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Abstract. The classical theorem of R. P. Dilworth asserts that a partially ordered set of width n can 
be partitioned into n chains. Dilworth’s theorem plays a central role in the dimension theory of 
partially ordered sets since chain partitions can be used to provide embeddmgs of partially ordered 
sets in the Cartesian product of chains. In particular, the dimension of a partiallyordered set never 
exceeds its width. In this paper, we consider analogous problems in the setting of recursive com- 
binatorics where it is required that the partially ordered set and any associated partition or embedding 
be described by recursive functions. We establish several theorems providing upper bounds on the 
recursive dimension of a partially ordered set in terms of its width. The proofs are highly combinatorial 
in nature and involve a detailed analysis of a 2-person game in which one person builds a partially 
ordered set one point at a time and the other builds the partition or embedding. 
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0. Introduction 

The dimension of a countable ordered set (A, R) is the least ordinal d such that (A, R) 
can be embedded into Qd, where Q is the set of rational numbers with the usual order. 
We are interested in making this notion effective. Recall that, loosely speaking, a partial 
recursive function is a function that can be computed by an algorithm and a recursive set 
is a set whose characteristic function is a partial recursive function. A precise definition 
of these concepts can be found in Rogers [ 161. The domain of a partial recursive function 
f may not be recursive; if it is we shall call f a recursive function. This is a slight variance 
from the normal definition. An ordered set (A, R) isrecursive if both,4 and R are recursive 
sets. Thus recursive ordered sets are equipped with algorithms that, upon input of any 
two points, will determine whether the points are in the domain of the ordered set and, if 
so, the nature of the comparability between them or else declare them incomparable. 

l This paper was prepared while the authors were supported, in part, by NSF grant ISP-80-1145 1. In 
addition, the second author received support under NSF grant MCS-80-01778 and the third author 
received support under NSF grant MCS-82-02172. 
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We define the recursive dimension of (A, R) to be the least ordinal d such that (A, R) can 
be recursively embedded into Qd. 

The theory of dimension informs us of the connection between dimension, chain 
covering number, and width. A (recursive) chain cover of (A, R) is a tuple (C, , . . . , C, _ i) 
where A = Cc, U . . . U C, i , Cr n Ci is empty if i # j and Ci is a (recursive) chain. The 
(recursive) chain covering number of (A, R) is the intimum of the sizes of the (recursive) 
chain covers of (A, R). The width of (A, R) is the supremum of the sizes of the antichains 
of (A, R). Dilworth’s theorem [4] tells us that if the width of (A, R) is finite, then so is 
the chain covering number of (A, R), and, moreover, they are equal. It is easily seen that 
the dimension of (A, R) is bounded by the chain covering number of (A, R) and thus by 
the width of (A, R). 

This paper focuses on the connections between width, dimension, recursive chain 
covering number, and recursive dimension for recursive ordered sets with finite width. 
Manaster and Rosenstein [ 121 have shown that there exist recursive ordered sets whose 
dimension is less than their recursive dimension. Kierstead [7] has shown that an ordered 
set with finite width w many not have recursive covering number equal to w, but never- 
theless has recursive covering number at most (SW- 1)/4. In this paper we prove the 
following theorems. 

THEOREM 0. There is a recursive ordered set of width 3 and recursive chain covering 
number 4 which has no finite recursive dimension. 

THEOREM 1. (a) Every recursive ordered set with recursive chain covering number no 
more than 3 has recursive dimension no more than 6. (b) There is a recursive ordered set 
with recursive chain covering number 3 and recursive dimension 6. 

THEOREM 2. Every recursive ordered set of width no more than 2 has recursive dimen- 
sion no more than 5. 

In view of Theorem 0, conditions on a recursive ordered set (A, R), which are sufficient 
to insure a finite recursive dimension, are of interest. (A, R) is an interval order provided 
it has no (induced) suborder with a Hasse diagram of the form: 

The points in an interval order can be construed as open intervals on the real line where 
the ordering is interpreted as one ‘interval’ lying completely to the left of another; 
incomparable points correspond to overlapping intervals. Kierstead and Trotter [lo] have 
shown that every recursive interval order of width w has recursive chain covering number 
no more than 3 w-2 and that this bound is sharp. Hopkins [6] proved that every recursive 
interval order of width 2 has recursive dimension no more than 3. Hopkins [6] also 
established the general result that the recursive dimension of an interval order of width w 
is no more than 4w-4. We add the following theorem, which gives a better bound than 
Hopkins [6], only when the recursive chain covering number is close to the width. 
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THEOREM 3. Every recursive interval order with recursive chain covering number c has 
recursive dimension no more than 2c. 

The construction to be carried out in the proof of Theorem 0 produces an ordered set 
with many induced suborders of the form: 

which is a 3-crown. More generally, a crown is a finite ordered set of height 1 with at least 
6 points and a Hasse diagram of the form: 

An ordered set is crown-free provided none of its induced suborders is a crown. Each 
interval order and each ordered set of width no more than 2 is crown-free, but the class 
of crown-free ordered sets is much richer. 

The next theorem is our main result. 

THEOREM 4. (a) Every crown-free recursive ordered set with recursive chain covering 
number c has recursive dimension no more than c! (b) For each c > 2 there is a recursive 
crown-free ordered set with recursive chain covering number c, width c, but recursive 
dimension at least c(‘; ‘), where f = L(C - 1)/2~. 

