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Tolerance graphs arise from the intersection of intervals with varying tolerances in a way that 

generalizes both interval graphs and permutation graphs. In this paper we prove that every 

tolerance graph is perfect by demonstrating that its complement is perfectly orderable. We show 

that a tolerance graph cannot contain a chordless cycle of length greater than or equal to 5 nor 

the complement of one. We also discuss the subclasses of bounded tolerance graphs, proper 

tolerance graphs, and unit tolerance graphs and present several possible applications and open 

questions. 

1. Introduction 

An undirected graph C = (V, E) is called a tolerance graph if there exists a col- 
lection $= {Z,~XE V} of closed intervals on a line and a set t = {txJxE V) of positive 
numbers satisfying 

where 111 denotes the length of interval I. The pair (8 t) is called a tolerance repre- 
sentation of G. A tolerance representation (4 t)is called bounded if t,l i[r/ for all 
XE V. A tolerance graph is a bounded tolerance graph if it admits a bounded 
tolerance representation. See Fig. 1. 

Tolerance graphs were introduced in [4] where the following results were shown. 
If we restrict all the tolerances tx to be equal to any fixed positive constant c, then 
we obtain exactly the class of interval graphs. If we restrict the tolerances such that 
tx= /lx/ for all vertices x, then we obtain exactly the class of permutation graphs 
(or, equivalently, the interval containment graphs). Thus, interval graphs and 
permutation graphs are all bounded tolerance graphs. Furthermore, the following 
theorem was proved. 

* Work partially done while at Bell Laboratories. 
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Fig. I. A bounded tolerance (Cl) and unbounded tolerance (Gz) graph with their representations. 

Theorem 1. Every bounded tolerance graph is the complement of a comparability 
graph (called a cocomparability graph). 
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2. Some necessary conditions for tolerance graphs 

In this section we provide some forbidden subgraph configurations for tolerance 
graphs, and we investigate the differences between tolerance graphs and bounded 
tolerance graphs. We note that if any tolerance representation exists, one exists 
satisfying any or all of the following five properties: (a) the tolerances are all strictly 
positive; (b) the tolerances are all distinct (except those set to infinity); (c) the end 
points of the intervals are distinct; and (d) the intersection of all of the intervals is 
a nonempty interval (To see this, note that for any positive number M, we may 
increase each interval in length by M symmetrically about its center and add M to 
its tolerance.); and (e) any tolerance which is larger than the length of its corre- 
sponding interval is set to be infinity; such a tolerance is called unbounded. A 
tolerance representation satisfying these five properties is called a regular repre- 
sentation. For an interval Z,, we denote the right and left end points by Z?(x) and 

L(x). 
A vertex z of G is called assertive if for every tolerance representation (&t> of 

G replacing tz by min (tz, II,/} leaves the tolerance graph unchanged. An assertive 
vertex is one which never requires unbounded tolerance. The following observation 
is immediate. 

Remark 1. If every vertex of a tolerance graph G is assertive, then G is a bounded 
tolerance graph. 

It follows from the definition that a vertex x is nonassertive if there exists a 
tolerance representation (8 t) for G with tx= 00 such that reducing tx to IZ,] would 
create a new edge X_Y in G. In such a case xy d E, and Z, c ZY. We say that x is 
dominated by y in (.$ t > . Thus, assertive vertices are never dominated whereas 
nonassertive vertices are sometimes dominated. 

In the representation of graph Gz of Fig. 1, vertex d is dominated by vertex c. 
By symmetry, vertices a, d and f are nonassertive. By Lemma 2, vertices b, c and 
e are assertive. 

Let Adj(x) denote the set of vertices adjacent to x by an edge of G. 

Lemma 1. Let (&t > be a tolerance representation of G = (V, E). Zf x is dominated 
by y in (8 t), then Adj(x) c AdjO). 

Proof. If x is dominated by y, then xy$ E and Z,rZ,, and we may assume that 
fX = 03. Suppose that there exists a vertex z E: Adj(x) - Adj(y). Then we obtain the 
inequalities 

t,=min (tx,tZ>IIz,nz,I((z,nz,l<ti, 

a contradiction. Therefore, Adj(x) c Adj(y). Cl 
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The following restatement of Lemma 1 is immediate and will be useful. 

Lemma 2. Let x by a vertex of a tolerance graph. If Adj(x) - Adj(y) f 0 for ally fx, 
then x is assertive. 

We now obtain a sufficient condition for tolerance graphs to be bounded. 

