths between some x, y, where (x, y) & p. One of these paths, call it I?, is entirely 
in Iv’. Write R = a, l l l a,, where x = ur, y = u,. If n = 2, that is;, if (x, y) E N’, then 
we consider the other path to conclude that (c, d) is not in any Gnear extension of 
N’(x, y 1. if n > 2, (x, y ) & L,,( u,, u2) by Lemma 4.6. Therefore (c, d) & L,( a,, a,) 
either. 

t;srrn 1. Define a poset to be rank degenerate if it is linear or if every largest 
CD is a cycle. Recall that if D is a CD of L, then (P)I = 1~1. Thus Theorem 3.4 and 
the Preparation Lemma tell us immediately that the conclusion of Form 1 holds 
for every poset which is not rank degenerate. (Note that the one nonlinear 
exception to the Preparation Lemma, N a 2-cycle, can only arise from a rank 
degenerate f?) It happens that rank degenerate posets, as defined here, are 
prekely the subposets of FJ@@ m excluded in Form 1 and already called rank 
degenerate there. That the subposets of &%3~ are all rank degenerate as 
dcfincd here is straightforward to check directly. As for the converse, let k be the 
length of a largest CD cycle C of a rank degenerate poset (X, P). Let A be the 
vertex set of C. By Lemma 3.9, all edges between vertices of A are in N. Suppose 
k 34. Partition A into Ai, A2 with [$kl and [$k J elements, and let N’ = 

bEAr,cEAJ. note 1 N’I = [$k’J Z= k. l’vIoreover, N’ is acyclic Up, since N’ 
contains no consecutive edges. Thus some acyclic Up supergraph of N’ is a CD by 
the Preparation Lemma, contradicting rank degeneracy. Thus k < 3. Mareover, 
there cannot be any other edge e E N e lrcept those between elements of A. For 
otherwise pick any e’ c C and consider C-i- e - e’. This is acyclic Up, so again the 
Preparation Lemma says that some super-graph violates rank degeneracy. Thus, 
except for A, P is linear. That is, P is a ;ubposet of u @3$ E. 

It is equally easy to characterize thost,: posets such that some largest CD is a 
cycle [S]. 

Fornt 2. It suffices to show that, for any P, no cycle in N has more edges than 
the largest CD. If every cycle in N were a CD, this would be immediate. 
However. this is false. Suppose A is the largest set with duplicate holdings in 
(X. P) ; aid suppose IAl < d(P). Then by Lemma 3.9, every set of 2 or more points 

rrnyl a cycle, but no cycle in N is ;a CD. Moreover, it is easy to construct P 
1 large but less than d(P). 
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Fortunately, we need only that every cycle in N as large as some CD is itself a 
CD. 

Lemma 5.1. Let C= a, l l l a,, be any cycle in N with n 3 d(P). Then C is a CD of 
P. 

Proof. Let A =(al,. . . , a,,}. Let X’= (X- A)U{a,}. For any P and any X’c X. it 
is an easy standard result that d(PIxt)d(P). SO let m = d(PI&. (In fact, in the 
case at hand, m = d(P) except when m = 11, in which case d(P) = 2.) Let L = 

{Lb . . . , L,} be a set of linear orders on X’ which realize Pjxf. For i = 
1,2,...,m- 1 we will extend Li to a linear order Li on X, and we will extend L, 

to linear orders L’,, f.‘,,,, . . . , L’, on X, so that k’= {L’,, . . . , L’,} realizes P with 
CasCD. For i=l,..., n, let L’,! be the unique linear ordizr on A which extends 

CU(ai+,, ai)-(ai, a i+l). L{ is constructed by inserting A with order Ly in place of 
a1 in Li (or in L, if i >m). It is easily seen that n L’= P, and that (ai, ai+ J is 
critical for Li. Since CC ZV by hypothesis, C is a CD for L’. 