The first part of Theorem 4 can be combined with Kierstead’s bound on the recursive 
chain covering number to obtain the following result. 

COROLLARY. Every crown-free recursive ordered set of width w has recursive dimen- 
sion at most (SW- I)/4 !. 

Of course, any improvement in the bound on the recursive chain covering number of a 
recursive ordered set of width w yields an improved bound in this corollary. Conversely, 
there are conditions under which the recursive dimension of an ordered set can be used 
to obtain an improved bound on the recursive chain covering number. 

THEOREM 5. Every recursive ordered set with recursive dimension d and width w can 
be covered by (wi’)d-l recursive chains. 

Associated with each of the results above is a companion theorem that has to do with 
the existence of winning strategies for certain two-player perfect information games. Just 

as there is a recursive setting for discrete properties like dimension, there is a game- 
theoretic setting as well. This game theoretic setting is the subject of Section 1 below and 
appears to be of independent interest. Section 2 is devoted to the proofs of the six 
theorems stated above. 
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This paper belongs to a growing area of research: recursive combinatorics. Other 
contributions to this area that may interest the reader are Bean [ 1,2], Schmerl [ 18, 191, 
Kierstead [7-91, Kierstead and Trotter [lo], Hopkins [6], McNulty [ 131, Manaster and 
Remmel [ 1 I], Manaster and Rosenstein [ 121, and Remmel [ 151. A chapter in Rosenstein 
[17] is devoted to the theory of recursive linear orders. The theorems proved here were 
announced in McNulty [ 131. 

We end this section with a discussion of some technical details concerning dimension 
and recursive functions that will be needed for our proofs. Dushnik and Miller [5] and 
Ore [ 141 showed that a countable ordered set (A, R) can be embedded in Qd if and only 
if R is the intersection of d linear orderings of A. Manaster and Rosenstein [ 121 observed 
that in the case d = 2 this is effective. Their argument can be easily generalized to show 
that for every recursive ordered set (A, R), (A, R) can be recursively embedded into Qd 
if and only if R is the intersection of d recursive linear orderings of A. This characteriza- 
tion of recursive dimension will form the basis for our proofs. If L,, , . . . , Ld-r are (recur- 
sive)linearorderingsofAandR=L,n...nLd_,,wecall(L,,...,Ld_1)a(recursivel 
realizer for (A,,!?). Thus the determination of the (recursive) dimension of (A, R) leads 
to the search for (recursive) realizers of minimal size. 

It is possible to enumerate all algorithms. Let & be the partial recursive function 
computed by the eth entry in this list. The execution of an algorithm on a particular 
input occurs in a step-by-step manner. @z(x) = y means that if x is input to the eth 
algorithm, then, after no more than n steps of computation, the program reaches its 
conclusion and outputs y. It is possible to construct the list &, $r , . . . so that the 4-ary 
relation ~5: (x) = y is itself recursive. All this is made precise in Rogers [ 161. 

1. The X-YExpansion Game 

A number of theorems of discrete mathematics have the following form: Every structure 
with a given property may be expanded by the adjunction of more structure so that the 
resultant structure enjoys another given property. Among the theorems of this kind are 
Dilworth’s Theorem and the Four Color Theorem. In essence, Dilworth’s Theorem says: 
If (A, R) is an ordered set of width w, then there is a chain cover (C, , Cr , . . . , C, -r ) of 
(A, R). In this case, the chain cover is the adjoined ‘structure’. 

Likewise the Four Color Theorem asserts: If (V, E) is a planar graph, then there is 
(Cc, Cr , C, , Cs), which is a partition of V into independent sets. The theory of general 
algebraic structures provides the language to formulate this kind of phenomenon. 

A (relational) structure is a system (A, F) where A is a nonempty set and F is a se- 
quence of relations on A of finite rank (e.g. if R C A”, then R has rank n). For our 
purposes F will always be a finite sequence. Two structures (A, RO , R r , . . . , R n -r ) and 
(4&i,&, -*., S, _ 1 ) are similar provided n = m and the ranks of Ri and Si are the same 
for each i <n. The structure (A, RO, . .., R, --1, Q,, . . . , Qp -1) is an expansion of the 
structure (A, RO , . . . , R, _ i ). Let .-%“- be a class of similar structures and let 5!%e another 
class of similar structures. A X-Expansion theorem is an assertion of the form: Every 
structure in xhas an expansion in =!?? 
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Dilworth’s Theorem, The Four Color Theorem, and several of the theorems proven 
below are X-%xpansion theorems for the appropriate classes Xand 2 

The x- .L%xpansion game is played by two players, the xplayer and thegplayer, 
in the following manner: the play alternates between the two players with the X-player 
having the first play. At the end of any round of play, a finite structure in Ywill have 
been constructed which is an expansion of a structure in x So on his turn the X-player 
is confronted with 

(B,Ro, . . ..R.-I,Q,, . . ..Q.-,)C!Y 

such that (B,R,,, . . . . R, _ r ) E Xwhere B is finite. The Xplayer must add a new point 
p and define new relations R i, . . . , Ri _ 1 such that 

and 

Ri is the restriction of Ri to B for ail i < n. 

They-player must define new relations Qi, . . . , Qk _ r such that 

(BU IPLR;, . . ..R.+ Q;, . . . . Q;-lFX 

and 

Q, is the restriction of Qi+to B for alI j < m. 