Lemma 3. Let G = (V, E) be an undirected graph satisfying 

(1) Adj(x)-Adj(y)#0 for all x,yc V(x+y). 

Then G is tolerant if and only if G is bounded tolerant. 

Proof. Suppose G is tolerant. By Lemma 2, every vertex is assertive. Hence, G is 
bounded tolerant. The converse is trivial. 0 

As we mentioned earlier, tolerance graphs may be regarded as a generalization of 
interval graphs. An interval graph may not contain any chordless cycle of length 4 
or more. The analogous result for tolerance graphs is the following. 

Theorem 2. A tolerance graph may not contain a chordless cycle of length greater 
than or equal to 5. 

Proof. By the hereditary property of tolerance graphs, it is sufficient to show that 
C, is not tolerant, for any nz 5, including n even. It is well known that its com- 
plement C,, is not a comparability graph for any n 2 5, so, by Theorem 1, C, is not 
bounded tolerant. Therefore, since C,, satisfies (l), Lemma 3 implies that C, is not 
tolerant. 

The same proof would show that the complements of odd length chordless cycles 
are not tolerant. In fact a stronger result holds; namely, a tolerance graph may not 
contain C” for n >- 5, including n even. To show this it is necessary to introduce a 
few more concepts. 

We define F to be the toferance orientation associated with a regular repre- 
sentation (-P, t) for a tolerance graph G=(V,E), by 

xy~F iff xycE and t.+t,,. 

Clearly, a tolerance orientation is acyclic. In general, a tolerance orientation need 
not be transitive, e.g., for a path on four vertices. However, it is transitive for C,, 
as we show next. 

Lemma 4. The tolerance orientation F of C, is acyclic and transitive. Therefore, 
any tolerance orientation is unique, i.e., it is isomorphic to the directed graph in 
Fig. 2. 
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Proof. Consider a regular tolerance representation (3 f> of C,. By the symmetry 
of C,, we may assume that f,ct6<fc and f,<fd in Fig. 2. To prove the lemma, it 
suffices to show that tdctb. In order to obtain a contradiction, we assume that 
fd>fb. We note that f,GI,, since otherwise 

j~,n&/=j~,i~f,, 

a contradiction. Also, ldgfO, since otherwise 

I~~n~d~~~~dl=j/dn~,~<f~<min (fC,fd), 

a contradiction. By the symmetry of .Y, we may assume that L(d)< R(a)<R(d) and 
L(a) < L(d) <R(a). 

It must be the case that 1, fl (I, - /d) # 0, since otherwise (f, fI 1,) C (1, fI Id) would 
imply 

f,lII,nI,Isir,nId(<f,, 

a contradiction. Similarly, lb n (I, - Id) +0. Also, I, n (Id- I,) z 0, since otherwise 
(1, n Id) c (1, n Id) would imply 

l,<min (f,,fd)~/z,nrdlIiI,nIdI<f,, 

a contradiction. Similarly, 1, I-I (fd- 1,). Therefore, L(c) c L(d), L(b) CL(d), 

R(c) > R(a) and R(b) > R(a). 
Now, if R(b) > R(C) then (I, 0 Id) G (Ib fI 1,) which leads to 

min (fb7 fc) s min (fd, f,) s 11, n Idi 5 1 lb n &I, 

a contradiction. On the other hand, if R(b)cR(c) then (Ibr31,) G (IbfI I,) which 
leads to 

fb = min (fb, fd) 5 11, n IdI 5 ) 16 n &.I < fb, 

a contradiction. This completes the proof of the lemma. 0 

We are now ready to show that tolerance graphs may not contain C,,, nr5. 

Theorem 3. A tolerance graph may not contain the complemenf of a chordless cycle 
of length greater than or equal to 5. 

a C 

I 
b d 

Fig. 2 Unique tolerance orientation of C,. 
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Proof. Again by the hereditary property it is sufficient to show that G = C,, (n 2 5) 
is not tolerant. Since Cs = Cs we may assume by Theorem 2 that n L 6. Further- 
more, since C,, satisfies (l), we need only show that it is not bounded tolerant. 

Suppose that C, = (V,E) is bounded tolerant for some n>6 with regular repre- 
sentation (.A t > . Let the vertices be numbered cyclically u,, u2, . . . , u,, where E E 

if and only if i and j differ by more than 1 (modulo n). Let F be the tolerance 
orientation of C,, corresponding to (8 t). 

