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ABSTRACT

TIn 1930, E. Szpilrajn proved that any order relation on a
set X can be extended to a linear order on X. It also follows
that any order relation is the intersection of its linear
extensions. B. Dushnik and E.W. Miller later defined the
dimension of an ordered set P = <X;=> to be the minimun number
of linear extensions whose intersection is the ordering = .

For a cardinal m, gﬁ denotes the subsets of m, ordered by

inclusion. As the notation indicates, gﬁ is a product of
2-element chains (linearly ordered sets). Any poset <X;=> with

|X] < m can be embedded in 2&. 0. Ore proved that the dimension
of a poset P is the least number of chains whose product contains
P as a subposet. He also showed that the product of m nontrivial

chains has dimension m. In particular, 2" has dimension m, a
result of H. Komm. Thus, every cardinal is the dimension of
some poset.

Tt is usually very difficult to calculate the dimension of
any "standard' poset. However, dimension can be related to other
parameters of a poset. For example, the dimension of a finite
poset does not exceed the size of any maximal antichain. Also,
T. Hiraguchi showed that any poset of dimension d = 3 has at
least 2d elements. Moreover, any integer > 2d is the size of
some poset of dimension d.
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172 D.KELLY AND W. T. TROTTER, Jr.

let d be a positive integer. A poset is d-irreducible
if it has dimension d and removal of any element lowers its
dimension. Any poset whose dimension is at least d contains a
d-irreducible subposet. Although there is only one 2-irreducible
poset, there are infinitely many d-irreducible posets whenever
d = 3. The set of all 3-irreducible posets was independently
determined by D. Kelly and W.T. Trotter, Jr. and J.I. Moore, Jr.
There is a 3-irreducible poset of any size n not excluded by
Hiraguchi; i.e., for any n = 6. However, R.J. Kimble, Jr. has
shown that a d-irreducible poset cannot have size 2d + 1 when
d>4. Ifd=U4andn > 2d but n # 2d + 1, then there is a
d-irreducible poset of size n.

A finite poset is planar if its diagram can be drawn in the
plane without any crossing of lines. Planar posets have
arbitrary finite dimension. However, K.A. Baker showed that a
finite lattice is planar exactly when its dimension does not
exceed 2. He also showed that the completion of a poset is a
lattice that has the same dimension as the poset. Baker's
vresults and three papers of D. Kelly and I. Rival were used to
obtain the list of 3-irreducible posets. &

The approach of W.T. Trotter and J.I. Moore, Jr. vested on
the observation of Dushnik and Miller that a poset has dimension
at most 2 if and only if its incomparability graph is a com-
parability graph. T. Gallal's characterization of comparability
graphs in terms of excluded subgraphs was then applied.

Several other connections between dimension theory for .
posets and graph theory have been established. For example,
posets with the same comparability graph have the same dimension.
C.R. Platt reduced the planarity of a finite lattice to the
planarity of an wndirected graph obtained by adding an edge to
its diagram.
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E. Szpilrajn [1930] showed that any order relation on a set
X can be extended to a linear order on X. He also proved that
any order relation is the intersection of its linear extensions.
If C 1is a family of linear orders (chains) whose intersection
is the order relation <, then C is a realdizer of <; we
also say that C  seafizes <. B. Dushnik and E.W. Miller
[1941] defined the d4mens{on of an ordered set (poset) <Xx;<>
to be the minimum cardinality of a realizer of <.

In this survey, we usually deal with the case of finite
dimension. For a positive integer k, any poset of dimension at
least [ contains a finite subposet of dimension k. (This
compactness property follows from the compactness theorem of
first-order logic; see Harzheim [1970] and the review by K.A.
Baker.) Moreover, any finite poset. has finite dimension.
Consequently, most of the posets that we consider will be finite.

1. INTRODUCTION

In this section, we shall introduce the many definitions and
constructions that are required to study dimension. The 16
posets in the first figure are meant to provide the reader with
some realistic examples in order to better appreciate the
definitions and constructions we give. We want the reader to get
a feeling for the main concepts before we get involved in
diffficult dimension calculations. No subsequent section requires
any background except this introduction, and possibly, Section 3.

1f a poset is denoted by P, then its underlying set will
usually also be denoted by P, and its order relation by < or
SP' An extension of P means an extension of SP. If P is a
subposet of ¢, then dim P < dim ¢ since any linear extension
of ) restricts to a linear extension of P. T. Hiraguchi
[1951] showed that the dimension increases by at most one when a
single point is added. Equivalently, the "one-point removal
theorem” is valid; that is, removing one point from a poset
decreases its dimension by at most one. We shall consider this
and other removal theorems in Sections 5 and 6.

This research was supported by the NSERC of Canada and the
National Science Foundation.




174 D.KELLY AND W. T. TROTTER, Jr.

The converse of a binary relation R is denoted by Rd
Clearly, a poset P and its dual Pd have the same dimension.
A poset is d-inreducibfe if it has dimension d = 2 and the
removal of any element lowers its dimension.  An {rnneducible
poset is d-irreducible for some d = 2. By the compactness
property, every irreducible poset is finite. By the one-point
removal theorem, a poset is d-irreducible when dim P > d and
dim( p -{x} ) < d for every x € P. The only 2-irreducible
poset 1is the o.element antichain (two incomparable elements).
Figure 1 shows all 3-irreducible posets with at most 8 elements
(up to isomorphism and duality). (We are using the notation of
Kelly [19771.) Two of these posets have 6 elements, three have 8
elements, and the remainder have 7 elements. In Section 3, we
show how to check whether a poset has dimension at most two.

RS GIVAVA o VAREVAV. G\

AO A1 B
C D EO
i ; b} ) D>
FO G0 H0

FIGURE 1. The 3-irreducible posets with at most 8 elements
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N

Io JO CX1

SR INY,

CX, CXg EX,
EX, FX, FX,

FIGURE 1. (concluded)

By Figure 1, any poset. of dimension 3 must have at least 6
elements. In fact, this is a special case of the following
inequality of Hiraguchi [1951], valid for |P| 2z 4 :

dim 2 < |P|/2.
This result is proved in Section 5.

The posets AO and A1 of Figure 1 are the two smallest

members of an infinite family An h = 0) of 3-irreducible

posets. These posets, called cxowns, appeared in Harzheim
[1970] and Baker, Fishburn and Roberts [1971]. D. Kelly and 1.
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Rival [1975b] discovered infinitely many more 3-irreducible

posets. They presented the four infinite families E%, Fn’

G,, H, "0 =2 0), whose smallest members are shown in Figure 1.

The list of all 3-irreducible posets was completed independently
by D. Kelly [1977], and W.T. Trotter and J.l. Moore L1976al. Up
to duality, this list consists of the seven infinite families
A, E, E G”, Hn’ In’ Jn (m = 0), whose smallest

members are shown in Figure 1, together with the remaining posets
of that figure. We shall return to the topic of irreducible
posets in Section 7.

The following alternative definition is often credited to
0. Ore [1962], but appeared earlier in Hiraguchi [1955] : The
dimension of a poset P is the minimum size of a family

(Ci | 4 € I) of chains such that P is isomorphic to a
subposet of the direct product H(Cil { € I). 1f
(Ci | 4 € I) is a family of linear extensions realizing P ,

then the diagonal mapping ¢ embeds P into the direct product
of these chains ( ¢(x) is the constant function with value ¥
for each ¥ in P). To complete the proof of the equivalence of
the two definitions, let P be the direct product of the family

(Ci | 4 ¢ I) of chains. For { e I, we define the extension
E, of P by <X, y> € E, iff ni(x) < ni(u) , where
ni denotes the {~th projection function. 1f Ez is a
linear extension of Ek for each { € I, then (EZ | { € I)

realizes F. H. Komm [1948] proved that dim g@ = v, where 2
denotes the 2-element chain and w denotes a possibly infinite
cardinal. It follows that the product of nontrivial chains

has dimensionto .

