Note

A Sperner Theorem on Unrelated Chains of Subsets

Jerrold R. Griggs, ${ }^{*} \dagger$ Jürgen Stahl, and William T. Trotter, Jr.*
Department of Mathematics and Statistics, University of South Carolina, Columbia, South Carolina 29208
Communicated by the Managing Editors
Received July 12, 1982

A theorem of Sperner [2] states that a collection of subsets of $\{1, \ldots, n\}$, no two ordered by inclusion, contains at most $\binom{n}{n^{n} / 2}$ sets. How many twoelement chains $A \subset B$ of subsets of $\{1, \ldots, n\}$ can be found such that sets in different chains are not related? More generally, we seek to determine $f_{k}(n)$, defined to be the maximum m such that there exist subsets $A(i, j) \subseteq\{1, \ldots, n\}$, $1 \leqslant i \leqslant m, 0 \leqslant j \leqslant k$, satisfying

$$
\begin{equation*}
\text { for all } i, A(i, 0) \subset A(i, 1) \subset \cdots \subset A(i, k) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for all } i, i^{\prime}, j, j^{\prime} \text {, with } i \neq i^{\prime}, A(i, j) \nsubseteq A\left(i^{\prime}, j^{\prime}\right) \text {. } \tag{2}
\end{equation*}
$$

We can obtain such a collection of $m=\binom{n-k}{\lfloor(n-k) / 2\rfloor}$ unrelated chains of $k+1$ sets each as follows: The sets $A(i, 0)$ are the $\lfloor(n-k) / 2\rfloor$-subsets of $\{k+1, \ldots, n\}$, and for $j \geqslant 1, A(i, j)=A(i, 0) \cup\{1, \ldots, j\}$. In fact this m is bestpossible for all $k \geqslant 0$, which will follow from this generalization of Lubell's inequality [1].

Theorem 1. Suppose $A_{1} \subseteq B_{1}, \ldots, A_{m} \subseteq B_{m}$ are subsets of $\{1, \ldots, n\}$ such that $A_{i} \nsubseteq B_{i^{\prime}}$, for $i \neq i^{\prime}$.

Then

$$
\sum_{i=1}^{m} \frac{1}{\binom{n-\left|B_{i}-A_{i}\right|}{\left|A_{i}\right|}} \leqslant 1
$$

[^0]Proof. A maximal chain of subsets is of the form

$$
\phi=S_{0} \subset S_{1} \subset \cdots \subset S_{n}=\{1, \ldots, n\} .
$$

The chain is formed by adding one element at a time in some order. When does such a chain intersect an interval $\left[A_{i}, B_{i}\right]=\left\{C \mid A_{i} \subseteq C \subseteq B_{i}\right\}$? They intersect if and only if all elements of A_{i} are added to the chain before any elements outside B_{i} are added to the chain. There are $n-\left|B_{i}-A_{i}\right|$ elements which are either in A_{i} or not in B_{i}. The orders in which these elements are added to the chains are equally likely. The proportion of maximal chains which intersect $\left[A_{i}, B_{i}\right]$ is thus $1 /\binom{n-\left|B_{i}-A_{i}\right|}{\left|A_{i}\right|}$. No chain intersects more than one of the intervals $\left[A_{i}, B_{i}\right]$ because if, say, $S_{a} \subset S_{b}$ and $S_{a} \in\left[A_{i}, B_{i}\right]$ and $S_{b} \in\left[A_{j}, B_{j}\right]$ then $A_{i} \subseteq B_{j}$ which implies $i=j$. The sum of these proportions is then at most 1 , which is the desired inequality.

Lubell's inequality is obtained for antichains $\left\{A_{1}, \ldots, A_{m}\right\}$ by taking $B_{i}=A_{i}$ for all i. We now determine $f_{k}(n)$. This reduces to Sperner's theorem for $k=0$.

Theorem 2. $f_{k}(n)=\binom{n-k}{\lfloor(n-k) / 2\rfloor}$.
Proof. For given k and n, let $A(i, j)$ be a collection of $m=f_{k}(n)$ chains of subsets $A(i, j)$ satisfying (1) and (2). Let $A_{i}=A(i, 0), B_{i}=A(i, k)$. Then,

$$
\binom{n-\left|B_{i}-A_{i}\right|}{\left|A_{i}\right|} \leqslant\binom{ n-k}{\left|A_{i}\right|} \leqslant\binom{ n-k}{\lfloor(n-k) / 2 \mid}
$$

Hence,

$$
\begin{aligned}
f_{k}(n) & =\sum_{i=1}^{m} 1 \\
& \leqslant \sum_{i=1}^{m}\left(\binom{n-k}{\lfloor(n-k) / 2\rfloor} /\binom{n-\left|B_{i}-A_{i}\right|}{\left|A_{i}\right|}\right) \\
& \leqslant\binom{ n-k}{\lfloor(n-k) / 2\rfloor}
\end{aligned}
$$

by the inequality in Theorem 1 which applies to these A_{i} and B_{i}. The theorem follows by the contruction above of a collection with $\binom{n-k}{n-k) / 2\rfloor}$ chains.