The xplayer wins a X-%xpansion game if the play reaches a structure for which the 
P-player has no legal response. Otherwise the Y-player wins the game. Thus, the 36 
player is building a structure in zone point at a time with the ambition of frustrating 
the-G?player’s attempts to expand the %tructures to 2?structures. 

A winning strategy for the .%player is a function ywhich assigns to each finite2 
structure B = (B, R,, , . . . . R,-l, Q,, . . . . Q, -i) a %structure y(3??) = (B U {p}, 
R,+, ...,R;-l ) such that, regardless of how the gplayer plays, the 3”‘lplayer will always 
win the expansion game by playing the structure ~(2%‘) whenever he is confronted with 
the structure 9 Likewise, a winning strategy for the??player is a function which assigns 
to each finite ~structure an expansion in 5?so that thesplayer wins by responding 
with the value of the function. As a consequence of the Konig Infinity Lemma, if the 
xplayer has a winning strategy for the =2?‘expansion game, then there is a fixed n 
such that regardless of how the Y-player plays, the splayer will always win in at most n 
plays. Thus, the winning strategy for the xplayer, if it exists, is a finite function and, 
hence, a recursive function. For the g-‘player, it is conceivable that he may have a winning 
strategy, but no partial recursive winning strategy. However, almost any winning strategy 
for the 2player which can be precisely described is likely to be a partial recursive func- 
tion. In any case, this applies to all the winning strategies used in the next section. 

So there are three types of LW-_Y’expansion theorems: 

CLASSICAL THEOREM. Every structure in L%can be expanded to a structure in_% 
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GAME THEORETIC THEOREM. The2&rlayer has a winning strategy for thex-2? 
expansion game. 

RECURSIVE THEOREM. Every recursive structure in Scan be expanded to a recursive 
structure in9 (Where the notion of a recursive structure is the obvious one.) 

A key to the proofs in the next section is the following lemma. 

LEMMA. Suppose xis a class of similar structures closed under the formation of sub- 
structures and that 2s a cless of similar structures closed under the formation of direct 
limits. If thesplayer has a partial recursive winning strategy for the x-Pgame, then 
every recursive structure in Scan be expanded to a re~cursive structure in9 

Proof. Let A be a recursive structure in x The recursive expansion A+ of A is obtained 
from a run of the .-%-pexpansion game. The .r-player merely enumerates the points 
of A recursively, playing the induced substructures; while the Yplayer, of course, uses 
his partial recursive winning strategy. After a (possibly infinite) run of the x-Ygarne 
in this manner, all of the points in A will have been enumerated. The structure A+ ob- 
tained as the direct limit of the structures played by thesplayer is the desired expansion 
of A. Since yis closed under direct limits, we conclude that A+ E_4”: By allowing the 
game to run until all points in any finite set have been listed, we can determine whether 
or not any of the relations of A+ hold among the points. Hence A+ is recursive as de- 
sired. cl 

In the event that the xplayer has a winning strategy for the X-Expansion game, 
it is sometimes possible to construct a recursive structure in Xthat has no recursive 
expansion in 2.’ Roughly speaking, such a structure is spliced together from an infinite 
number of finite pieces - each piece designed by the xplayer’s strategy to defeat a 
particular partial recursive attempt at expansion. Such a construction invokes Cantor’s 
diagonal argument in a fashion familiar from recursion theory and also seems to depend 
on algebraic features of xto insure that the resulting structure does indeed belong to 
x If x is closed under the formation of substructures and direct limits and also 
possesses the amalgamation property, then such an argument could be carried out. For 
our purposes, the amalgamation property is too strong and so, in the next section we take 
a more ad hoc approach. 

2. The Proofs 

All of the proofs depend on the analysis of one kind of .%6i’expansion game. %will 
always be a class of structures of the form (A, R, C,, , C1, . . . . C,-t) where (A, R) is a 
certain kind of ordered set and (C,, Ci , . . . . Cc-,) is a chain cover of (A, R). P;fivilJ 
always be a class of structures of the form (A, R, CO, . . . , C, --1, LO, . . . , L, -t) where 
(A, R Co, . . . . C,-,)EXand (Lo, . . . . L, -i) is a realizer of (A, R). Thus, the varia- 
tions in the ZYexpansion games we will consider depend only on the numbers c 
and n and on the conditions imposed on the ordered sets (A, R). The key to the proofs 
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is the construction of winning strategies. To establish Theorems 0, l(b), and 4(b) we 
produce winning strategies for the X-player. To prove Theorems l(a), 2,3,4(a), and 5 
we produce partial recursive winning strategies for theg:player. 

PROOF OF THEOREM 0. Let xbe the class of all structures of the form (A, R, C,,, 
Ci , C, , C’s) where (A, R) is an ordered set of width Q 3 and (C, , Ci , C, , C, ) is a chain 
cover of (A, R). For each natural number n, let -!z& be the class of all structures of the 
form (A, R, C,,, . . . . C,, L,,, . . . . L,-,) where (A, R, C,, . . . . Cs) E x and (Lo, . . . . 
L, _ i ) is a realizer of (A, R). Our first step is to provide a winning strategy for the Z 
player in each Z9; expansion game. 