The Ore definition of dimension is often appropriate when no
explicit calculation of dimension is required. When the dimen-
sion must be calculated, the original Dushnik-Miller definition
is used. We shall describe a simple technique which reduces the
"pookkeeping" involved in calculating the dimension of a finite
poset.

A (linear) extension of a subposet of P will be called a
partial (Linear) extemsion of P. Tr(k) denotes the transi-
tive closure of a binary relation k. For any partial extension

E , Tr( <p U E ) is an extension of P. For a poset P,J9(pP)

e A(P) can be considered as a partial linear extension of P.

[

{<a,b> | allb in P}, the set of incomparable pains. Any
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For u, v €-3(P), u 4orces v ( in symbols, <y,v> € F)
if v € Tr( SP u {u} ). This concept was introduced by I. Rab-

inoviteh and 1. Rival [1979], who observed that F 1is an order
relation on J(P). The incomparable pair <a,b> 1is called a
cndtical pain if x < b implies X < a, and x > a

implies x > b. A pair <a,b> € P is a max-min pain if
a is maximal and b is minimal. Observe that every incompar-
able max-min pair is critical. For a poset P, Crit(P) denotes
the set of critical pairs. Crit(P) is the set of minimal elem-~
ents of < J(P);F >. We denote the set of maximal elements of
<HP);F > by N(P) ; these pairs have been called unforced,
nongorcing and nonforced. We shall use the last term. More-
over, "(P) 1is the converse of Crit(P). Thus, critical pairs
are also called "reversed nonforced pairs". For any finite
poset, every incomparable pair is forced by a critical pair.

For S cJ(P), an alternating cycle of fength n for §
is a sequence of the form Xqv Y9 Xps Upsensy Xpr Yy, with

<x{,y{> € S, 1 < i <n, and ¢y. £ x. in P (with sub-

7L L+1

scripts taken modulo n). S is cycle-free if it has no

alternating cycle. The above cycle is minimal if y; s X,

implies 4§ = 4+1 (mod n). If S is not cycle-free, then

there is a minimal alternating cycle for S. If the above alter-

nating cycle is minimal, then  both X1y Xpy eoey X }  and
n

{q1, yz, cesy gn} are p-element antichains. for example,
Xy < Xi would imply that qn < X{ . Thus, the length of a
minimal alternating cyecle for J(P) cannot exceed the width of
the poset PpP.

We say that a family (Ek | £ € I) of partial extensions

rnealizes P (or sE) when (Ci | { € I) vrealizes < for

P
any choice of linear extensions Ci of P that extend E(
({ € I). The dimension of P is the minimum (nonzero) size of

such a realizer. Let P be a poset in which every incomparable
pair is forced by a critical pair. If P 1is not a chain, then
dim P 1is specified by each of the following three definitions:

(a) The least number of partial extensions of # whose
union contains Crit(p).

(b) The least number of partial linear extensions of P
whose union contains Crit(p).

(¢) The least number of cycle-free sets covering Crit(p).




178 D.KELLY AND W. T. TROTTER, Jr.

The set Crit(P) is the smallest subset of J(P) that
could be used in the above definitions; thus, Crit(FP) is a
wepitical® set in dimension calculations. When using definition
(a) or (b), we often write a critical pair a,b> as "a < b"
and call it a cnditical inequalily .

Henceforth, any poset is understood to be finite unless the
contrary is explicitly stated. P will always denote a poset. A
realizer is {tredundant if no proper subset is a realizer. The
dimension is the smallest size of an irredundant realizer consis-
ting of linear extensions, while the rank is the largest. Note
that realizers used for rank must consist of linear extensions,
in contrast to the case for dimension. For example, the realizer
consisting of Crit(P), considered as partial linear extensions,
is not permitted. Since any proper extension of P satisfies
some nonforced pair, I. Rabinovitch and I. Rival [1979] observed
that rank(P) < | N(P)|. S.B. Maurer, I. Rabinovitch and W.T.
Trotter ([1980al, [1960b], [1980c]) describe how to determine the
rank from N(p), considered as a directed graph. Since n(p)
and Crit(p) are converses of each other, any extension satis=-
fying all of 1N (p) will fail every critical inequality. =+ An
extension satisfying all of n(p) is called a weak extension.
in Section 5, we show that every irreducible poset, except the
o-element antichain, has a weak extension.

we shall define a subposet P(P), the set of ineducible
elements of #, that has the same dimension as P. (The term
wippeducible" has a completely different meaning when applied to
elements than when applied to posets.) J(P) 1is the subposet of
join-inreducible elements (a € J(P) iff a = VS  implies
a € §). If P contains a least element 0, it is join-reducible
since we allow & = @. M(P), the subposet of meet-irreducible
elements, is defined dually. We define

E(P) = J(P) v M(P),
a subposet of P.

1f P 1is a lattice and x € P , ‘then Xx € J(P) iff «x
has a unique lower cover. 1In an arbitrary finite poset P, it is
much harder to recognize the join-irreducible elements. This
difficulty is overcome by constructing the finite lattice
L = L(P) which contains # as a subposet and satisfies  J(L) =
J(P), M(L) = M(P) and B(L) = B(P). L(P), the completfion of
P, is called the "completion by cuts" and defined in Birkhoff
[19671; it is also called the "MacNeille completion". The defin-
ition of L(FP) does not require P to be finite. Whenever a
complete lattice contains a poset P, it contains the completion
of P as a subposet. We shall not define the completion. Given

-
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a finite poset P and a lattice [, one can use the following
result to determine whether [ = L(P).

LEMMA 1.1. (Banaschewski [1956] or Schmidt [1956]1) 14 the poset
P 48 a subposet of the finite LZattice L , then L = L(P)
{4 PB(L) € P.

In particular, the completion of a finite chain is the chain
itself. Using definition (a) or (b) of dimension, the next
result shows that pP(P) and P have the same dimension.

LEMMA 1.2. (Kelly [1981]1) Foxr a finite poset P,

Crit(P) < M(P) x J(P).

Proof . Let a,b> e Crit(p) and suppose that
& = S with a & 5. For all x € 5, x > a, and there-
fore, X >b. Consequently, a = Ns 2 b, a contradiction.

PRUBLEM 1.3. Let P be an irreducible poset. Since P(F) has
the same dimension as P, P(P) = P. By definition (a), every
element of P appears in some critical pair. For x e P, it
follows by Lemma 1.2 that X e M(P)-J(P) if and only if x is
the first element of some critical pair, but never the second.
1f X appears in both positions in critical pairs, then x
must be doubly irreducible (i.e., x € Irr(P) = J(P) n M(P)).
We do not know whether the converse holds.

PROBLEM 1.4. From the Ore definition,
dim(P x Q) < dim P + dim @,

for any posets P and &. In general, this inequality can be
strict. For example, the product of two nontrivial antichains is
an antichain and thus has dimension two, although the sum of the
dimensions is four. A poset is bounded if it has a least element
(zero) and a greatest element (one). K.A. Baker [1961] showed
that equality holds above if P and & are bounded posets. Let
us indicate a proof. Suppose the linear extensions (., C cuny

1, 2!
Cﬁ+n realize P x ¢, <0,1> < <1,0> holds in 61, ceey Ch s
and <1,0> < <0,1> holds in qm+1, ceey Cﬁ+n . If
a,b> € JI(P) , then <a,1> < <b,0> must hold in ¢; for
some 1 <4 < m. Consequently, m = dim P and, similarly,

n 2 dim g. Therefore, dim(P x @) = dim P + dim ¢. Thus,
dimension is additive for direct products of bounded posets. Let
b(P, @) € {0,1,2} count how many of P and § are not bounded.
We confecture that
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dim(P x @) > dim P + dimQ -b( P, &)

in the b = 2 case, it would suffice to prove (or disprove)
this conjecture for irreducible posets F and Q.

