Note

A Sperner Theorem on Unrelated Chains of Subsets

JERROLD R. GRIGGS,*^{,†} JÜRGEN STAHL, AND WILLIAM T. TROTTER, JR.*

Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina 29208

Communicated by the Managing Editors

Received July 12, 1982

A theorem of Sperner [2] states that a collection of subsets of $\{1,...,n\}$, no two ordered by inclusion, contains at most $\binom{n}{\lfloor n/2 \rfloor}$ sets. How many twoelement chains $A \subset B$ of subsets of $\{1,...,n\}$ can be found such that sets in different chains are not related? More generally, we seek to determine $f_k(n)$, defined to be the maximum *m* such that there exist subsets $A(i,j) \subseteq \{1,...,n\}$, $1 \leq i \leq m, 0 \leq j \leq k$, satisfying

for all
$$i, A(i, 0) \subset A(i, 1) \subset \cdots \subset A(i, k)$$
 (1)

and

for all
$$i, i', j, j'$$
, with $i \neq i', A(i,j) \not\subseteq A(i',j')$. (2)

We can obtain such a collection of $m = \binom{n-k}{\lfloor (n-k)/2 \rfloor}$ unrelated chains of k+1 sets each as follows: The sets A(i, 0) are the $\lfloor (n-k)/2 \rfloor$ – subsets of $\{k+1,...,n\}$, and for $j \ge 1$, $A(i, j) = A(i, 0) \cup \{1,...,j\}$. In fact this *m* is bestpossible for all $k \ge 0$, which will follow from this generalization of Lubell's inequality [1].

THEOREM 1. Suppose $A_1 \subseteq B_1, ..., A_m \subseteq B_m$ are subsets of $\{1, ..., n\}$ such that $A_i \not\subseteq B_{i'}$, for $i \neq i'$.

Then

$$\sum_{i=1}^{m} \frac{1}{\binom{n-|B_i-A_i|}{|A_i|}} \leq 1.$$

* Supported in part by the National Science Foundation.

[†] Supported in part by a USC Research and Productive Scholarship.

Copyright © 1984 by Academic Press, Inc. All rights of reproduction in any form reserved. Proof. A maximal chain of subsets is of the form

$$\phi = S_0 \subset S_1 \subset \cdots \subset S_n = \{1, \dots, n\}.$$

The chain is formed by adding one element at a time in some order. When does such a chain intersect an interval $[A_i, B_i] = \{C | A_i \subseteq C \subseteq B_i\}$? They intersect if and only if all elements of A_i are added to the chain before any elements outside B_i are added to the chain. There are $n - |B_i - A_i|$ elements which are either in A_i or not in B_i . The orders in which these elements are added to the chains are equally likely. The proportion of maximal chains which intersect $[A_i, B_i]$ is thus $1/\binom{n-|B_i-A_i|}{|A_i|}$. No chain intersects more than one of the intervals $[A_i, B_i]$ because if, say, $S_a \subset S_b$ and $S_a \in [A_i, B_i]$ and $S_b \in [A_j, B_j]$ then $A_i \subseteq B_j$ which implies i = j. The sum of these proportions is then at most 1, which is the desired inequality.

Lubell's inequality is obtained for antichains $\{A_1, ..., A_m\}$ by taking $B_i = A_i$ for all *i*. We now determine $f_k(n)$. This reduces to Sperner's theorem for k = 0.

THEOREM 2. $f_k(n) = \binom{n-k}{|(n-k)/2|}$.

Proof. For given k and n, let A(i,j) be a collection of $m = f_k(n)$ chains of subsets A(i,j) satisfying (1) and (2). Let $A_i = A(i, 0)$, $B_i = A(i, k)$. Then,

$$\binom{n-|B_i-A_i|}{|A_i|} \leqslant \binom{n-k}{|A_i|} \leqslant \binom{n-k}{\lfloor (n-k)/2 \rfloor}.$$

Hence,

$$f_k(n) = \sum_{i=1}^m 1$$

$$\leq \sum_{i=1}^m \left(\binom{n-k}{\lfloor (n-k)/2 \rfloor} \right) / \binom{n-|B_i-A_i|}{|A_i|}$$

by the inequality in Theorem 1 which applies to these A_i and B_i . The theorem follows by the contruction above of a collection with $\binom{n-k}{\lfloor (n-k)/2 \rfloor}$ chains.