Let&Eyn with&(A,R,C, ,..., C3,L0 ,..., L,-i).Thepairs(x,y)and(u,v) 
of elements of A behave pointlike in A provided that xRy, and uRv, and for each j < n 
either vl;ix or yLiu. The first stage of the zplayer’s strategy is to build an ordered set 
consisting of two incomparable chains, until the g-player is forced to declare two pairs 
of distinct points to be pointlike. In the second stage of his strategy the zplayer adds 
two new points, declaring them incomparable and placing them on two new chains, in 
such a way that the 9player is forced to resign. During the first stage the .%player 
proceeds as follows: 

At play 2i he introduces a new point ai and places it at the top of chain C,, . 
At play 2i + 1 he introduces a new point bi and places it at the bottom of chain C1 . 
Before each play he checks the g-player’s response to see if there are any point- 
like pairs; if so he goes to stage II; if not he repeats the first stage. 

To see that the Zplayer can always force the 9;-player to construct the linear 
ordersLO,L,,Lz, . . . . L,-, so that for some k, the pairs (ak, ak+i) and (b,,, , bk) are 
pointlike in each Li, we make the following observation. After adding the points ai and 
bi to the two chains the xplayer pauses to count the number q of linear orders in 
which the Yi-player defines ai to be larger than bi. Note that 1 < mi < n - 1 for all i, 
since aj is over bi at least once, but not always, as they are incomparable. On the other 
hand, since ai+i >a( and bi > bi+l in R, we know that ai+i is over bi+l in my Li for 
which ai is over bi. Thus mi < mi+i for each i. We conclude that there is some k with 
k <n for which mk = m&i. In this case, it follows that (+, ak+ 1) and (bk+l, bk) are 
pointlike in each Li. At this stage, the Xplayer has constructed the following ordered 
set. 

ak+lo "0 

‘“k () “4 

0 b2 

,> 0 

I, 0 . 
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To earn his victory, the xplayer only needs to add new points z E C, and w E C, 
as shown below. 

Since (uk, Q+~) and (b k+r, bk) are pointlike, the 2;-player is constrained to place z 
above w in all the linear orders to insure that they all extend R - making it impossible to 
have R = Lo n . . . 17 L, _ r . Thus, the xplayer, playing according to this strategy will 
always win the 35% expansion game. 

Now we are prepared to construct a recursive ordered set (A, R, Co, . . . , C,) in 32hat 
has no recursive expansion in any -E”, . This construction is carried out in layers, each of 
which is labelled with a pair (e, n) of natural numbers. Fix some recursive bijection ( , ) 
from N x N to N which is increasing in both variables. Whenever a point of our ordered 
set is inserted in layer (e, n) we will always mean it to be R-smaller than all points in layer 
df, p), where (e, n) <CL p) and R-larger than all points in layer (d, m) where (d, m) < 
(e, n). 

We say that f(x, y, i) represents an n-ary realizer (Lo, . . . , L, --1) of (A, R) if for each 
i < n, f(x, y, i) is the characteristic function of Li. Notice that any recursive realizer will 
be represented by a recursive function. 

In order to destroy the possibility of a finite recursive dimension we invoke the X 
player’s strategy against the Yg-player in layer (e, n) to meet the requirement. 

R, : & (x, y, i) does not represent an n-ary realizer of (A, R). 
where & (x, y, i) is defined to be & (((x, y), 0). 

Suppose, for the moment, that &(x, y, i) really is a characteristic function of a linear 
order, for each i < n. By invoking the Zplayer’s strategy, against the L&A-player’s 
attempt to play according to $Q after finitely many steps we see that R, must hold. 
However, & (x, y, i) must be computed many times during the course of play. In general, 
there is no way to know whether & is a characteristic function, or indeed, whether any 
particular computation of & will ever end. As it stands our construction could be stalled 
forever by such an event. To avoid this kind of deadend, we arrange a recursive pattern 
that visists each layer (e, n) infinitely often. On each visit, we perform as much of the 
construction as possible on the basis of allowing & to execute an additional step in its 



RECURSIVE DIMENSION FOR ORDERED SETS 75 

computation. After a countably infinite number of stages, all computations in all layers 
which could possibly conclude will have been finished. Every possible recursive expansion 
of the resulting structure to a structure in a 9; will have been defeated in some layer 
where all computations were finished, while in those layers where computations never 
ended there was nothing to defeat. 

We now provide the details of the algorithm, which proceeds in stages. A,, will 
represent the (e, n) level of A. Thus A = U, n EN A, ,, 

StageO.EachofA,R,Ce ,..., Cs isempty. 
Stage s + 1. Suppose that s = ((e, n), k). If k < 2n put 2s into A, n. If k is even put 

2s into Ce , make 2s R-greater than every other element of Cc n A, n, and R-incomparable 
to every element of Cr n A, n. If k is odd put 2s into C, , make 2s R-smaller than every 
other element of Cr n A, n, and R-incomparable to every element of C,, n A, n. 

Now suppose that 2n < k. If $“,(x, y, i) does not represent an n-ary realizer of 
(-4 =, n, R 1 A, ,,) then go to the next stage. Note that since at any stage A, n is finite we 
can effectively check this condition. Otherwise there must be a pair of pointlike pairs 
(a,b)and(c,d)inA,. suchthata,bECe andc,dEC,.LetD={xEA,.:xRaor 
xRc} and U = (x EA,,, : bRx or dRx}. Add two new points 2s and 2s t 1 to A,, so 
that 2s is R-incomparable to 2s + 1, 2sRx for all x E U, xR2s t 1 for all x ED, 2s is 
R-incomparable to all x E D, 2s t 1 is R-incomparable to all x E U, 2s E Cs, and 
2st lEC,- 

Finally if (d, m) <(e, n) < (f, p) make any point added at stage s + 1 R greater than 
any point already in Ad, m and R smaller than any point already in AL p. 