K.A. Baker [1961] proved that [L(P) has the same dimension
as P for any (possibly infinite) poset P, The completion of a
chain is a complete chain. A product of complete chains is a
complete lattice, and therefore contains, as a subposet, the
completion of each of its subposets. Using the Ore definition of
dimension, Baker's result now follows easily. (A proof using the
Dushnik-Miller definition is given in Kelly [1981]1.) Recall that
P(P) = P(L(P)). If P is finite, then

dim p = dim P(P) = dim R(L(P)) = dim L(P),

because the operator P  preserves dimension in the first and
last equalities. This proves Baker's result for finite P.

For n 2 3, let us define the poset .

s = p(2").
" ~'&
Sn has 2n elements and dimension p. We call 3 the
n
standard poset of dimension p. Let Sh = {a1’a2"°"an’
bl’b2’°°"bn}’ where a; is minimal and aillbi for
1 <4 < n. The following n-=1 partial linear extensions

realize S =~ {b.}
n 1

a3,au,...,an,a1,b2,a2

a2,a1,b3,a3

bi’ai 4 <4 <n).

Consequently, Sn is np-~irreducible. Observe that 53 is the
poset AO of Figure 1. For an infinite cardinal W, the poset
%n, consisting of one-element subsets of 1w and their comple-

ments, is the standard poset of dimension W.

We can associate a hypergraph to a finite poset P so that
the chromatic number of the hypergraph is the dimension of the
poset. The hypergraph H(p) 1is defined as follows:

The vertex set of H(P) is Crit(pP).
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) -b( P, Q@ . ; An edge of H(P) 1is any set of the form
to prove (or disprove) . {<Xi’gi> | 1 <4 <n)
and &.
where x1,q1,x2,q2,...,xn,yn is a minimal
EPaSTEZeczzﬁfeS;gznz;og alternating cycle for Crit(P).

f complete chains is a
1S, as a subposet, the
1g the Ore definition of
ily. (A proof using the

By definition (¢), P has dimension at most § if and only
if the hypergraph H(P) is (vertex) k-colorable. By Kelly,
Schonheim and Woodrow [1981], a graph can be constructed that is

1y [19811.) Recall that k-colorable if and only if H(pP) is.
Calculating the chromatic number of H(p) is not usually
)) = dim L(P) the easiest way to determine the dimension of a poset P. Even
= ~ ! the hypergraph itself may be difficult to calculate. For
nsion in the first and example, the only posets P of Figure 1 for which H#(P) is a
;1t for finite P. graph are AO’ A1, C, D, and F@‘ However, ﬁ(Gn) is a graph
i whenever n = 1. The simple structure of this graph will be
exploited in Section 7. In Figure 2, we show G2 and its

hypergyaph; the labelling indicates a weak linear extension (so
that 4 > 4 as integers whenever <{, {> is critical).

B We call S the

n
SV! = {a,»lya,za‘*"’(lns
for
2t and aillbi <10,9> <9,7>
rtial linear extensions <11,10> o= o <7,6>
i =0
11
10 9 <8,3> > <10,8>
7 6 Y <6,5>
bserve that 83 is the 5 4 <9,8> > <8,2>
» i 0 oset
. cardinal , the p 3 - 8
f mw and their comple- ’/////////,///0

o 1 2, 1> i)————o—--—-o___ﬁj <5,4>
. <3,2> <b,3>

"inite poset P so that

s the dimension of the

as follows:

Gy H(G,)

it(P).

FIGURE 2. A poset and its hypergraph
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The connection between dimension and graph (or hypergraph)

coloring has Dbeen exploited to determine the computational

complexity of dimension. Section 4 is devoted to this topic.

2. TWO INTERPRETATIONS OF DIMENS1ON

THEOREM 2.1. (lrotter and Moore [1976bl) Let G be a possibly
infinite connected graph. Let P be alf connected induced
subgraphs of G, ordered by inclusion. P includes the empty
set.) The dimension of P is the number of noncut vertices of
c. (A verntex v of G 44 a noncut vertex when the removal of
v Leaves a connected subaraph.)

Proof. A critical pair for P 1is <4,{u}> where A4 is
a connected component of G - {u}. Since every incomparable
pair is forced by a critical pair, we can use definition (c) of
dimension.

Let Vis 0 < 4{ < w, be the noncut vertices of . The
subposet

{{vi}I051<m}u{0—{vi}l05{<m}

is isomorphic to the standard ® ~dimensional poset. Thus, dim P
> W, Next, we define 1 cycle-free sets covering Crit(P).

For 0 < 4 < mw, S; consists of the critical pairs <4,{u}>

with dx,v.) > dlu,v;) for all x € A. Let <4,{y}> Dbe
a critical pair. if "u = Vo then <4,{u}> occurs in Sk.

Otherwise, we can assume that u is a cut vertex. Choose a

noncut vertex Vi in a connected component of G - {u}

different from A. For x € A4, d(x,vi) = dlx,u) + d(u,vi)
> d(u,ui)‘ Consequently, <A qud> ocecurs in é&. Since

each Si is eycle-free, dim P =mw.

THEOREM 2.2. (wille [19751]) Let L be a finite distnibutive
Lattice and p = J(L), the subposet of foin-inneducible
elements. dim P 44 the feast number o4 chains whose union
generates L.
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Remark . Applying the decomposition theorem of Dilworth
[{1950], the above statement means that dim P is the minimum
width of a generating set of L.

Proof. If P is embedded in the direct product of finite
chains 01, 02, cesy Cn , then applying the usual duality theory

for finite distributive lattices (see, for example, Birkhoff
L19671), L is a homomorphic image of the free {0,1}-distri-
butive product of {0,1}-chains D1, DZ""’ Dn’ where ID{' =

IC{,I + 1 for 1 <4 £ n. For 1 <4 <n, DZ, the image
of D. in L, is a chain. Clearly, Dz v D, u ... U D
fa 1 2 n

generates L.

If L[ is generated by the {0,1}-chains Di’ 1 <1<,

then L[ 1is a homomorphic image of the free {0,1}-distributive

product of D1, D2, ceey Dn' Reversing the previous argument, we

conclude that P is embedded in the direct product of n
chains. This completes the proof.

3. DIMENSION AT MOST TwO

As wusual, all posets are finite. For a poset P, C(P)
will denote its covering digraph; <a, b> is in C(p) exactly
when a—<b in pP. The usual diagram ("Hasse diagram") of P
is. a representation of  C(P) in the plane where each edge
<a,b> is represented by a straight 1line segment with a
lower than b. The poset P is planar if C(P) can be
represented in the plane with no crossing of edges. A bounded
planar poset is a lattice. A lattice is planar iff its dimension
does not exceed two. If a poset is not a lattice we could take
its completion, and determine whether that is planar. In fact,
to prove that a poset has dimension at most two, it suffices to
embed it in any planar lattice. If a planar poset F has a
zero, its dimension does not exceed three (Trotter and Moore
[1977]). However, planar posets have arbitrary finite dimension
(Kelly [1981]).

Let o: L ~ 01 X 6‘2

lattice L into the direct product of the two chains C

be a (poset) embedding of the

1 and 6‘2.

We identify each chain Ci with the subposet {1,2,,..,|C{.|}

of the reals. We shall write <a > for ¢(a). As in

1 %2




184 D.KELLY AND W. T. TROTTER, Jr.

FIGURE 3. A planar representation

Figure 3, we draw axes at MSO to the horizontal so that the line
Xg + X5 = 0 1is horizontal and the line Xqg = X5 = 0 1is ver-

tical. Each a € L 1is plotted at the point with coordinates
<a1, a2>, Joining covering pairs by straight lines, we obtain

a planar representation of L. Certainly, a 1is plotted below
b whenever a < b in L. Let a —< b and ¢ —< d in L
with |{a, b, ¢, d}| = 4, and suppose that the corresponding
edges cross. It would then follow that <a1, a2> and
<¢y, ¢,> are both less than <b1, b2 > and <d1, d2>, and
therefore, that ave < bad holds in L. Since a =< b,
we conclude from a < ave < b that ave e {a, b}. 1Irf

ave = b, then ¢ < b s bad = d  would imply b = d a’

9
contradiction. Therefore, ave = a, By symmetry, ave

=C,implying a = ¢, a contradiction.
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The planar representation of the lattice [ in Figure 3 is
derived from the diagonal mapping and the following two linear
extensions of L:

¢

C2

a, b, c, e, d, 4, g

a, d, ¢, 4§, b, e, g

Let G be the J{ncomparability graph of P, the graph with
vertex set P and edge set JI(FP). 1In Section 8, we show that
G determines the dimension of P. This result is usually stated
using the complement of G, which is called the comparability
graph of P and denoted by Comp(P). We shall also write J(P)
for the incomparability graph of G. A transitive ondentation
of a graph ¢ 1is a strict order relation A on the vertex set
of (¢ such that x and y are comparable with respect to A
iff xy is an edge of G - Clearly, a graph having a
transitive orientation is the same thing as a comparability
graph. A transitive orientation A of J(P) is called a
conjugate order for <p (or for p). B. Dushnik and E.W.