Form 3. First we show that for any P and any acyclic UP subgraph Iv’ of N. 
there is a UP subgraph of N” isomorphic to N’. Then, by Form 1. for posets 
which are not rank degenerate, we need only find the largest acyclic UP subgraph 
of N*. Seccnd we show that M* is acyclic. Thus we need only find the largest UP 
sub&:aph of N? 

Let L. be the arbiirsq linear ordering of X used to define N*. Let L’ be any 
linear extension of P U IV’; such exists by Lemma 3.8, since N’ is acyclic. For each 
equivalence class A c X of points with duplicate holdings under P, L and 1L’ 
impose linear orders on A. Define f : X -3 X as the unique map such that for each 
such A, and i = 1,2, . . . , f maps the ith element irom the top of A under L’ to 
the ith from the top under L. Clearly f is an automorphism of P, so the induced 
map on 2v is also an automorphism, one which maps UP subgraphs to U, subgraphs. 
Finally, note that f(N’) c N*. (In fact, if N** is the “version” of PJ* obtained by 
using L’ in the definition instead of L, f induces an isomorphism of N** and N”.) 

For the second chaim, set NT= {(a, b)E N* 1 (6, a)E N}. By definition of id*. 
NTc L, so NF is acyclic. But by Lemma 3.9, any cycle iin N* is entirely in NY. so 
N* is acyclic. 

6. Sam@ applications 

(1) Compufution of some ranks. We preface our examples with some useful 

facts. 

Corollary 6.1. If P is nonlinear, r(P) = IN( iff IV is eitjzer a cycle or acyclic UP. 

Proof. Immediate from the Main Theorem, Form 2, 
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It might seem an unlikely event that r(P) = lN(, but in fact it happens in a 
number of interesting posets. 

For the next definition and theorem, recall that wz have chosen (a, b) E P to 
mean that a is over b. 

llkfhdtion, Let I, (= Z(P) bc defined as 

ita, b) E W) I b midlima in P, a maximal and not minimal in P}. 

Unless P contains isolated elements, incomparable to everything else, we need 
merely require of a that it be maximal in Z? 

Tbeoreur 6.2. Z,,, is always an acyclic UP subgraph of N. Thus r(P) 3 I&,, [. 

Prooff. No (a, b) E I, is on any path whose edges are in P, by the definition of 
maximal and minimal. So Z,m r= N. There are no paths with more than one edge in 

Z,,, by definition. So I,,, is acyclic and Up. Now use the main Theorem, Form 2 (if 
N = 0, our present result is trivial). 

WoIWy 6.3. Z,,, = N ifl 

forall (a, b)EZ, Tr(PU(u, b))nZ,,,#0. (2) 

Thus, if (2) holds, r(Z’) = 1 Z,,, I. 

Proof. For any (a, b) E I, Tr(PU (a, b)) n N# 0. Thus I,,, = N implies (2). If I,,, Z N, 
pick (CT, b)E IV- I,,,. Then Tr(P U (a, b)) = P U (a, b), which is disjoint from I,,,, 
contradicting (2). If ZWl = bv, then r(P) = IZm I follows from the previous theorem. 

There is much more that can ble said about necessary conditions and sufficient 
conditions for r(P) to equal lZ,,J (see [5]). 

Z3oofean Posets. Let X be an n-set. Let Sk and S represent the collections of all 
k-subsets and all subsets of X. Let Sk,i = Sk U Si. Denote by B,, Z3”,k, and Bn,k,j the 
partial orders induced by set inclusion on S, S,, and Sk,j respectively. 