Consider the subgraph C, induced by vertices u2, us, IJ,, and u, _ ,. By symmetry 
and Lemma 4, we may assume that the tolerance orientation is as shown in Fig. 3(a). 

Now consider the subgraph C, induced by vertices uI, u3, o4 and IJ,. Since the 
edge u,u3 is already oriented, it follows from Lemma 4 that the subgraph is 
oriented as in Fig. 3(b). 

The contradiction now follows from the fact that this argument can be continued 
to obtain vertex Ui oriented by tolerance towards vertex vi+2 for all i= 1,2, . . ..n. 
This is clearly impossible since it violates the acyclic nature of F. El 

Let N(x) =Adj(x)U {x} denote the neighborhood of a vertex x in G. A set of 
vertices {u,, u2, u3) is called an asteroidal triple if Ui and uk are in the same con- 
nected component of G -N(uj) for all permutations (Lj, k) of { 1,2,3). In other 
words, any two of them are connected by a path in G which avoids the neigh- 

“” 

V n-i 

“2 

“3 

Vn 

(b) 

Fig. 3. Tolerance orientations of subgraphs for proof of Theorem 3. 



Tolerance graphs 163 

"1 

A 
“2 “3 

“I 

& 

U2 “3 

Fig. 4. Two tolerance graphs which are not bounded since they contain an asteroidal triple (uI,u~. UJ}. 

borhood of the remaining vertex. Clearly, the vertices of an asteroidal triple are 
pairwise nonadjacent. See Fig. 4. It is well known [7] that an interval graph contains 
no asteroidal triple. Although this is not true for tolerance graphs, it is true for 
bounded tolerance graphs which follows from Theorem 1 and the next result. 

Theorem 4. If G is the complement of a comparability graph, then G contains no 
asteroidal triple. 

Proof. It has been shown in [5] that a graph G= (V,E) is the complement of a 
comparability graph if and only if G is the intersection graph of a function diagram. 
A function diagram for G consists of the curves {O/u E V) obtained from a family 
of real-valued continuous functions f,: [0, l] -* R for all u E V, where IJW E E if and 
only if 0 and w intersect. (See Fig. 5.) 

Let D be a function diagram for G, and suppose that G has an asteroidal triple 
{ui,u2,u3}. Since the vertices ul, u2, u3 are pairwise nonadjacent, the curves 15,, 
ii,, r.i, are disjoint and one of them, say a,, lies between the other two. Now if we 
remove a2 and all curves which intersect it, we will obtain a function diagram for 
G-N(+) in which ui and u3 are separated into distinct connected components. 
This contradicts the assumption that {it, u2, u3} is asteroidal. Cl 

G D 

Fig. 5. A function graph G and a function diagram D for G. 
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Theorem 4 shows that from any connected graph GO we may construct a graph 
G which is not bounded tolerant simply by ‘growing’ three new paths of two edges 
anywhere on GO. The simplest example of this grows an isolated vertex into the tree 
Tz in Fig. 6, which is a tolerance graph but is not a bounded tolerance graph. We 
now show that it is just as easy to construct nontolerance graphs. 

Theorem 5. Let G be a tolerance graph which is not bounded, and let X be the set 
of all nonassertive vertices. Then the graph H formed by adding a new pendant 
vertex onto every member of X, is not a tolerance graph. 

Proof. Suppose H has a tolerance representation (.A t >. By Lemma 2, each XE X 
is assertive in H since each such x has an exclusive new neighbor. Therefore, we may 
assume that t,s IZ,I for all XE X. Now if we restrict Y to only the members of G, 
we obtain a tolerance representation for G in which all nonassertive vertices have 
bounded tolerance. But this contradicts the assumption that G is not a bounded 
tolerance graph. Cl 

Example. In Fig. 6, the nonassertive vertices of T2 are its three leaves. Therefore 
by Theorem 5, T3 is not a tolerance graph. 

In the remainder of this section we prove that the trees which are bounded 
tolerance graphs and those which are tolerance graphs are characterized by the 
forbidden subtrees T2 and T,, respectively. 

Theorem 6. If T is a tree, then the following conditions are equivalent: 
(i) T is a bounded tolerance graph. 

(ii) T contains no subtree isomorphic to the tree T2 in Fig. 6. 
(iii) IT is an interval graph. 