Miller [1941] showed that dim 2 < 2 iff P has a conjugate
order. K.A. Baker [1961] combined this result with a result of
J. Zilber (ex. T(c), p.32 of Birkhoff [1967]) to show the equiva-
lence for lattices between planarity and dimension at most two.

For a poset P embedded in the product 01 X 02 of two

chains, the Atandard conjugate order A is defined by:

X Ny iff n1(x) < n1(y) (for x|ly in P).

if A is a conjugate order for SP’ then SP u A and
d

SP U A are two linear orders that realize P. Consequently,

given any conjugate order A for a poset F, there is an

embedding of P into the product of two chains for which A is
standard.

A conjugate order I for a lattice L has a geometric

interpretation: for xlly in L, x My iff x is "to
the left of" y in some planar representation of L. Given a
planar representation of a lattice L, the set of lower covers of
any element has an obvious left-to-right ordering . If

»

xlly in L, then let x”° and y be the lower covers of
Xvy that are comparable with X and Y respectively. We
define x A y if x” A y” , and y A x if y~ A x7;
A is the left-to-right ordering of [ with respect to the
planar representation. For example, in Figure 3, b is to the
left of § . (For more details, see Kelly and Rival [1975al.)
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If the planar representation of a lattice L 1is obtained from an
embedding into the product of chains 01 and 02 by the

procedure we gave above, observe that the left-to-right ordering
coincides with the standard conjugate order.

Let A be a conjugate order for a poset P. We can assume
that P 1is a subposet of a product 01 X 02 of chains and that

A is standard. Since C.I x 02 is a lattice it contains [(P)

as a subposet. Clearly, the standard conjugate order for L(P)
extends \. We have shown that any conjugate order for a poset
P can be extended to a conjugate order for [L(P). (In fact, the
extension is unique.) Thus, any conjugate order A for an
arbitrary poset P has the following interpretation: )\ 1is the
restriction to P of the left-to-right ordering of L(P) with
respect to some planar representation.

M.C. Golumbic ([1977al, [1977b], [1980]) has developed an
algorithm to decide whether a graph is a comparability graph.

Since this algorithm has complexity O(n3), where pn 1is the
number of vertices, deciding whether dim(P) < 2 has complexity

O(]P|3) by the Dushnik-Miller result.

D. Kelly and I. Rival [1975al determined the minimum list
£ of lattices such that every nonplanar lattice contains a lat-
tice in £ as a subposet. In particular, each lattice in &
is nonplanar. In contrast to K. Kuratowski's [1930] characteriz-
ation of planar graphs, £ is infinite. Pz {P(L) | L €&}
is an infinite set of 3-irreducible posets because, for each
L € &, the subposet L - ix} is a planar lattice for each
X € P(L) (Kelly and Rival [1975b]l). © contains the first
nine posets of Figure 1.

Let G(P) be the ordinary graph corresponding to the
covering digraph C(P), and let 601(P) be the graph obtained

from G(P) by adding an extra edge from 0 to 1. C.R. Platt
[1976] showed that a lattice L 1is planar iff G01(L) is

planar. 1If P 1is an n-element poset with dimension at most 2,

then |L(P)]| =< nz. Clearly, one cannot form the completion in
any polynomial algorithm to check whether dim(P) =< 2. If a
subposet & of L(P) 1is not a lattice, one can add a point «x
to & so that ¢ U {x} is a subposet of L(P). Starting with
P, this procedure is repeated until a lattice L 1is obtained or
¢ has more that n2 elements. If [ is obtained, G01(L) is
formed and Platt's result is applied. Thus, we have indicated
another proof that dimension at most 2 is polynomial, but with a
much less efficient algorithm than Golumbic's.
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4, COMPUTATIONAL COMPLEXITY OF DIMENSION

M. Yannakakis |1981] has shown that it is NP-complete to
determine if the dimension of a finite poset is at most 3. The
reader is referred to the book of M.R. Garey and D.S. Johnson
[1979] for the precise definitions and background on computa-
tional complexity. The intuitive idea (which more than suffices
for us) is that any algorithm for deciding an NP-complete problem
will use an excessive amount of time, even for small examples.
M. Yannakakis associated to each finite graph G a poset Y(G)
such that G is 3-colorable iff dim(Y(g)) < 3. We shall
present his construction of Y(G). Since 3-colorability is
NP-complete (Garey, Johnson and Stockmeyer [1976]), the above
equivalence proves that the dimension at most 3 problem is also
NP-complete. Since the dimension < 2 problem is polynomial (see
Section 3), it follows that the dimension equal to 3 problem is
NP-complete. Consequently, dimension equal to [f is NP-complete
for each fixed k 2 3. Ey similar methods, M. Yannakakis [1981]
also showed that the dimension < 4 problem for posets of unit
length is NP-complete, but he left open the complexity of the
dimension < 3 problem for posets of unit length. Using a
reduction to hypergraph 2-colorability, which is NP-complete by
Lovasz [1975], E.L. Lawler and 0. Vornberger [1961] proved the
weaker result that the dimension problem is NP-~complete.

Let G Dbe a finite graph with its vertices labelled 1, 2,
ooy N that has m edges E E

’1, PUBRERE %n' The underlying
set of the poset Y(G) consists of ;s bjﬁ az, bz (1 =4 £n)

and Cpo dk’ cé, dé (1 £k <m). The ordering of  Y(G)

is indicated in Figure 4. The comparabilities in the left-hand
diagram are @he same for every graph with n vertices and m
edges. For 4 ¢ Ek, let

. ( ey , if 4 = min B, 3
L o= {
ik ) .
( dk , if 4 = max B, -
and
oo E dh , if 4 = min B ;
ik ( ¢, , if 4 = max Ek
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4

FIGURE 4. The associated poset Y(G)

As indicated in Figure 4, -the following comparabilities also hold
in Y(G), where { € Ek: ‘

. o<un b. <u’, .
dg “Ui ik

Let” 1 < 4, § £ n and 1 <k < m. The critical

inequalities for Y(G) are:

, T <a.
a; < bj , bL a

J
az < aj s bz < bj “ =)

% <dp o A <

»
£

a; <cq, bi <Cqy, ag <d,, b, <d

1 L s

vzh <a; , UZk < bi £ € Ek) .
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We first assume that dim(Y(G)) < 3, and let LO’ L1 and

L2 be three linear extensions realizing Y(G). Any isolated

vertex 1is colored arbitrarily. If i € Ek , then the
following three critical inequalities must hold in three
different linear extensions:

T < b. T< oa. TS V., .
a b. , bL a; , uy, i

£ < 4
If the last one holds in La , then we set col({) = a. If
E, = {4, §/} and & and 4 are both assigned the color a,
then ¢, < dk and dh < ¢, would both hold in L,, a

contradiction. Thus, & 1is 3=-colorable.