Theorem 6.4. Suppose 0 <i < k c n. 9eP S’ be any subset of S such that Sk,j c S’ 
and Sins’=0 for all i<j and all i: k. Let B’ be the pose? of set inclusion on S’. 
Tken 

(3) 

In pa~icular, if S’= U~~,S~[i,*~ where OCj= k(l)<k(2): l l . <k(m)= ken, 

then B’ satisfies (3). 

f. Clear!y Si is the set of all minimal elements in B’ and S, is the set of all 
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maximal elements. Since every j-set is included in (;I:) k-sets, the quantity on the 
right of (3) is j?st IZ,,& It is enough now to verify condition (2) of Corollary 6.3. 
Suppose Y, Z E S’ and (Y, 2) E Z(Z3’). Then there is an element z E Z- Y. Let 2’ 
be any j-subset of Z containing 2. Let Y’ be any k-superset of Y not containing 
z. Since 0 <j and k < n, Y’ and Z’ exist. Moreover there are in S’. Thus 
(Y’, Z’) E Tr(Z3’ U (Y, Z)) n I,. 

When S’ = Sk,j, this result was announced in [4]. For every B’, d(.B’) G n since 
d(Z3”) = n (see [3]). Thus (3) once again indicates how muzh greater rank can be 
than dimension. However, when i = 1 and k = n - 1, (3) gives r(B,,,_,,,) = n. It is 
also well-known that d(B,,,_,,,) = n (see [3]). Indeed, we have now characterized 
all posets for which rank equals dimension [7]. They are essentially the subposets 
of B, containing Z3n,n_1,1, except that elements may be stretched into chains. 

Rank of joins. Recall the definition of the join from Section 1. 

Theorem 6.5. Suppose P = PI @ l l l 03 P,, where P is not rank degenerate and k of 
the Pi are rank degenerate. Then 

r(P)= i r(Pi)- k. 
i=l 

Proof. Clearly, N(P) = U N( Pi) and the union is disjoint. Since P is not rank 
degenerate, we seek the largest acyclic UIp subgraph of N(P). Clearly, .!!‘c N(P) 
is acyclic Up iff each piece N’n N(P,) is. Thus if Pi is not rank degenerate, we 
may pick r(Pi) edges from N(Pi) for N’. IS Pi is rank degenerate, it is easily seen 
that we may pick only a path of r(Pi) y! ‘edges from N(Pi) for N’. 

This result contrasts with the fact d(P)=max{d(P)}. 
A weak order, a concept found in the literature [2], may be defined as any poset 

of the form fi,@ l l . @ fi,. In [4] it was proved that r(ti) = [$a’] if m a 4, and 
r(e) = m if m = 1,2,3. The cases m = 1,2,3 are also the cases where fi is rank 
degenerate. Thus Theorem 6.5 immediately gives. 

CorolIpry 6.6. If thle weak order fil @ l l 9 @fit is not rank degenerate, then its 
rank is &f(mi), where f(m)= [$n2] if ms4 and f(m)= m- 1 if m = 1,2,3. 

The join is a special case of poset composition. For partial results on composi- 
tion and rank, see [S]. 

Rank of distributive lattices. In [8], Rabinovitch and Rival derive a several part 
formula for the rank of an arbitrary distributive lattice D. They use (indeed 
introduce) the idea of forcing, but then their argument involves decomposing the 
lattice into linearly nondecomposable parts*, and a lattice characterization of when 
linear extensions 0% D may contain exactly one unforced edge. By using the 
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general results of our theory, we can shorten both the derivation and the 
statement of their result. 

For x E D, let f(x) = V (y 1 xg y}. It is well-known that, for a distributive lattice, 
if f is restricted to the set J(D) of join irreducible elements, then f is an order 
isomorphism between J(D) and the met i irreducible elements M(D). Also, for 
~GLJJ(D~, f(x) is the unique maxima1 element of D not equal or above x. From 
this, it is not hard to show that 

IV = N(D) = {(f(x), x) 1 x E J(D) and f(x) g x}. 

So far, all this is explicit or implicit in [fs]. 
Suppose x# y in D have the property that every other z E B is either above 

both or below both, If x and y are comparable, call {x, y} Q dividing pair. If they 
are incomparable, call (x, y} a complementary pair. Then it is also not hard to 
show the following. 