A A 
T, T2 T3 

Fig. 6. A bounded tolerance (T,), unbounded tolerance (12) and nontolerance (TJ) graph. 
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Proof. Trees which satisfy (ii) have also been called caterpillars in the literature ‘. 
The equivalence of (ii) and (iii) was established in [7]. See also [I I]. The implication 
(iii)*(i) [4] was mentioned in Section 1, and the implication (i) * (ii) follows from 
the fact that Tz is not bounded tolerance graph. Zl 

Theorem 7. If T is a tree, then the following conditions are equivalent: 
(i) T is a tolerance graph. 

(ii) T contains no subtree isomorphic to the tree T3 in Fig. 6. 

Proof. Trees which satisfy (ii) may be called caterpillars with toes*. The impli- 
cation (i)*(ii) follows from the fact that T3 is not a tolerance graph. To show 
(ii)=,(i) suppose that T is a caterpillar with toes. Let the body of T be the path 

[X,Jz, ...I +I, and let the feet attached to xi be yi...,,yi,. First, we assign the 
intervals IX, = [a;, b;] as follows: 

al =O, 6, =d, +4, 

ai=bi_,-2, bi=ai+di+4 for i=2 ,..., k. 

We set the tolerances tx, =2 for all i, and note that IZ, n IX,1 r2 if and only if i and 
j differ by one. Second, we let I,,; = [ai+ 1 +j, ai+ 2 +j] and assign t,,; = 1. Finally, 
for each toe z attached to the foot yj we associate Iz =I__; and set t,= 05. See 
Fig. 7. It is easily verified that this is a tolerance representation for T. II 

3. Tolerance graphs are perfect 

An obstruction [2] of an oriented graph is an induced subgraph isomorphic to the 
graph in Fig. 8. An undirected graph is called perfectly orderable if it admits an 
acyclic orientation which contains no obstruction. 

Theorem 8. (Chvatal [2]). Perfectly orderable graphs are perfect. 

Examples of perfectly orderable graphs include all comparability graphs, trian- 
gulated graphs, and the complements of triangulated graphs. We will prove that the 
complements of tolerance graphs are perfectly orderable, and hence, by Theorem 
8 and the perfect graph theorem, tolerance graphs are perfect. 

Let (.J$ t > be a regular tolerance representation of G = (V, E). We define F to be 
the right end point (REP) orientation of G, that is, 

xy~F o xydE and R(x)<R(y). 

’ A caterpillar is a graph consisting of one chordless path (the body) and an arbitrary number of 

pendant vertices (the feet) attached to the path. 

* A caterpi//ar wifh toes consists of a caterpillar and an arbitrary number of pendant vertices (the toes) 

attached to the feet. 
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Fig. 7. A caterpillar with toes and a tolerance representation for it. 

Furthermore, we label xy E F as Type 1 if 1,$Z f,, and as Type 2 if 1, G rY. Clearly, 
the REP orientation is acyclic. 

Remark 2. We observe that xy is of Type 2 if and only if x is dominated by y in 
(At). Hence, by Lemma 1, if xy is of Type 2, then Adj(x)GAdj(y). 

In general, the REP orientation F of G is not transitive. However, it is ‘almost’ 
transitive. 

Lemma 5. if xy, yz E F and it is not the case that xy is Type 1 and yz is Type 2, 
then xz E F. 

Proof. If xy is of Type 2, then, by Remark 2, Adj(x) G Adj(_v) so XZG E. Since F 
is acyclic, it follows that xz E F. 

‘WW 
Y 2 

Fig. 8. An obstruction. 
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If xy and yz are both of Type 1, then we have the following: 

II,nZ,/cmin {Ir,n1,1,Ir,n1,l)Cmin {t,,f,}. 

The first inequality follows since R(x)<RQ)< R(z) and IX$I_,~Zz. The second 
follows since xy and yzb E. Thus, xzb E, and again xz E F, (in fact xz is of 
Type 1). 0 

From Lemma 5 we obtain an alternate proof of Theorem 1, i.e., the complement 
of a bounded tolerance graph is a comparability graph. 

Proof of Theorem 1. Let F be the REP orientation of G obtained from a bounded 
tolerance representation of G. Since F has no Type 2 edges, Lemma 5 implies that 
F is a transitive orientation of G. Therefore, G is a comparability graph. 

We now present the main result of this section. 

Theorem 9. A tolerance graph is perfect since the REP orientation of its com- 
plement is perfectIy ordered. 