It is clear from the construction that (A, R) is an ordered set with width 3 and (Ce , . . . , 
C, ) is a chain cover of (A, R). We now check that A, R, C, , . . . , Cs are all recursive. First 
note that each stage of the construction is effective. Also, if x E A, then x is put into A 
at the 1(x/2) t l]st stage. Thus we can effectively determine whether or not x EA by 
carrying out the first (x/2) t 1 stages of the construction. So A is recursive. Similar argu- 
ments show that R, C,, . . ., C, are recursive. 

Finally suppose that (Lo, . . . . Lnul) is a recursive realizer of (A, R). Then (Lo, . . . . 
L, -r ) is represented by some recursive function & (x, y, i). Let A,, be the finite set of 
elements in A, n by stage ((e, n), 2n). There exists a p > 2n such that for all x, y E A0 
and i<n, &(x, y, i) gives an output in at most p steps. Then after stage ((e, n), p) 
4:(x, y, i) represents an nary realizer of A, n. But the construction at stage ((e, n), p) t 1 
ensures that 4,(x. y, i) will not represent an n-ary realizer of (A, R). 0 

PROOF OF THEOREM 4(b): Let rbe the class of structures (A, R, C,, , . . . . Cc-,) 
where (A, R) is of width < c and (Ce , . . . , Cc- 1> is a chain cover of (A, R). Let Yi be the 
associated class as in the proof of Theorem 0, where n = c(‘;‘) - 1. We will produce 
a winning strategy for the xplayer. The first step is to see that the xplayer can force 
a position in which for all i # j all points in Ci are incomparable to all points in Ci and in 
each chain Ci there exists a pair pi of adjacent points such that for all i fj, pi and pi are 
point-like. 

Observe that if (x, y) and (u, u) are point-like and xRx’Ry’Ry and uRu’Rv’Rv, aen 
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(x’, y’) and (u’, u’) are point-like. First the Zplayer uses the strategy described in the 
proof of Theorem 0 to produce two point-like pairs (xi, y:) and (xi, yi) such that 
xk, y: EC, and xi, yi E Cr. Next the xplayer uses the above observation and the 
Theorem 0 strategy to produce pairwise point-like pairs (xi, yi), (xi, y:), and (xi, 
yz) such that xi, y: E Cj, for i < 3 and xi R xi R yf R yi for i < 2. Continuing in this 
manner the .-%?player can produce the desired pairs. 

Any of the linear orders Li induces a linear order on P = { p. , pl, . . . , pCel 1 since the 
p’s behave point-like. For each i < n, let qi be the (t + 1)st Li-largest element of P and let 
Xi = {pi E P : 4iLipi and qi # pi}. Since there are C( ’ ;‘) ways to choose an element q E P 
and a t-element subset X C P - {q}, and n < c(‘;‘), we can choose (4, X) as above so 
that (4, X) # (qi, Xi) for any i < n. Now the xplayer adds two new points u and v 
as follows to assure his win. He declares that u isR-smaller than all elements of Ci where 
Pi E X and R-smaller than the top element of q and v is R-greater than the bottom element 
in q and u is R-greater than all elements in C,, where pk E P - (X U { (71). The points 
u and v belong to the chains Ci and Cj where pi is the least element of X and pi is the 
least element of P - (X U { 4)). The resulting set might look like: 

Confronted with the incomparability of u and it, the LB-player is forced to put u above 
v in at least one of the linear orders Li. But this is impossible since it would force (4, X) = 
(qi, Xi). Thus, the Z p ayer has a winning strategy for the ZYn expansion game. 1 

It remains to note that the winning strategies of the xplayer can be recursively 
spliced together just as in the proof of Theorem 0. A moment’s reflection reveals that the 
layering done in the construction will produce no crowns. 0 

PROOF OF THEOREM l(b). Applying Theorem 4(b) to c = 3 we obtain a recursive 
ordered set whose chain covering number is 3 and whose recursive dimension is at least 
3(f) = 6. 0 

We now turn to situations in which the2iplayer has a winning strategy. Recall that the 
task of the Yplayer is to fit the new point, just introduced by the zplayer, into each 
of a number of linear orders in such a way that the resulting linear orders constitute a 
realizer of the ordered set built by the xplayer. Thus, after a number of plays the 
splayer is confronted with the following situation: 

(S): A+ = A u { p} where p 4 A, R+, an order on A+ extending the order R on 

A, (Co, . . . . Cc-,) is a chain cover of (A+, R+), p E ck, for exactly one k 
withO<k<c,(Le,..., L, _ 1 ) a realizer of (A, R). 
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In each Li there is an interval into which p can be inserted: the upper bound of this 
interval is the &-least element of A that is R+-larger than p (if such a bound exists), 
while the lower bound is the &-largest element of A that is R+-smaller than p (if such a 
bound exists). Positioning p anywhere in this interval will produce an extension of both 
R+ and Li. So our strategies for the pplayer will involve tie-breaking schemes for deciding 
on the appropriate positions in this interval in which to insert the new point. In every 
case, the scheme will involve the subscripts on the chains which make up the chain cover. 