( 1) The pairs (x, f(x)} with x E J(D) and f(x) < x are precisely the dividing pairs 
of D. 

(2) Every cycle in N is a 2-cycle, and the pairs of vertices in such 2-cycles are 
precisely the complementary pairs. 

(3) Since each vertex x has at most one edge of N exiting from it, N is UD. 
Thus, if f3 is rank degenerate, D is a subposet of some m@%B n, with rank 1 if 

D is linear, 2 otherwise. If D is not rank degenerate, then the largest acyclic UD 
subgraph of N is obtained by removing one edge from each cycle, i.e., N* is U,,. 
Summarizing, we have 

Tkorem 6.7. Let D be a finite distributive lattice which is not rank degenerate. Let 
m, tt, p respectively be the number of join irreducible elements, dividing pairs, and 
co~q&mentary pairs. Then r( 0) = m - n - p. 

‘This is equivalent to the main Theorem 2 in [8]. 

Rank and Turan type problems. Consider the poset (X(n, m), P(n, m)) with 
Xb,, nz)=(l,2,. . . . 11) and ( ;, j) E P( n, m) iff i 2 j + m. We were led to this class 
through the subclass P(2n, r:), which arose naturally as the class uf height one 
posets which are as far as possible from satisfying a certain condition (omitted 
here) for r(P) to equal I&J. Not surprisingly, r(P(n, m)) is fairly difficult to 
compute. even with the machinery developed here. What is surprising is that both 
the problem and the form of the solutil-gn can be viewed as a generalization of 

Turan’s theorem on largest k-clique free subgraphs of K, (see [12]). The 
evaluation of r(P(n, m)) will :ippear elsewhere [6], but we now briefly suggest the 
connection to the Turan problem. 

Consider p= P(n, n) = 0. if P is not rank degenerate (n % 4), we may pass 
which is a linearl:! directed K,. A small part of the UP 

condition for N’c N” is that W does not contain triangles. Nonetheless, the largest 
graphs Y’ satisfying UP and the largest with no triangles are the same: complete 
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bipartite subgraphs with &z] and [in1 vertices on the two sides. (For the Up 
problem, where direction counts, we must chaos? the bipartition so all arrows 
point to the same side.) This observation for P= 0 goes back to [4] and will be 
used again later. 

It is possible to use the material developed in Sections 2-5 to formulate the 
problem of computing the rank of P(n, m) as an extremal problem which is clearly 
a generalization of the Turan problem. In [6], the authors solve this extremal 
problem and characterize the extremal graphs. As is the case with Turan’s 
problem, the extremal graphs are complete multipartite graphs. However, in our 
problem, the part sizes need not be uniform. 

(2) Disproof of a conjecture on rank and the comparability graph. The compara- 
bility graph of (X, P) is the set of undirected edges a6 such that either (a, b) or 
(b, a) is in P. Difierenlt posets on X can have the same comparability graph, but 
surprisingly, they all ‘have the same dimension [l l]. Indeed, all have the same 
number of linear extensions. 

M. Golumbic conjectured to us orally that all posets with the same comparabil- 
ity graph also have thle same rank. However, this is false. Let P, be obtained by 
putting n incomparable elements under a single additional element. For conveni- 
ence below, take n odd a 3. For any poset: (X, P), (Y, Q) with Xn Y z= B, let 
P U Q denote the poset (X U Y, P U Q). Let P be the dual of P. Consider P, U P, 
and P,, U &. Clearly they have the same comparability graph and the same 
dimension, 2. Since neither is rank degenerate, we need only consider N”(P, U 
P,), which is the vertex-disjoint union of two complete linearly directed graphs on 
n + 1 vertices each, and N*(P, U fin), which is the vertex-disjoint union of an edge 

and a linearly directed &,. Using the comments about Turan’s theorem in the 
previous application, one gets that r(P,, U P,) = &( n + Q2 and r( P,, U &) = n* + 1 l 
What is true, by the Main Theorems and the remarks after Lemma 3.7, is that 
r(P) depends only on N. 