The problem which motivated this study was to determine the 2 -dimension of a union of two-element chains [3]. Theorem 2 above implies the solution to this problem, stated in Theorem 3, and generalized to the union of chains with any number of elements. \underline{k} denotes a chain with k elements. $\underline{2}^{n}$, the
product of n copies of $\underline{2}$, is isomorphic to the lattice of subsets of $\{1, \ldots, n\}$. $\operatorname{dim}_{2}(P)$, the 2 -dimension of P, is the smallest n such that P can be embedded in $\underline{2}^{n}$ [4]. $m P$ denotes the disjoint union of m copies of P. We can determine $\operatorname{dim}_{2}(P)$ not just for P a union of $m(k \mid 1)$-chains, but also for a union of m copies of $\underline{2}^{k}$, because two chains in $\underline{2}^{n}$ are unrelated if and only if the full intervals with the same tops and bottoms are unrelated.

Theorem 3. For $k \geqslant 0$ and $m \geqslant 1$,

$$
\begin{aligned}
\operatorname{dim}_{2}(m(\underline{k+1})) & =\operatorname{dim}_{2}\left(m\left(2^{k}\right)\right) \\
& =\min \left\{n \left\lvert\,\binom{ n-k}{\lfloor(n-k) / 2 \downarrow} \geqslant m\right.\right\} .
\end{aligned}
$$

Remarks. 1. Sperner's theorem acually says more than Theorem 2 restricted to $k=0$. It states that the only antichain(s) of maximum size in $\underline{2}^{n}$ are the collection of all subsets of size $\lfloor n / 2\rfloor$ and, for odd n, the collection of all subsets of size $\lceil n / 2\rceil$. We conjecture that for general k, the only maximum-sized collections of chains are obtained in this natural way: The A_{i} 's consist of all $|(n-k) / 2|$-subsets of some $(n-k)$-set (or all $\lceil(n-k / 2\rceil$ subsets), and each B_{i} equals A_{i} with the remaining k elements added. The chains can be completed between A_{i} and B_{i} in any fashion. Theorem 1 implies that in any maximum-sized collection, each $\left|A_{i}\right|$ equals $\lfloor(n-k) / 2\rfloor$ or $\lceil(n-k) / 2\rceil$ (but not necessarily all $\left|A_{i}\right|$ are equal), and that $\left|B_{i}-A_{i}\right|=k$ for all i.
2. Theorem 1 induces a lower bound on the 2 -dimension of a union of chains of varying length. Although the bound is sharp when all chains have the same length, this is not true in general. For instance, if P is a union of 1 , $\underline{2}$, and $\underline{3}, \operatorname{dim}_{2}(P)=5$, yet the inequality of Theorem 1 works for $n=4$, with $\left|A_{1}\right|=\left|B_{1}\right|=2,\left|A_{2}\right|=1,\left|B_{2}\right|=2,\left|A_{3}\right|=1,\left|B_{3}\right|=3$.
3. Determining the t-dimension of P (i.e., the minimum n such that P can be embedded in \underline{t}^{n}), for P a union of chains seems to be much more difficult when $t>2$. For the problem of finding the largest size m of a collection of t-chains in \underline{t}^{n} we conjecture that a result similar to Theorem 3 holds: m should be given as the size of the largest antichain in $t^{n-1}(n \geqslant 1)$. The general problem of determining the maximal size of a union of k-chains that can be embedded in \underline{t}^{n} for $k+1 \leqslant t$ appears to be totally open.
4. The arguments here can be adapted to prove an inequality for the lattice of subspaces of a finite vector space which is analogous to Theorem 1 for the lattice of subsets.

References

1. D. Lubell, A short proof of Sperner's theorem, J. Combin Theory 1 (1966), 299.
2. E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.
3. J. Stahl, "Beiträge zur 2-Dimension geordneter Mengen," Diplomarbeit TH Darmstadt, 1981.
4. W. T. Trotter Jr., Embedding finite posets in cubes, Discrete Math. 12 (1975), 165-172.

[^0]: * Supported in part by the National Science Foundation.
 ${ }^{\dagger}$ Supported in part by a USC Research and Productive Scholarship.