Our first theorem has a relatively simple tie-breaking scheme. 

PROOF OF THEOREM 3. So suppose that the Yplayer is confronted with the situation 
(S) above. 

The pplayer’s response will be as follows. For each i = O,l, . . _, c - 1, with i # k, we 
insert p in the highest possible position in L2i and in the lowest possible position in L,i + 1 . 
We insert p as low as possible in LZk and as high as possible in LZk + 1. In some sense, the 
linear order L,i is an effort by the pplayer to place a point p over all points in Ci with 
which it is incomparable. (It is a simple task to accomplish this goal in a nonrecursive 
setting, but in general, it is impossible in this expansion game.) A dual statement holds 
forL,,j+r. 

If the Zplayer has followed this strategy at each stage of the game, it remains to show 
that (L,+, LT, . . . . Li,-, ) is a realizer of (A+, R+). To accomplish this, it suffices to show 
that if (x, y) is an arbitrary incomparable pair in (A+, R+), then there is at least one j for 
which yL,jjx. By induction, we may assume that one of x and y is the new point p. 

Let us suppose first that p = x and that y E Cj. We show that yL,fx. To see that this 
is true, we suppose to the contrary that XL&Y. Since x was inserted as high as possible 
in Lzi, we know that if z is the point immediately over x in Llj, then XRZ. Similarly, 
if we let w denote the point immediately under y in L&, then WRY. Since x and y are 
incomparable in R and zLiiw, z is incomparable to w in R. However, this violates the 
definition of an interval order since it implies that R contains two incomparable two- 
point chains. The contradiction shows that yL$x. A similar argument shows that if 
p=yandxE&, thenyL&+, x. With this observation, the proof is complete. 0 

Our next theorem will require a more elaborate tie-breaking scheme. When (C,, C1 , 
C 2, . . ., C,-r) is a chain cover of (A, R) and x EA, we let o(x) denote the unique i for 
which x E Ci. Now let u be a linear oder (a permutation) of (0, 1, 2, . .., c - 1). Then we 
may define a recursive linear extension L = L, of R using u as a tie-breaker. Suppose at 
the time the new point p is given L, has placed the points preceeding p in the order 
w. L, w1 L, . . . L, wt. To extend L, to include p, we will place p before wo, after wt or 
between wi and Wi + r for some i. The rule is as follows. Letj be the least k such that for 
all i > k not WiRp. Find the least i > j, if it exists, for which either pRWi or a(p) u (U(Wi) 
and insert p immediately before wi. If no such i exists, p is placed after wt. 

PROOF OF THEOREM 4(a). We assume that (Co, Cr , . . ., C,-r) is a recursive chain 
cover of (A, R). Then for each linear order u of (0, 1,2, . . . , c - l}, we form the recursive 
linear extension L, of R as defined above. There are c ! such extensions. We then proceed 
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to show that this collection is a recursive realizer for R. It suffices to choose an arbitrary 
incomparable pair (x, JJ) and show that there is at least one o for which y&x. Without 
loss of generality, we assume that c4j~) = 0 and o(x) = c - 1. 

The determination of the desired order u requires the construction of an auxilary 
partialorderon{1,2,3, . . . . c - 2). We proceed as follows. 

F is an up-fence from x to q provided F is an ordered set of height 1 with one of the 
following kinds of Hasse diagrams: 

Next, we define a binary relation A on { 1, 2, . . . , c - 2) by the following rule: i A j if, 
and only if, there exist p E Ci, q E Cj with p R+-smaller than y and there is an up-fence F 
from x to q such that each point of F is R+-incomparable with both p and y. 

The reader should note that the relation A is defined in terms of representatives of the 
chains Cl and Cf. The conditions need not be satisfied by every pair of points from these 
chains. We now proceed to show that the relation A is an irreflexive partial order and in 
fact is an interval order. These results follow easily from a lemma whose proof requires 
crown-freeness at a crucial stage. 

LEMMA. IfiAjandkAl, theneitheriAIorkAj. 

Proof. For the sake of contradiction suppose i A j and k A 1 and both i 4 1 and k 4 j. 
Choose points PECi, qECi, p’ECk, q’ECl and up-fences F from x to q and F’ from x to q’ 
such that p, q and F witness i A j while p’, q’ and F’ witness k A 1. Since i 4 1 it follows 
that p must be R+-comparable with some point of F’. Since y is R+-larger than p and 
R+-incomparable with all of F’, it follows that p is R+-smaller than some point of F’. 
Let r’ be the point on F’ closest to x which is R+-larger than p. Pick r on F to be closest 
to x and R+-larger than p’. Note that r and r’ are R+-incomparable since otherwise r is 
R-greater than p or r’ is R+-greater than p’. Also r and r’ are connected by a path no 
interior point of which is R+-comparable to y, p, or p’. Hence, r and r’ are connected by 
a fence H which also has this property. But then y, p, r’, H, r, p’, y constitutes a crown 
in (A+, R+), which was forbidden. 0 

Now A is clearly an irreflexive relation. Both anti-symmetry and transitivity follow 
immediately from the lemma and the irreflexivity of A. The lemma itself asserts that 
there are no suborders with Hasse diagrams like 

1 
i% X’ k 



RECURSIVE DIMENSION FOR ORDERED SETS 79 

so A is an interval order. Now adjoin 0 as a least element and c - 1 as a greatest element. 
The resulting order A1 is an irreflexive interval order of { 0, 1, . . . , c - 1). Fix any repre- 
sentation of this order by intervals from the real line with distinct left end points. Let 
u0 be the linear extension of A, ‘by left endpoints’; that is, i u. j if, and only if, the left 
endpoint of the interval representing i is less than the left endpoint of the interval repre- 
senting j. 