Proof. Suppose that the REP orientation F of G contains an obstruction as illus- 
trated in Fig. 8. Since xz6 F we know, from Lemma 5, that xy is of Type 1 and yt 
is of Type 2. By Remark 2, Adj(y) c Adj(t). However, w~Adj@) and w$Adj(z), 
a contradiction. Therefore, F contains no obstruction and G is perfectly order- 
able. 0 

4. Proper tolerance graphs 

A graph G is called a proper tolerance graph if G admits a tolerance repre- 
sentation in which no interval properly contains another interval. It is immediate 
that the class of proper interval graph is contained in the class of proper tolerance 
graph; K,,, is an example in the difference. 

Theorem 10. Every proper tolerance graph G is a bounded tolerance graph. 

Proof. Let (4t) be a proper tolerance representation for G. Without loss of 
generality we may assume that (4 t) is regular. Suppose that G is not a bounded 
tolerance graph, and let x be a nonassertive vertex dominated by y in (4 t). Then 
Z,c IY. By regularity, IX#l,,; therefore, 1, is properly contained in fY, a contra- 
diction. El 

We now show that the graph K3,3 is a forbidden subgraph for proper tolerance 
graphs. 
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Theorem 11. If G is a proper tolerance graph, then G contains no induced copy 

of K3,3. 

Proof. It suffices to show that K3,) is not a proper tolerance graph. Suppose that 
K3,3 has a proper tolerance representation (.A t >. Without loss of generality we may 
assume (-4 t) is regular and, by symmetry, that the left end points are related by 
L(l)<L(2)<L(3) and L(4)<L(5)<L(6) and tl < ta and L(l)<L(6). Since (1,2) is 
not an edge in K3,3, it is easy to see that L(6)< L(2). Therefore, 

L(4) c L(5) < L(6) <L(2) < L(3) 

and, since the representation is proper, 

R(4) < R(5) < R(6) < R(2) < R(3). 

Now, 

a contradiction. q 

5. Applications and open questions 

Interval graphs capture the notion of objects conflicting because they overlap in 
time or space. These graphs have found application in areas ranging from sche- 
duling and data storage to archeology and genetics. We refer to [3; Chapter 81 for 
a discussion of various applications. 

Tolerance graphs extend this notion of conflict by incorporating a ‘tolerance for 
overlap’. Two objects conflict only if their overlap meets or exceeds one of their 
tolerances. This introduces a flexibility into the situations which can be modeled. 

As an example, consider a group of employees each scheduled to work for a fixed 
interval of time at work stations. Employees are each assigned to a single work 
station for their entire work interval. A conflict arises if two employees are assigned 
to work on the same work station at the same time. Tolerances arise in a natural 
way. In addition to working at their stations, employees perform other adminis- 
trative functions during their day. An employee’s tolerance arises from work time 
that can be spent away from the work station. Employees assigned ta the same 
station who overlap in time alternate performing their administrative duties from 
day to day. So two employees conflict only if their work intervals overlap by an 
amount exceeding either of their tolerances. 

Another situation arises in the scheduling of meeting rooms. Usually, two 
meetings are thought to conflict if any part of their meeting times coincide and so 
they must be assigned to different rooms. However, in order to increase their 
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chances of obtaining a room, some groups might tolerate a certain amount of 
overlap in time with other meetings. This overlap time could alternatively be used 
by one group or another from meeting to meeting or the room could actually be 
shared during this time. 

A number of interesting open questions remain unanswered. The most important 
of which are the characterizations of tolerance and bounded tolerance graphs. 
Fig. 9 shows the relationships of these graphs to the classes of triangulated, 
comparability and cocomparability graphs. An example is known for every region 
shown except for the one containing a question mark. This leads us to the 
conjecture: “A tolerance graph is bounded if and only if its complement is a 
comparability graph.” An initial step under consideration is to study complements 
of trees to see if these graphs are tolerance graphs or not. 

TRIANGULATED COMPARABILITY 

COCOMPARA8lLlTY 
GRAPHS 

n BOUNDED TOLERANCE GRAPHS 

8 
INTERVAL GRAPHS 

PERMUTATION GRAPHS 

f-*X 
L__! 

TOLERANCE GRAPHS 

Fig. 9. Relations of tolerance graphs to other classes of graphs. 
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A graph G is called a unit tolerance graph if G admits a tolerance representation 
in which every interval is of unit length. Clearly, every unit tolerance graph is 
proper. We pose the question: “Is a graph proper tolerant if and only if is a unit 
tolerance graph?” The analogous statement for proper and unit interval graphs is 
true [IO]. 
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