Let G be a graph that is colorable with the three colors

0, 1, 2. We shall define three partial linear extensions
that realize Y(G). if L0k E, , then we define uzk
to be the empty sequence. The range of { is 1, 2, ..., #,
in this order when we write {*+ , and in the opposite order
when we write {+. When no arrow appears, any linear order is
suitable. Also, k ranges over the set {1, 2, ..., m}. For
a =0, 1, 2, Lu is the following linear extension of Y(G):

(a{ bi | col(4) = a) @ (w7, ¢, dh | col(4) =za, kt)
@(az bz | col(4) = a) ‘

e(ai a; b{ bz Uzp | col(4)

o+ 1, 44)
o+ 2, 4¥) .

e(b{ bz a; a; uz, | col(4)

(The ordinal sum, indicated by ®, is explained in the next
section; addition is modulo 3.) Every critical inequality holds
in one of these extensions. Therefore, dim(Y(G)) < 3.

5. DIMENSION, WIDTH AND CARDINALITY

In this section, we shall derive some upper bounds on the
dimension of a poset, in terms of parameters such as width and
cafdinality. Essential use will be made of R.P. Dilworth's
decomposition theorem (Dilworth [1950]). All posets in this
section are finite.

Let P be a poset and (Qx | x € P) be a family of

posets indexed by P. The oadinal sum of this family is the
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poset <K;<>, where R consists of the pairs <X, Y> with
X € P and Y € Qx’ and <x1,y1> < <x2,y2> iff X, < X5

or X, = X, = X and y1 < y2 in @y The ordinal sum is
{mproper if the base poset P is trivial or if each g, is
trivial. 1If the base poset is the chain 1 < 2 < ... < 1, we
write the ordinal sum as Q1 < Q2 ® ... © Qn . A poset is

decomposabfe if it can be written as a proper ordinal sum. In
particular, an indecomposable poset with more than two elements
is connected; that is, it cannot be written as a disjoint union
P + § of two posets.

A subset S of a poset P is partifive when both the
following conditions hold whenever X, x* €5, y €5 :

x <y iff x" <y ;

x>y iff x7 >y .

A partitive subset S is proper when 1 < |S| < |P|. If a
poset has a proper partitive set, it is decomposable, and
conversely.

THEOREM 5.1. (Hiraguchi [19511) I <a;s> 48 the ordinal sum
of the family (&, | x € P) over P, then dim R 4«4 the

maximum 0f the dimensions of P and Zhe poseis @ » X € P.

To prove Theorem 5.1, a realizer of R 1is constructed from
a realizer of P by replacing each X € P by a linear exten
sion of Q- This result also appears in Novdk [1961]1. Theo

rem 5.1 implies that any irreducible poset is indecomposable.
Recall that a weak extension of a poset P satisfies every
nonforced pair of P. The next result shows that every irre-
ducible poset except 1 + 1, the 2-element antichain, has a weak
extension.

LEMMA 5.2. Each nontnivial poset contains 1 + 1 or has a
weak extensdion.

Proof. We write X for the underlying set of P. Observe
that n(P) is a transitive relation on X. If 0a(P) is not
antisymmetric, then n(P) contains both <x, y> and <y, x>
for some x, Yy in X. The antichain {x, y} is then a
partitive subset of P. We can now assume that n(p) 1is a
strict order relation on X. Since <x, y> € n(P) and
y < z implies that x < z, it follows that <p U n(p) is
an order relation on X.
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For a nonempty subset S of P , the down-seL for S ,
denoted by D(S), 1is the set of all Y € P such that Y < X
for some X € S. The up-4et U(S) 1is defined dually. The

down-set for {x} is written as D(x). Observe that the
principal ideal (x] = {x} u D(x) and the principal filter
Lx) = {x} u U(xn). If A and B are disjoint subsets of a

poset P, then an extension E of P is said to put A4 undex
B when a < b in E for each incomparable pair <a, b> of
P with a ¢ A and b € B.

THEOREM 5.3. (Rabinovitch [1973]) Let 4 and B be ddisjoint
subsets of a poset P. There does not exist an extensdion of P

putting A under B {44 Lhere are a;,a, € 4 and b1,

b2 € B with b1 < aq, b2 < ay, b1 I a, and b2 I

a, (80 that these four elements form 2 + 2 ).

Prook. Let S = (A4 x B) n %P). If S 1is cycle-free,
then clearly the desired extension exists. If, on the other
hand, § «contains a minimal alternating cycle aqs b1,..., Aps

n’ b1 form the required copy of 2 + 2.

bn’ then a,, a,, b

If ¢ 1is a chain in P, then an extension putting (¢ under
P - ¢ is called an upper extensi{on of (. Lower extensions
are defined dually. T. Hiraguchi [1951] first established the
following result, which we obtain as an immediate corollary of

Theorem 5.3. In fact, if ¢, < ¢, < ... < C, is a chain in

P , then the least upper extension of this chain is:

(el @ ((e,] =(ey]) @ ... @ ((c,] -(c, 1) @ (P-(c, ]).

COROLLARY 5.4. Any chain in a posel has an upper extensdion.

THEOREM 5.5. (Hiraguchi [19551) The d{mension of a poset does
not exceed {ts width.

Proof. Let P Dbe a poset of width n. By the theorem of

Dilworth [1950], P can be covered by chains (C,; , 1 < {2 n.,

For each 4, let EL' be an upper extension of C'{r,
existence is guaranteed by Corollary 5.4, If a € Ci and

whose

allb in P, then a < b in E - Therefore,

(Ei | 1< 4{<n) realizes P, so that dim P < n.
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Since the standard n-dimensional poset has width 1, the
inequality in Theorem 5.5 is the best possible. We give another
example of an irreducible poset with equal width and dimension.

EXAMPLE 5.6. For each n = 4, the poset P, of Figure 5 has
dimension . (For clarity, we have only indicated the incom

parable max-min pairs of Sn_1 .)

Proof. By Theorem 5.5, dim(P“) < n. Suppose that the

linear extensipns 01, 02, ey Cn-1 realize Pn' We can
assume that C; < ay holds in Ci for 1 £ 1 £ n-1.
Suppose bi < u in Cj' It then follows that b{ < aj
in C., from which we conclude that { = 4. Thus,
bi < uj < c; < oag holds in Ci for each Lo In a
similar manner, we deduce that v < a in C(, for each (.
Consequently, v < d in each C{ and, therefore, in P .

This contradiction shows that Ph has dimension n.

¢ Cnat
b1 Q 24 3 9 o bn 1

g g g g

2 D] > 2

< < < <

2 > > >

< S S < <

2 2 13 :

2 2 2 2

o o e} o

a, a, ag + .+« @p g

FIGURE 5. The poset Pn
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D.KELLY AND W. T. TROTTER, Jr. DIMENSION THEORY FOR ORDERED SETS 193

set has width &, the For X e P, 1I(x) , or 1.(x), will denote the set of
sible. We give another 2

 width and dimension. all Yy € P with X”y. Observe that the sets D(X,), U(X),

I(x), {x} form a partition of p. If S 1is a subset of P

t P of Figure 5 has and £ is an extension of P, then E(S) denotes the restric-
no i tion of E to §. Clearly, E(S) 1is a partial extension of P.
ly indicated the incom We can now state and prove the one-point removal theorem.

THEOREM 5.7. (Hiraguchi [1951]) Removdng one podint grom a poset

decreases {ts dimension by at most one.
n. Suppose that the

realize p,. We can Proof. For a poset P, let E=E,, E,,...,E,  Dbe extensions

for 1 < 1 < n-t. realizing @ = P - {x} . We define two extensions of P:

follows that b(, < a-:

1t L o= 4. Thus{ M.I = E(D(x) u I(x)) @ {x} & E(U(X)),
for each Lo In a
in Ci for each 4. My = E(D(x)) @ {x} ® E(U(x) u I(x)) .

1d, therefore, in Pn’

Any incomparable pair of P involving X 1is satisfied in ¥
or M,. Let <a,b> € ), and assume that b < a in E

2
E3,..., E,. It follows that a < b in By

a t b in both M, and M. This can only happen if b e D(x)

and a € U(Xx). This implies b < a in P, a contradiction.

nsion #n. 1

2 b
Suppose that

Therefore, the partial extensions M1, M2, E’2, E3,..., E

realize P, so that dim P < dim & + 1.

n

: :
2 >
£ £
P >
< <
: :
2 2
[¢) o}

a

O]
w

n—1
u

h FIGURE 6. A pair of 2-dimensional posets
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THEOREM 5.8. (Kimble [19731, Trotter L1975b]) I 4 45 an
antichain in a poset P , then dim P < max( 2, |P-4l ) .