The problem which motivated this study was to determine the 2-dimension of a union of two-element chains [3]. Theorem 2 above implies the solution to this problem, stated in Theorem 3, and generalized to the union of chains with any number of elements. \underline{k} denotes a chain with k elements. $\underline{2}^{n}$, the

product of *n* copies of $\underline{2}$, is isomorphic to the lattice of subsets of $\{1,...,n\}$. dim₂(*P*), the 2-dimension of *P*, is the smallest *n* such that *P* can be embedded in $\underline{2}^n$ [4]. *mP* denotes the disjoint union of *m* copies of *P*. We can determine dim₂(*P*) not just for *P* a union of *m* (*k* + 1)-chains, but also for a union of *m* copies of $\underline{2}^k$, because two chains in $\underline{2}^n$ are unrelated if and only if the full intervals with the same tops and bottoms are unrelated.

THEOREM 3. For $k \ge 0$ and $m \ge 1$,

$$\dim_2(m(\underline{k+1})) = \dim_2(m(\underline{2}^k))$$
$$= \min\left\{n \left| \binom{n-k}{\lfloor (n-k)/2 \rfloor} \right| \ge m\right\}.$$

Remarks. 1. Sperner's theorem acually says more than Theorem 2 restricted to k = 0. It states that the only antichain(s) of maximum size in 2^n are the collection of all subsets of size $\lfloor n/2 \rfloor$ and, for odd *n*, the collection of all subsets of size $\lfloor n/2 \rfloor$. We conjecture that for general *k*, the only maximum-sized collections of chains are obtained in this natural way: The A_i 's consist of all $\lfloor (n-k)/2 \rfloor$ -subsets of some (n-k)-set (or all $\lfloor (n-k/2 \rfloor$ -subsets), and each B_i equals A_i with the remaining *k* elements added. The chains can be completed between A_i and B_i in any fashion. Theorem 1 implies that in any maximum-sized collection, each $|A_i|$ equals $\lfloor (n-k)/2 \rfloor$ or $\lfloor (n-k)/2 \rfloor$ (but not necessarily all $|A_i|$ are equal), and that $|B_i - A_i| = k$ for all *i*.

2. Theorem 1 induces a lower bound on the 2-dimension of a union of chains of varying length. Although the bound is sharp when all chains have the same length, this is not true in general. For instance, if P is a union of 1, 2, and 3, dim₂(P) = 5, yet the inequality of Theorem 1 works for n = 4, with $|A_1| = |B_1| = 2$, $|A_2| = 1$, $|B_2| = 2$, $|A_3| = 1$, $|B_3| = 3$.

3. Determining the t-dimension of P (i.e., the minimum n such that P can be embedded in \underline{t}^n), for P a union of chains seems to be much more difficult when t > 2. For the problem of finding the largest size m of a collection of t-chains in \underline{t}^n we conjecture that a result similar to Theorem 3 holds: m should be given as the size of the largest antichain in \underline{t}^{n-1} $(n \ge 1)$. The general problem of determining the maximal size of a union of k-chains that can be embedded in \underline{t}^n for $k + 1 \le t$ appears to be totally open.

4. The arguments here can be adapted to prove an inequality for the lattice of subspaces of a finite vector space which is analogous to Theorem 1 for the lattice of subsets.

CHAINS OF SUBSETS

References

- 1. D. LUBELL, A short proof of Sperner's theorem, J. Combin Theory 1 (1966), 299.
- 2. E. SPERNER, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.
- 3. J. STAHL, "Beiträge zur 2-Dimension geordneter Mengen," Diplomarbeit TH Darmstadt, 1981.
- 4. W. T. TROTTER JR., Embedding finite posets in cubes, Discrete Math. 12 (1975), 165-172.