
JOURNAL OF COMBINATORIALTHEORY, Series B 34, 239-243 (1983) 

The Ramsey Number of a Graph 
with Bounded Maximum Degree 

C. CHVATAL 

School of Computer Science, 
McGill Universitv, Montreal, Canada 

V. R~DL 

Czechoslovakian Technical University, 
Husova 5, II0 00 Praha I, Czechoslovakia 

E. SZEMER~DI 

Mathematics Institute, Hungarian Academy of Sciences, 
Budapest, Hungary 

AND 

W. T. TROTTER, JR.* 

Department of Mathematics and Statislics, 
University of South Carolina, Columbia, South Carolina 29208 

Communicated by the Editors 

Received April 23, 1982 

The Ramsey number of a graph G is the least number t for which it is true that 
whenever the edges of the complete graph on t vertices are colored in an arbitrary 
fashion using two colors, say red and blue, then it is always the case that either the 
red subgraph contains G or the blue subgraph contains G. A conjecture of P. Erdos 
and S. Burr is settled in the afftrmative by proving that for each d > 1, there exists 
a constant c so that if G is any graph on n vertices with maximum degree d, then 
the Ramsey number of G is at most cn. 

1. INTRODUCTION 

If F, G, and H are graphs, we write F + (G, H) when the following 
condition is satisfied: If the edges of F are colored in any fashion with two 
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colors, say red and blue, then either the red subgraph contains a copy of G 
or the blue subgraph contains a copy of H. Now let K, denote the complete 
graph on m vertices. Then it follows easily from Ramsey’s theorem that for 
every pair (G, H) there is a least positive integer m for which K, --+ (G, H). 
This integer m is called the Ramsey number r(G, H). When G = H, we write 
only r(G). An excellent survey of results concerning Ramsey numbers can be 
found in the book [3]. Here, we will be concerned with the following 
conjecture of Burr and Erdiis [2]: 

Conjecture. For each d > 1, there exists a constant c, depending only on 
d, so that if G is a graph on n vertices in which each vertex has at most d 
neighbors, then r(G) < cn. 

Recently, Beck [ 1 ] has made some progress on this conjecture by showing 
that r(G) < (2n)C, where c = (2d) 2d-’ In this paper, we settle the above . 
conjecture in the affirmative. Our proof will depend heavily on the 
“regularity” lemma of Szemeredi [4]. The presentation of this lemma 
requires some preliminary definitions. 

Let H be a graph and let A and B be disjoint subsets of the vertex set of 
H. Then the density of (A, B), denoted 6(A, B), is the ratio n,/n,, where n, = 
I{ (a, b): a E A, b E B, and a is adjacent to b in H}l and n2 = IA x B I. The 
density of (A, B) measures the probability that a pair (a, b) selected at 
random from A x B determines an edge in H. Of course, we always have 0 < 
6(A,B)< 1. 

Now let E be a positive number. Then the pair (A, B) is said to be E- 
regular if whenever we have two subsets A’ &A and B’s B with 
] A’ I> E IA I and IB’I > E I B 1, then the following inequalities hold: 

&A, B) - E < 6(A’, B’) ,< @A, B) + E. 

Next, let V(H)=A,UA,U... VA, be a partition of the vertex set of H 
into disjoint subsets. The partition is said to be equipartite if 1 IAi I - IA,11 < 1 
for all i, j = 1, 2 ,..., k. With these definitions, we can now state the following 
lemma whose proof is given in [4]: 

LEMMA. For every E > 0 and every integer m > 0, there exist integers N, 
and N, (depending on E and m) so that if H is a graph having at least N, 
vertices, then there exists an equipartite partition V(H) = A , V A, U . . . V A,, 
where 

(i) m<k<N,, and 
(ii) all but at most E( :) of the pairs (At, Aj) are c-regular. 
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2. THE PRINCIPAL RESULT 

Our goal in this section is to prove the following result: 

THEOREM. For each positive integer d, there exists a constant c, 
depending only on d, so that if G is a graph on n vertices with maximum 
degree at most d, then r(G) < cn. 

Proof. Let d be any positive integer. Choose the least positive integer t 
so that if we define E = l/t, then f log(1/3&) > d + 1. Observe that with this 
choice, we also know that 1/3d > 2d2e. Next, set m = l/s. Then let N, and 
N, be the values determined by these values of E and m in the regularity 
lemma. Then set c = max{N,, N,/d*e}. Note that c is a constant depending 
only on d. 

Next, let G be a graph having n vertices x1, x2,..., x, and maximum degree 
at most d. We show that r(G) < cn. Consider an arbitrary coloring of the 
edges of the complete graph K,, using two colors, say red and blue. Then let 
H denote the graph on cn vertices determined by the red edges. The 
complement of H, denoted by H, is the graph determined by the blue edges. 
Note that if A and B are disjoint sets of vertices, then 6,(A, B) = 
1 - &(,4, B). Furthermore, (A, B) is s-regular in H if and only if it is E- 
regular in H. 