Proog. Let 4 Dbe an antichain in a poset P with [P-4|
< 2. We shall show that dim P < 2. The gereral result will

then follow by Theorem 5.7. By induction on |P| , we can
assume that P is connected. We can also assume that A4 1is
maximal. Let pi denote the poset obtained from P by
collapsing each partitive antichain to a single point. By
Theorem 5.1, dim P < max(2, dim p¥). If |p-4| 1is at most
one, then dim P is at most two because |P#] < 2 in this
case. Let p-4 = {u,v}. If u|jv , then pP¥ 1is a subposet

of the left poset of Figure 6, or its dual. If u < v , then
P¥ is a subposet of the right poset of Figure 6. Since both
posets of Figure 6 are 2-dimensional, the proof is complete.

We now combine the preceding results to obtain Hiraguchi's
inequality.

THEOREM 5.9. (Hiraguchi [1951]) 1§ P 45 a poset with at Least
4 elements, them dim P < |P|/2 .

Proog. Let 4 be an antichain in P of maximum size.
If  |4| < |p|/2 , then dim P < |P|/2 by Theorem 5.5. Other-
wise, |P-4| < |P|/2 , and the result follows by Theorem 5.8.

We conclude this section with two additional inequalities
whose proofs utilize Dilworth's decomposition theorem.

THEOREM 5.10. (Trotter [1975Db]) Iﬂ M is the set o4 maxAmal
elements o4 a poset P, then dim P < 1 + width(P - M).

Proof. Let n = width(p - M) and let

P-M =C, U 02 U ess U C”

1
be a partition into chains. Let E{ be a lower extension of

C; for 1< 4 < n, with E, linear. Also, let

o o\ d
Epoq © En(P - M) @ (En) (m),

a linear extension of P. Since (E1, EZ""’ En’ En+1) is a

realizer of P, the result follows.
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THEOREM 5.11. (Trotter [1974b]) If A 48 an antichain in a
poset P and A=z P, then dim P< 1 + 2 width(P - 4).

Proof. Let n = width(P - 4) and let

P-4 = 01 U 02 U oeo U Cn

be a partition into chains. As above, let E{ be a lower

extension of C; for each {, with E, linear. Also, let

Fi be an upper extension of Ci for each L . These 2n

extensions, together with (En)d(A) , realize p.

Equality holds in Theorem 5.10 for the poset Pn of

Example 5.6. The inequality in Theorem 5.11 is shown to be the
best possible in Trotter [1974b]. If 4 and B are antichains
in a poset P, then <4, B> is a doubfe antichain iff a < b
whenever a € 4 and b € B. The double width of P is the
maximum value of 4] + |B] for a double antichain <4, B>.
0. Pretzel [1977] has proved an analog of Dilworth's decompo-
sition theorem for double width, and has generalized the
inequality of Theorem 5.11 by replacing twice the width by the
double width.

6. MORE REMOVAL THEOREMS

As usual, all posets are finite. Removing an antichain can
lower the dimension drastically. If all the maximal elements are
removed from a standard #n-dimensional poset, then one is 1left
with an antichain, a poset of dimension 2. In fact, if all but

two maximal elements are removed from Sn ’ the dimension
becomes two. For example, if #=7, the remaining poset can be
embedded in the planar lattice of Figure 7. However, the

dimension drops by at most two when a chain is removed from a
poset.

THEOREM 6.1. (Hiraguchi [19511) 1§ € 4s a chain 4in a poset
P, then dim P< 2 + dim(P - ().

Proof. Add a lower and an upper extension of (¢ to a
realizer of P-C to obtain a realizer for P (consisting of
partial extensions).
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FIGURE 7. A planar lattice

If n =24 and a 2-element chain is removed from S, ,

n
then the dimension drops by 2. Since the remaining poset has
width n -1, this may have been unexpected. Hiraguchi's

[1951] original proof of his inequality (Theorem 5.9) depended on
many removal theorems, as did the later proof of Bogart [1973].
The maximum decrease in dimension is one for the two-point
removal theorems and two for the four-point ones. In both cases,
at least one four-point removal theorem was required. Chain
removal theorems give conditions under which removal of a chain
decreases the dimension by at most one.

THEOREM 6.2. (Bogart [19731) I¢ ¢ 45 a chain in P and
each point in P - C 45 {ncomparable with at most one point 4in
¢, thenm dim P < 1 + dim(P - C) .

Proof. Let C be ¢, <, <<, . Let E=E,, E,,
ceey Et be extensions realizing P - C. For 1< 4 < n , let
D; = Dy - ¢ and U; = Uley) - € . Also, let
DO =@ = Un+1 and Dn+1 = P = UO . The assumptions imply
that each X ¢ P - ¢ is in D4 -0 n Wy - Ugq) for
some (unique) value of 4 in {0,1,¢0.,n}. It is then
immediate that P 1is realized by E2, E3, ceoy Et and the

following two extensions of P :
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E(D1) ecC, o E’(02 - D1) ®C. 9 ... 0 cn@E(P- D,)

1 2

E(P - U1) ®c, aaE(U1 - 0'2) ®C, ® ... 0, eE(Un)

This completes the proof.

PROBLEM 6.3. A pair <a, b> of distinct elements in a poset P
is called #emovabfe if dim(P - {a,b}) 2 dim P - 1 . If a
poset with at least three elements is not irreducible, then it
has a removable pair. (First, choose an element whose removal
does not lower the dimension; the second element can be chosen
arbitrarily.) We believe that every d-irreducible poset (d = 3)
contains a removable pair. In fact, we confecture that every
critical pair of such a poset is removable.

The nank of a cover a-<b is the number of incomparable
pairs <x,y> with @ < x and y < p. T. Hiraguchi [1951]
showed that a cover of rank at most one is removable. This
result is generalized in the following theorem.

THEOREM 6.4, 14 the cover a—<b {n P has rank at most
(dim P) - 3 , Zhen {f 4 nemovable.

Proog . Let L = LyyLyyeessly be linear extensions
realizing P - {a,b}. By the one-point removal theorem, n =z
(dim p) - 2. Thus, there are at most n-1 incomparable pairs:

<X, 4> such that a < X and Y < b. If <X,y> is any of
these pairs, we can assume that y < X holds in L. for some
2 < { £ n. P is realized by L2, L3,..., Ln and the

following two linear extensions:
L(D(a)) ® a ® L(D(b) - D(a)) @ b @ L(P - D(b))
L(P - U(a) ® a & L(U(a) - U(b)) @ b @ L(U(D))
Thus, dim P < 1 + dim (P - {a,b}).

Except in the dim P = 3 case, Theorem 6.4 yields Hiraguchi's
result that covers a =< b of rank at most one are removable.

However, if dim P = 3, it 1is clear that P - {a,b} 1is not a
chain. (Otherwise, P  would have width at most 2.) Thus,
P - {a,b} has dimension at least 2, and we can reason as in

the proof of Theorem 6.4. Note that each chain in the standard
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n-dimensional poset (n = 4) is a cover of rank #n - 2 whose
removal decreases the dimension by two.

The #ank of an incomparable pair <a&,b> is the number of
incomparable pairs <X,y> where X 1s comparable to both a
and b, and y is incomparable to both a and b. An
incomparable pair of rank at most one is removable. We shall
present a more general result.

THEOREM 6.5. An {ncomparable pain  <a,b> of rank at most
{(dim P) - 3 45 nemovable.