(3) Posets of Maximum rank. Let n = 1x1~ 2. Define M(n) = max{ [$‘I, n). 

Implicit in [4] is the fact that for any poset (X, P), r(P) s M(n). The proof is that II 
is a bound on the number of edges in a cycle on X, and kin’] is a bound on the 
number of edges in an acyclic Up subgraph on X by Turan’s theorem. Note that 
M(n)=n for n ~4, and M(n) = [in2J for n ~5 4. 

Let US say P is of maximum rank if r(P) = M(n). All antichains are of maximu;m 

rank [4]. 

Theorem 6.8. For n = 2,3, the antichain ti is the only poset of maximum rank. For 
i 24, (X, P) is of maximum rank ifl P is of the following form: (a, b) E P ifl a E W, 
b cz 2, where Y, Z, W is a partition of X, and 1 Y( = [in] or [$n’i. W = 0 is allowed. 

This means that a maximum rank n-element poset can have up to &n2 edges, 
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more than 4 the edges of any n-element poset. IIowever, note that all maximum 
rank posets have dimension 2. 

Roof. All posets described in the theorem have maximum rank: if n C4 or 
W=0, P is an antichain. Otherwise N(P) = N1 U &, where N1 is a 2-way 
complete &graph on Y and & is a bipartite graph with bipartition 2 U W, Y 
and with all edges directed from W or to 2. Clearly ISJ, is acyclic UP with M(n) 
edges, so r(P) = M(n). 

Conversely, suppose (X, P) has maximum rank. A cyclic CD on the n-set X can 
have M(n) edges iff it is a Hamilton cycle and n = 2,3,4. By Lemma 3.9, P must 
be an antichain. So suppose every CD N’ with M(n) edges is acyclic Up. N’ must 
be triangle free, so by Turan’s theorem, N’ is a complete bipartite graph with l$nJ 
and [in1 vertices in the two parts, and n 24. 

We must determine how the edges of N’ are directed. If they all face from the 
same side “10 the other, call the receiving side 2, the sending side Y, and set 
W = 0. If the edges are not all uniformly directed, there must exist vertices Q, 6, c 
with (a, 61, (c, a) E IV’. Let the side of N’ containing u be called Y and define 

Henceforth, y, z, w are always in Y, 2, W respectively. Clearly 2, W partition 
X- Y. We claim that every edge between W and Y goes from W and every edge 
between Z and Y goes to 2. Suppose not. Then either some (z, y) or some ( y, w) 
is in N’. We disprove the first possibility; the second is similar. Clearly y # a. Thus 
there is in N’ a path R = cazy. Since N’ is complete bipartite, either (y, c) or (c, y) 
is in N’. In the former case R U (y, c) would form a cycle, but N’ is assumed 
acyclit , In the latter case, R and (c, y) are edge-disjoint paths from c to y, 
violating UP whatever P is. This proves the claim. 

We can now show that the conditions in the theorem on P when n 24 are 
necessaq-. First, Ply = Plz = Plw = 0, For instance, if some (y, y’) were in P, the 
path yy’z would violate Lemma 3.5 for any z. Likewise, if (w, w’) or (z, z’) were 
in P, thd n the path ww’y, or yzz’, would violate Lemma 3.5 for any y. (Note: 
since n 2 4, both Y and Z are non-empty.) Next, every edge of the form (w,, z) is 
in P. ThG is because lYl2 2, so between each pair w, z there are two edge-disjoint 
paths wyz and wy’r in N’. Since N’ is Up (w, Z)E P. The only pairs not yet 
considered for P are of the form (z, w), which cannot be in P since P must be 
acyclic. 
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