Since H has cn vertices and cn >, N,, we know that there exists an 
equipartite partition, V(H) = A, VA, U ... VA, as guaranteed by the 
regularity lemma. Then let H* denote the graph whose vertex set is 
( 1, 2,..., k} with edges (i, j), where (Ai, Aj) is s-regular in H for 1 < i < j < k. 
The graph H* has at least (1 - E)( :) edges and thus by Turin’s theorem has 
a complete subgraph H** of size (being generous) at least l/2&. Without 
loss of generality, we may assume that the subsets in the partition have been 
labelled so that (A i, Aj) is s-regular whenever 1 < i < j < l/2&. Now we two 
color the edges of H** using the colors green and white. We color (Lj) 
green if 6,(Ai, Aj) > f and color (i, j) white if 6,(A i, A j) < f . We pause to 
recall that f log(1/2&) > d + 1. Then it follows from Ramsey’s theorem that 
we have (again being generous) a monochromatic complete subgraph H*** 
having d + 1 vertices. 

Assume first that H*** has all of its edges colored green. Then we may 
relabel the sets in the partition so that 

(i) (Ai, Aj) is c-regular, and 

(ii) 6,(Ai,Aj) > 4 

for all i,j with 1 < i < j < d + 1. We now proceed to show that the red 
subgraph H contains a copy of G. (If the edges of H*** are white, then we 
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replace H by fi in the second condition and proceed to show that the blue 
subgraph i? contains a copy of G.) 

To construct a copy of G in H, we will proceed inductively to choose 
vertices y,, y*,..., y, from H so that the map xi + yi is an isomorphism. 
Furthermore, we will choose these points so that for each i = 1, 2,..., n, the 
following conditions are satisfied: 

(a) If l<a<i,theny,EA,forsomePwith l</?<d+l. 

(b) If 1 < a, < a2 < i and x,, is adjacent to x,* in G, then y,, and y,, 
come from distinct sets in the partition and y,, is adjacent to ye2 in H. 

(c) If i < a’ < n, V(a’, i) = {y, : 1 < a < i, x, adjacent to x~,}, and 
u = 1 V(a’, i)l, then for each /I with 1 </I ,< d + 1 so that A, contains no y, in 
V(a’, i), A, contains a subset Ai having at least IA,l/3” points so that every 
point in Al, is adjacent to every y, in V(a’, i). 

At first, condition (c) may seem hopelessly complicated to the reader. 
Upon reflection, however, it will be clear that this condition is precisely what 
is needed to ensure that the selection of the vertices y, , y, ,..., y, can proceed 
indutively as claimed. Here are the details. 

Suppose that for some nonnegative integer i with i < 12, the points y, for 
1 < a < i have been chosen so that conditions (a)--(c) are satisfied. We show 
how to make a suitable choice for yi+ i. (Note that this definition allows 
i = 0 because the rule for choosing y, is the same as for all other values of i.) 

First choose some PO with 1 </I, < d + 1 so that AD0 does not contain a 
point from V(i + 1, i). i.e., we choose a set among the first d + 1 in the 
partition which does contain y, with 1 <a < i for which x, is adjacent to 

Xi+l. This is possible because xi+, has at most d neighbors. Then let A& be 
the subset of AfiO consisting of those points adjacent to every y, in V(i + 1, i). 
By condition (c), we know that IA& > IAo01/3’, where u = / V(i + 1, i)l. Also 
note that l/3’ > 1/3d > e. 

With the choice of any points from A& as yi+ ,, we would satisfy 
conditions (a) and (b). However, some care must be taken to insure that 
condition (c) is satisfied. It is clear that we need only be concerned with 
those values a’ > i + 1 in which xi+, is adjacent to x,,. There are at most d 
such values. Choose one, say a’, arbitrarily. Then choose a /I with p # p, so 
that A, does not contain any y, from V(a’, i) and let u’ = I V(a’, i + 1)l = 
1 + V(a’, i). We already know that A, contains a subset Ai containing at 
least IA,1/3”‘-’ points so that every point in A; is adjacent to every point in 
V(a’, i). Note that 1,4;11> E lAoI. Furthermore, it is clear that at most E IA,,,/ 
of the points in A;, are adjacent to less than one-third of the points in Ah. 
Fixing a’ and proceeding through all values of p, we would then eliminate at 
most de lADo( of the points in A& as candidates for yi+ i. If we then range 
over all possible values for a’, we would eliminate at most dZc lA,,( of the 
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points in AiO. In addition, we cannot select any of the points in A& which 
have been selected previously. This eliminates at most n additional points. 
Since the number k of sets in the partition satisties k <N, and c > N,/d*e, 
we know that lAool > en/N, and thus n < d2c IAo,l. 

In order to ensure that the point yi+ r 
we require only that 2d*tz IAo,l < lA;3,1. 

can successfully be chosen from AhO, 
H owever, this inequality is satisfied 

since IA;J/IA,J > 1/3d > 2d*&. With this observation, the proof of our 
theorem is complete. 

3. CONCLUDING REMARKS 

Although we do not include the details here, the theorem in Section 2 can 
be modified to allow for more than two colors. Specifically, for each pair 
(d, t), there exists a constant c depending only on d and t so that if G is a 
graph with n vertices and maximum degree at most d, then any coloring of 
the edges of the complete graph on cn vertices using t colors has a 
monochromatic copy of G. A complication arises from the fact that we no 
longer have the complementary relationship between the red and blue graph 
which preserves regularity, which in turn requires a generalization of the 
regularity lemma. 

However, our methods are not sufficient to settle the following strong form 
of the conjecture of Burr and Erdds: 

Conjecture. For each d, there exists a constant c depending only on d so 
that if G is a graph on n vertices for which for every subgraph G’ of G, the 
average degree of a vertex in G’ is at most d, then the Ramsey number r(G) 
is at most cn. 
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