Proog. Let L = Lyy Lyse-es L, Dbe linear extensions

realizing p-{a,b}. There are at most n=1 incomparable
pairs <x,y> for which x is comparable with both a and
b, and y is incomparable with both a and b. For each of
these pairs <Xy Y2 we can assume that, if X > a, then
x <y holds in L, for some {2 2, and if X < a, then

x >y holds in L, for some 4 =2 2. P 1is realized by

Loy Lygyeeay L and the following two linear extensions:
2° 73 n

L(D(a)) ® ae® L(P - D(a)) - U(b)) ® b ® L(U(b))
L(D(b)) @ b + L(P - D(b)) - Ula)) ® a & L(U(a))

This completes the proof.

Since a pair of maximal elements in Sn (n 2 4) 1is not

removable, Theorem 6.5 is the best possible result. In parti-
cular, any incomparable max-min pair is removable. An incom-
parable pair <a,b> is a  DU-pair if D(a) = D(b) and
U(a) < U(b).

THEOREM 6.6. Any DU-pain <a,b> {5 removable.

Proog . Let E = E1, E2,,.., En be extensions realizing

P - {a,b}. P is realized by E,, E3,..., E, and the

following two extensions:
E(D(a)) ® a ® E(D(b) - D(a)) @ b @ E(P - D(b))

E(P - U(b)) @ b & E(U(b) - U(a)) ® a @ E(U(a))
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7. IRREDUCIBLE POSETS

In Section 1, we mentioned that the list of all 3-irreduc-
ible posets was discovered independently by D. Kelly £1977], and
W.T. Trotter and J.I. Moore [1976al. We shall discuss the two
solutions. The different approaches originate from the two
characterizations of a poset p of dimension at most 2: the
completion of P is planar and J(p) is a comparability graph.

Using arguments with a geometric flavor, D. Kelly and I.
Rival [1975a] characterized planar lattices by the exclusion a3
subposets of a family &£ of nonplanar lattices; moreover, £
is the minimum such collection. If P = {B(L) | L €&}, then a
lattice L is planar iff it does not contain any poset in f? .
As we mentioned in Section 3, every poset in @ 1is 3-irreduc-
ible (Kelly and Rival [1975b]) and # includes the first nine
posets of Figure 1. The determination of & was based on the
characterization of dismantlable lattices in Kelly and Rival
[1975a] or M. Ajtai [19731. A finite lattice is d{smantlable
(Rival [19741) if every sublattice with at least 3 elements
contains a doubly irreducible element. K.A. Baker, P.C. Fishburn
and F.S. Roberts [1971] showed that every planar lattice is
dismantlable.  Let R be a candidate for the set of all
3-irreducible posets. Certainly, ® must contain © . If a
poset P has dimension greater than 2, then L = L(FP) 1is non-
planar, and therefore, contains a poset in £ . It remains to
show that P contains a poset in ® . The first step is to
handle the crowns. We can then assume that P does not contain
any crowns. By the characterization of dismantlable lattices,
this means that L is dismantlable. This has two consequences:
we can assume that L[ - {X} is a planar lattice for a doubly
irreducible element X of L; any element of L - P is
simultaneously the join of two elements of P and the meet of
two elements of P. The remaining details appear in Kelly [1977].

A poset P is 3-irreducible iff G = JI(P) is not a
comparability graph but every proper induced subgraph of G is a
comparability graph. T. Gallai [1967] provided a forbidden
subgraph characterization of comparability graphs by discovering
the minimum collection C of graphs so that a graph fails to be
a comparability graph iff it contains a graph from C as an
induced subgraph. It follows that the incomparability graph of a
3-irreducible poset belongs to C. From this observation, it
follows that we need only examine graphs from the family C and
determine those whose complement is a comparability graph. Any
transitive orientation yields a 3-irreducible poset. 1In fact, up
to duality, there is no choice of orientation because the compar-
ability graph of an irreducible poset is uniquely orderable (see
Section 8). The details are given in Trotter and Moore [1976a].
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A problem for a class of posets is tc determine a formula
for the dimension and to specify the irreducible ones. We shall

discuss the family SZ of W.T. Trotter [1974a). Other examples

appear in Kelly [1981]. Of course, one may only be able to
express the dimension in terms of other combinatorial parameters
as in Dushnik [1950] (the parameters defined there were investi-
gated further in Spencer [1971] and Trotter [1976b]). For

integers n, k with n z 0, the general crown sﬁ is the

poset of unit length with n + k maximal elements a1, ae,.vn

Wit and yzl2 + kR minimal elements b1, b2"“"bn+k°

The order on S, 1is defined by bi < aj iff  § e {4,4+1,

«..,4+kR}, where addition is modulo n+k . Note that Sﬁ

has the (n+k) (k+1) nonforced pairs <bi’ aj> where
. f 0

b{ Ilaj in §,. Clearly, § =3§,.

THEOREM 7.1. (Trotter [1974al). For each #n, kR with n 2 3,
kR > 0, the dimension of sﬁ is [ 2(n+k)/(ke2) 7.

Sketch of Proof. We have already observed that Sﬁ
has (n+k) (R+1) nonforced pairs. It is relatively easy to

i ) k
show that a linear extension of Sn can reverse at most

(k+1)(k+2)/2 of these nonforced pairs. Therefore,
dim(SE) 2 [ 2(n+k)/(Re2) T.

We illustrate the construction of a realizer for Sﬁ by

providing seven partial linear extensions which realize 3?8 .

b7,a6,b6,a5,b5,au,bu,a3,b1,a7,b2,a8,b3
b10,a9,bg,aB,a7,b4,a1O,b5,a11,b6,a12,b7

01298115011:810sb8qysbgsa45:044

b b b b
b b

147%937%920
b

b

b
b 1673152015129y 0442@17,045:845b45,a1 9504y

207%197b
b

17' %160

b

b 167%222%17

b

212%0° 1873179 15:% s

19:%18°
“23’b23'“22’ 2279110150845 b1g0a50b50,05,0

b3,a2,b2,a b 11323 bzz,ab,b

21
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THEOREM 7.2. (Trotter [1974al) Llet n =3, k 2z 0.
(@) 1§ n+k = qlk+2)+ 1, then s& is
(2q + 2)-4nneducdble.
{b.)] 14 n+ k= gk + 2) + L (R + 2)/2 1 + 1,

then % i (2q + 2)-ivreducible iff k=0 or k 4s odd.

The study of general crowns is closely related to a graph
coloring problem which involves properties of the hypergraph

M(SE). When #n > 3 and kR = 1, ﬁ(Sﬁ) is not an ordinary

graph. However, there is a family of graphs for which the deter-
mination of chromatic number is equivalent to the computation of

dimension for general crowns. For m 2 1, £ =2 0, define the
T

web W as the graph whose vertex set is tw,,w,, Wy,

,.,u%} with each w, adjacent to Wirte for { =

1, 2500, N~ 2%- 1 (cyclically). Note that Wﬁ is a regular

graph of degree n - 2t = 1; also note that W; is a

complete graph on m vertices.

THEOREM 7.3. Forx m = 0 and & 2 0, the chromatic numben

of the web WC s [ m/(t+ 1) 1.

Proof. Let W be the vertex set of WI We first show

m
that any independent subset Wo < W has at most t + 1
vertices. For each 4 with 1 < 4 < m, let I(Wj) be the

(2% + 1)- element subset of W defined by
I(uy) = { “g-t’ “y-t+1""’ “3""’ “}+t }.

Observe that w e _I(ug) if w is not adjacent to uy.
Therefore, W~ < N(I(w) | w € W’) holds for any independent
set of vertices W~ in Wﬁ. Since each set I(w) is a set
of 2%t + 1 consecutive elements of W, it is straightforward to

show that if W~ 1is an independent set in wi, then

Ww-l = IANI(w) | wew)l < 28+ 2 - W7,
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Therefore, IW°| < £ + 1.

Now suppose that x(ﬁ/tm) = A4 and let W = W1 Uu ... u W/5

be a partition into independent subsets. Then since Wi

for 4= 1,2,...,4, W] =m< 8(£+1); i.e., 52 m/(t+1).

< £41

Since any subset of 1% consisting of r + 1 consecutive
elements is independent, W can be partitioned into

[ m/(£ + 1) 7 independent subsets.