The order u. has two very important properties. 

(*) if cr(v) A, o(w) and o(w) uo a(z), then (U(V) A1 a(z) 
(**) if both z and w are R+-incomparable with both y and v, vR+y, wR+z, and 

a(v) A a(w), then o(v) A a(z). 

The property (*) is a distinctive property of extension by left-endpoints and it is imme- 
diate. To see that (**) is valid choose points v’ E C,(V), w’ E &c,,,) and an up-fence F 
from x to w’ which witness (u(v) A o(w). Then let v” = max (v, v’) and let F’ be any 
up-fence from x to z with F’ C_ F U {w, z}. Then v”, z, and F’ witness o(v) A a(z). 

Now let us suppose that when the latter of the two points x and y has appeared, the 
desired property fails to hold and that we have instead x&y where u = uo. We proceed 
to a contradiction. Note that we will be concerned only with the finite set of points 
which have appeared thus far. Consider the sequence of consecutive points x = u. , u r , 
u2~ ***9”m = y in L,. Note that for each i, either Ui R Ui+r , or o(Ui) u o(Ui+ r). We then 
define a blocking chain in L, as a suborder x = v. , vl , v2 , . . . , vk = y of L, so that for 
each i, either Vi R Vi + 1 or (II u o(vj+ i). (The concept of a blocking chain arises in 
analyzing the effect the permutation u has in its role as a tie-breaker.) Choose a blocking 
chain x = vo, v,, v2, . . . , x = y where k is as small as possible. Since k is minimal, we 
cannot have ViRVi+~RVi+Z. Similarly, we cannot have a(Vi) u a(Vi+ r) and OI(V~+ r) u 
(Y(z++~). Thus VziR z12i+l, while ~zi+l and vzi+* are incomparable with c~(v~~+r) u 
a(~?i+~). Whenever k > j > i + 2 and i > 0, the points vi and vi are incomparable, but 
CX(V~) a CY(V~). Any other possibility results in a shorter blocking chain. 

Next, we observe that t&r and vl witness (Y(?+-r) A (Y(z+). So we may then choose 
the largest integer i for which (Y(vk-r) A O1(Vi). If i is odd, say i = 2j t 1, then we know 
a(Vi) = o(v2i+ 1) u CX(VZ~+~). Hence, by property (*) noted previously, we would conclude 
that (Y(vk-i ) A (Y(Vi+ r ). The contradiction forces i to be even, say i = 2j. But in this case, 

we have vZi R v2j+l. Here, we conclude by (**) that (Y(vk-r) A cY(Vi+r). With this 
contradiction, our proof is complete. 0 

PROOF OF THEOREM l(a). The theorem will follow as an easy corollary to the proof 
of the preceding theorem. We suppose that (Co, C,, C,) is a recursive chain cover of the 
ordered set (A, R). There are six orders uo, ur , 02, 03 3 04, us of (0, 1, 2). We now 
proceed to show that the recursive linear orders {Loi. : 0 < i < 5) form a recursive realizer. 
This conclusion follows from an analysis of the concept of blocking chain utilized in the 
proof of Theorem 4(a). In particular, we note that a minimal blocking chain requires at 
least four distinct chains. Since there are only three chains, we see that no blocking chain 
can exist, and with this observation, the proof is complete. Cl 
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PROOF OF THEOREM 2. Let zbe the class of ordered sets, (P, R) of width 62. Let 
5?be the class of structures (P, R, Lo . . . L4) where (P, R) E -?-and (L, . . . L4) is a 
realizer of (P, R). We must provide a recursive winning strategy for thesplayer in the 
55%Yexpansion game. 

In [7] it is shown that any width two recursive ordered set (P, R) can be covered by 
six recursive chains. We shall need very specific information about this construction for 
our proof. The assertion of the following lemma, which we state without proof, is implicit 
in [7]. R-incomparability is denoted by II. 

LEMMA. Let xbe the class of ordered sets of width 2 and let ./be the class of struc- 
tures(P,R,R*,& ,... &,B,C, ,... G,A)suchthat: 

(i) (P, R) E x; 

(ii) (B, C,,, . . . C,) is a chain cover of (P, R), B is a maximal chain; and A = C, U . . . 

u c4; 

(iii) (A, R*) is a linear extension of (A, R) and xR*y if and only if, x, y E A and 
xRy or for all z E B z II x implies zRy; 

(iv) ifxECj,yE~,i#j,xR*y,zEA,andxIIzIlythenxR*zR*y; 

(v) ifxECi, bEB and xllb th en there are at most two numbers k < 5 such that 
k#iandforsomecECk,xRcIIb. 

(vi) aSib if, and only if a E A, b E B, a II b, and there exists c E Ci such that aRc II b. 