When n 2 3, B 2 0 and k 1is even, say £k = 2£, the
hypergraph ¥ (Sﬁ) contains the web Wﬁ#z as an induced
subhypergraph. Consider the vertices a: ,5 bi> for

i ); 8
1 < 4 < k. Thus, dim(Sﬁ) 2 W) = [ (k) /(L+1) ]
= [ 2(n+k)/(k+2) 7. When n 2> 3, kR = 0, and k is odd,
- o h . ’2+‘|
say k = 2£ + 1, then (Sn) contains the web 2 (nek)

as an induced subhypergraph. This may be seen by considering the
pairs {<aj’bi> | 4 = 4+ & or 4§ = 4+ k + 1} for
{=1, 2,..., n+k,

Each of the present authors has developed a technique for

constructing irreducible posets, both under the name d4mension
product.

If each of P and & is an irreducible poset satisfying
certain extra conditions, or equals 2, then the d4mension
product P ® @ of P and § introduced by Kelly [1981] is an
irreducible poset of dimension dim P + dim ¢. We shall not give
these extra conditions here. We remark that we do not know any
irreducible posets which violate any of these conditions. In
particular, all 3-irreducible posets satisfy these conditions.
As a consequence, for any un > 3 every 3-irreducible poset can
be embedded in an p-irreducible poset.

In general, the definition of P ® @ 1is quite complicated.
It is always a subposet of K = P(L(P) x L(&)). Although the
expression for . K may look formidable, K is a subposet of
(Pu{0,1}) x (Q u{0,1}). Note that dim R = dim P + dim @ by
the results of Section 1. 1In fact, for the 3-irreducible posets
in ® and for the general crowns, P ® Q = R.
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Let P Dbe a poset of unit length, and for simplicity,
assume no element of P is both minimal and maximal. The {ntes-
val dimension of P, denoted by Idim P, is the least size of a
family & of linear extensions such that every max-min incom-
parable pair 1is satisfied in some member of g . P is
d-interval inreducibfe if Idim P = d 2 2 and Idim (P-{x}) < d

for every X € P. For the family Sg of general crowns,

interval dimension and dimension coincide. Moreover, being
irreducible and being interval irreducible are equivalent for
this family. Trotter's dd{mension product of two posets of unit
length is a poset of unit length where interval dimension is at
least the sum of the interval dimensions of the factors. If P
is m-interval irreducible and ¢ is #-interval irreducible,
then Trotter's dimension product is (m#n)=-interval irredu-
cible, and (m+n)-irreducible. Trotter's dimension product
of P and & 1is the disjoint union of P and § with every
minimal element of P put under every maximal element of &, and
every minimal element of ¢ put under every maximal element of pP.
Let d 26 and n = 2d+2. Starting with the general crowns
and a single 3-interval irreducible poset on 9 points, one can
construct d-irreducible posets of unit length on n points
using Trotter's dimension product. (The list of all 3-interval
irreducible posets of unit length is given in Trotter [1981].)

Recently, W.T. Trotter and J.A. Ross made some striking
discoveries about irreducible posets. We have mentioned that
Kelly's dimension product, for any 3-irreducible poset and
n > 3, gives an embedding of P into an n-irreducible poset 4.
Both ) and the embedding are given explicitly. Whenever
n > d =2 3, Trotter and Ross [1981al showed that every
d-irreducible poset P can be embedded into an p-irreducible
poset Q. Rather than trying to construct such a poset ¢
explicitly, they construct a poset k of dimension n
containing P. We can assume that n = d + 1. The poset R
is constructed so that any subposet of K that does not contain
all of P has dimension less than n. The construction uses a
weak extension of P in an essential way. There are posets of
dimension two (for example, the direct product of a 3-element
chain with itself) which are not subposets of any 3-irreducible
poset. However, Trotter and Ross [1981b] have shown that every
poset of dimension d 2= 3 is a subposet of a (d+1)-irreducible
poset. Their construction uses the dimension product Gm ® Sd—3

for a suitably large value of m. They utilize special proper-
ties of ﬁ(Gm ® Sd-3)' (Recall that the hypergraph for G

m
appears in Figure 2.)
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8. COMPARABILITY GRAPHS

We have mentioned comparability graphs in Sections 3 and T.
We refer the reader to the book of Golumbic [1980] for a detailed
account of this topic. Since an irreducible poset is indecompos-
able, it is uniquely orderable. Using this fact, Trotter, Moore
and Sumner [1976] showed that the dimension of a poset is deter-
mined by its comparability graph. This latter statement is also
true for infinite posets, as shown by Arditti and Jung [1980].
Using Golumbic's algorithm for orienting a comparability graph,
R. Stanley has observed that the number of linear extensions of a

finite poset depends only on its comparability graph.

One might think that the comparability graph also determines

the rank. However, the following examples due to Maurer,
Rabinovitch and Trotter [1980b] show that posets with the same
comparability graph may differ  substantially in rank. For
n =z 2, let Vn be the poset consisting of an n-element
antichain with a =zero added. Let Eh = Vn 4+ Vn 5 and
Qn = Vn + (Vn)d . Certainly, these two posets have the

same comparability graph. Furthermore, dim (p ) = dim (Qn) =2,

but rank( ) = 2[(n+D)2/4 1 and  rank( q,) n?

T

+ 1.

9. FURTHER TOPICS

A poset P is an 4{ntewval order if we can associate a

closed interval Ix of the reals to each X € P so that

X < Yy in P iff Ix lies entirely to the ‘left of Ig‘
P.C. Fishburn [1970] showed that a poset is an interval order iff
it does not contain 2 @ 2 . A semiorder is an interval order
that does not contain 3 ® 1 . I. Rabinovitech ([1973], 11978al,
[1978b]) showed that an interval order has arbitrary dimension
put is bounded by its height plus one, while the dimension of a
semiorder cannot exceed three. (An improved upper bound for the
dimension of an interval order is given in Bogart, Rabinovitch
and Trotter [1976].)

D. Kelly [1980] constucted finite modular dismantlable lat-
tices of each finite dimension. (The dimension of a distributive
dismantlable lattice cannot exceed two.) I. Rival [1976] showed
that the dimension of ‘a finite modular dismantlable lattice L
is bounded by the width of Irr(L). There is a finite list of
modular lattices such that a modular lattice [ has dimension at
most two iff no member of this list is a sublattice of [ (Kelly
[1980]1). A version of this result with exclusion as subposets
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was proved previously by R. Wille [1974]; the case of finite [
appears in Kelly and Rival [1975a]. The dimension of lattices is

also considered in Rival and Sands ([19781,[19791), Sands [1980],
and Babai and Duffus [1981].

The dimension of a poset is the number of order relations of
a special type (linear orders) that are needed to represent the
ordering of the poset as an intersection. If we replace linear
orders by interval orders, then we obtain the J{nfeaval dimen-
Adion of a poset. (Interval dimension is considered in Trotter
and Bogart [1976a] and Trotter and Moore [1976a].) There are
analogous dimension concepts for graphs and digraphs (i.e.,binary
relations; loops may occur). Fennens relations are defined in
Riguet [1951] and threshhofd graphs are defined in Chvétal and
Hammer [1977]. 1In each of these definitions, a finite family is
excluded (as induced relations). The Fennens dimension of a
digraph and the <hreshhold dimension of a graph are then
defined as indicated above. A. Bouchet [1971] showed that the
Ferrers dimension of a (reflexive) order relation is the same as
its dimension. He also showed that the Ferrers dimension of a
binary relation K equals the dimension of the Galois lattice
associated with R. 0. Cogis [1980] associated to each binary
relation F a graph ¢ such that the Ferrers dimension of &
equals the threshhold dimension of ¢.

For a poset P, let G (P) be the graph whose edges are the
2-edges of H(P). 0. Cogis [1980] has shown that dim P < 2
iff G(pP) 1is 2-colorable. 1In fact, he proved the correspon-
ding result for the Ferrers dimension of digraphs. Consequently,

deciding whether a digraph has Ferrers dimension at most two has
polynomial complexity.
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