Then theJ[-player has a recursive winning strategy in the x-ddexpansion game. 
Notice that (vi) implies that if a E A and b E B have been played so that all b and 

there is no c’ E Ci such that aRc’ II b, then no such c’ will ever be played. 
The 2player will secretly follow the Aplayer’s strategy while constructing Lo, . . . L4 

so that forxlly, ifxECj, then~L~y.AlsoifxEB,thenfor some j<S,xLjy.Hereis the 
9player’s strategy: 

For each i < 5, xLiy if, and only if, one of the following holds: 

(1) XRY; 
(2) xlly, y EA, and xECi; 
(3) xIIY, x,YEA, y@Ci and xR*Y; 

(4) X IIy, y E B, and XSiy; 

(5) XllY, x E B, and not YS’iX. 

First we show that for each i < 5, (A, LJ is a linear order. It is easy to check that Li is 
reflexive, antisymmetric, and linear. In order to show transitivity, suppose that x Li y Lt z. 
There is no problem if x Li y by the same clause that makes y Li z. Also we can ignore 
clauses (4) and (5). This leaves six cases 0, k) to check, where in case (j, k)x Li y by 
clause (J) and y Li z by clause (k) for 1 Gj, k G 3 and j # k. 

By antisymmetry and linearity it suffices to consider those cases where j < k. 
Case (1,2). So xRy llz and y E Cf. If x is comparable to z, then xRz and we are done 
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by clause (1); if not and x E Cl then XLiz by clause (2); otherwise by (iv) of the lemma, 
xR*zR*y and we are done by clause (3). 

Case (1,3). Then xRyR*z and z E C’i. Thus, by (iii) of the lemma xR*z and we are 
done by clause (3). 

Case (2,3). Then x 11 y 11 Z, x E C’i and z 4 Ci Thus x is comparable to Z, and by (iv) of 
the lemma, y is R* - betweenx and z. By clause (3) yR*z; thus xR*yR*z. Using (iii) of 
the lemma, XRZ ; hence, we are done by clause (1). 

Next we show that (P, Li) is a linear order. Again the only problem is transitivity. 
Suppose that x Li y Li z. By the preceeding argument, we may assume that one of x, y, 
and z is in A and one is in B. By antisymmetry and linearity, we may assume that either 
casel:x,yEBandzEA,orcase2: thatxEBandy,zEA. 

Gzse 1. If z is comparable to x or y, then by antisymmetry XRZ, and we are done by 
clause (1). Otherwise we have not zSiy and thus not ZSiX. So we are done by clause (5). 

Case 2. First suppose xRy. If x or y is comparable to z, then we are done by clause 
(1). So suppose x, y llz. Thus zR*y by (iii) of the lemma and yLiZ by clause (2). Hence 
y E Ci. Suppose z5’iX. Then there exists c E C’i such that ZRC IIx. Clearly, using (ii) of the 
lemma yRc, which contradicts cllx. Thus not ZSiX, and we are done by clause (5). Now 
suppose xlly. Then by not clause (4), not YSiX. If xIIz, thenyRz and thus not XSiz. 
So we are done by clause (5). Suppose x is comparable to z. If yRz, we are done by anti- 
symmetry and clause (1). So suppose y llz. Then, since y E Ci, yLiz by clause (3). Thus 
by (iii) of the lemma, XRZ. 

Finally we check that (Lo, . . . L4) is a realizer of (p, R). Suppose xlly where x E Ci. 
If y E Ci, then XLiy and yLix. If y E B, then xLfl. By (v) of the lemma, there exists 1 
such that not x&y. So yLlx. 0 

Our proof of Theorem 5 relies on the following unpuslihed lemma of J. Schmerl which 
we include here with his kind permission. 

LEMMA (J. Schmerl). Evev recursive ordered set of height w can be covered by (“‘i’) 
recursive anti-chains. 

ProoJ: Let Xbe the class of ordered sets (P, R) of height < w and Ybe the class of 
structures (P, R, . . . Ai,i . ..)i+i< ,,,, where (P, R) E xand (Ai,/)i+i< w is an anti-chain 
cover. Notice that there are (“i ‘) anti-chains Ai, j. We must provide the p-player a 
recursive winning strategy for the %p expansion game. 

Each time the rplayer adds a new point to form (P’, R+) the dPplayer should put 
P into Aifj) where i is the length of the longest chain in (P+, R+) which is entirely below 
p and j is the length of the longest chain in (P’, R+) that is entirely above p. Clearly p is 
incomparable to all points already in A, j . 0 

PROOF OF THEOREM 5. Let (A, R) be a recursive ordered set. We prove the theorem 
by induction on d. If d = 1 then R is a linear order; so we are done. For the inductive 
step, let d = k+ 1. Suppose that {Ll, . . . Lk + r } is a recursive realizer of (A, R). Define 
S = L1 rl . . . nL, nL,*+, where Lz+l = {(b,a): aL k + r b} . Clearly (A, S) is recursive 
and the height of (A, s) is bounded by the width of (A, R). Thus, by Schmerl’s Lemma, 
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(A, S) can be covered by (“i’) recursive anti-chains. If D is an anti-chain of (A, 9, then 
R r D= L1 P D n . . . 17 Lk f‘ D. Thus, by the inductive hypotheses, eachof these (“i’) re- 
cursive anti-chains of (A, S) can be covered by (wil)k-l recursive chains of (A, R). 0 
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