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FOR >3, EVERY ¢-DIMENSIONAL PARTIAL ORDER CAN BE
EMBEDDED IN A ¢+ 1-IRREDUCIBLE PARTIAL ORDER

W.T. TROTTER JR.* — J.A. ROSS™°

ABSTRACT

The dimension of a partial order X is the least integer ¢ for which
there exist linear extensions X,,X,,...,X . so that x, <x, in X if
and only if x; <x, in Xl. for each i=1,2,...,t. For an integer
t> 2, a partial order is t-irreducible if it has dimension ¢ and every
proper nonempty subpartial order has dimension less than ¢. The only
2-irreducible partial order is a 2-clement antichain. There are infinitely
many 3-irreducible partial orders, and they may be conviently grouped
into 9 infinite families with 18 odd examples left over. There are many
2-dimensional partial orders which cannot be embedded in a 3-irreducible
partial order, for example, any 2-dimensional partial order whose length
and width both exceed 4. However, when ¢> 3, we prove that every #-
dimensional partial order can be embedded in a ¢+ l-irreducible partial
order.

*Research supported in part by NSF grant ISP-8011451.
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1. INTRODUCTION

In this paper, we prove that if 7> 3, every t-dimensional partially
ordered set can be embedded in a £+ l-irreducible partially ordered set.
This result is false when = 2 since there are many 2-dimensional posets
which cannot be embedded in 3-irreducible posets. The construction used
to establish this theorem has its origins in chromatic graph theory,Aand an
elementary version had been previously used by the authors [12] to show
that for each > 2, every t-irreducible poset is a subposet of a ¢+ 1-
irreducible poset. For the sake of completeness, we present in Section 2 the
fundamental definitions and summarize some preliminary material on the
dimension of partially ordered sets. For additional background material, we

‘refer the reader to the survey articles [6] and [10]. In particular, [6] con-
tains an extensive bibliography of papers on dimension theory.

2. NOTATION, TERMINOLOGY AND PRELIMINARY RESULTS

A partially ordered set ( poset) is a set X equipped with a reflexive,
antisymmetric and transitive binary relation <. If Xy, X, €X, x; £ X,
and x, £ x,, then x; and x, are incomparable and we write x, || X,.
For each point X, €X, welet DX(x1)= {x2 eX: X, <x;} UX(xl) =
= {x2 €X: xg <x2}, and ]X(xl)= {x2 € X: x ![xz}. We let IX =
= {(xl,xz): xy Wx,}. X is a linear order if Iy =¢. If X, and X, are
partial orders on the same set and X <x, in X 5 Whenever X, <x, in
XI, we say X2 is an extension of Xl; if X2 is a linear order and an
extension of X ;» then X 5 is called a linear extension of X 1- Dushnik
and Miller [1] defined the dimension of a poset X, denoted dim X,
as the least positive integer ¢ for which there exist ¢t linear extensions

X1>X2""’Xr of X so that X; SXx, in X ifand only if Xy <x, in
Xz. for each i=1,2,...,¢

If X, and X, are posets and the point set of X, is a subset of the
point set of X,, the poset X, is called a subposet of X, when Xy < Xx,
in X, if and only if X; <x, in X, for all X1» X, € X;. For each point
X€X, welet X— {x} denote the subposet of X whose point set con-
tains all points in X except x. Of course, dim (X — {xh<dimX for
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each x € X. Foraninteger t> 2, a poset X is t-irreducible if dir~n X)=
=t and dim (X —{x}) <t foreach x€ X. A poset has dimension on.e
if and only if it is a linear order (a chain), so the only 2-irreducible poset is
a two point antichain. There are infinitely many 3-irreducible posets, and a
complete listing of these posets has been made by Trotter and M oore
[10] and by Kelly [4]. These posets can be conviently grouped into 9
infinite families with 18 odd examples left over.

In Section 3, we will make extensive use of one of the infinite .fami-
lies of 3-irreducible posets. In Section 4, we will use D. K?lly’s dlmejn-
sion product construction to obtain for each ¢>4 a particular family
of t-dimensional posets. But before we proceed to those resul‘ts, we
need to develop additional material for working with the dimension of
a poset.

A set R={X,X,,...,X .} of t (not necessarily distinct) linear
extensions of a poset X is called a realizer of X if x; <Xx, in X if and

' only if x; <x, in X; foreach i=1,2,...,¢ The dimensionof X is

then the minimum size of a realizer of X. Let I, denote the s.et of a—l_l
incomparable pairs of X. Then it is easy to see that a collectlon. R =
={X,,X,,...,X,} of linear extensions of X is a realizer of X if and
only 1if for each (x1 s xz) € I, there exists some Xi € R sothat x, < X,
i i linear
in X,. If IEIX and R={X,X,,... ,Xt}. is a collection of mel
extensions of X, then we say R reverses I if for every (x5 x,) €1,
) . . - . t
there exists some X;€R with x, <x; in X, Th.e dlmensmn'of a pos;
X with IX # ¢ is then the minimurfx number of linear extensions of
required to reverse all incomparable pairs.

For a binary relation R, we let R = {(ry, 1y (rz,{‘l)‘ER}. R
is called the dual or reverse of R. When X is nota cham-, .1t follews
that dim (X) is the least ¢ for which there exists a partl.tlon I ¥ =
=1, Ul,u... U] sothat foreach i=1,2,...,¢, there exists alu;ezfr
extension X; of X with x; <x, in X; fo.r every (x;,x,) €. Itis
therefore natural to consider the following question:

If I c7 X under what conditions does there exist a linear extension
X, of X with x; <x, in X, forevery (x;,x,)en
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The answer to this question is easy to provide. A set {(c;, d):
1<i< m}SIX is called a TM-cycle of length m when d;<¢,, for
i=1,2,...,m—-1 and d, < ¢,. It is easy to show that these sets

provide an answer to this question (see [11], for example).

Lemma 1. Let X be a poset and let 1< Iy. Then there exists a
linear extension X, of X with x, <x, in X, forevery (xl,xz)el
ifand only if I does not contain a TM-cycle.

'In many cases it is convenient to have a somewhat more technical
version of this result at our disposal. A TM-cycle {(e;s d): 1<i<m} is
said to be strong if di<cj if and only if j=i+ 1 for I<i<m-1,
and d, < ¢ ifand only if j= 1. Itis straightforward to verify that if
ICr v and I contains a TM-cycle, then I also contains a strong TM-cycle.

Furthermore, if  is a strong TM-cycle, then no proper subset of 7 con-
tains a TM-cycle.. ‘

Lemma 2. Let X be a poset and let IC Iy. Then there exists a
linear extension X0 of X with X, <x, in X0 for every (xl,xz)el
ifand only if I does not contain a strong TM-cycle. x

In view of the preceding result, it is natural to associate with a poset
X a hypergraph Gy so that the dimension of X is the same as the
chromatic number of Gy. Here we use the definition of the chromatic
number of Gy as the least number of colors required to assign colors to
the vertices of Gy so that no edge of G5 hasall of its vertices assigned
the same color. The scheme for defining Gy isimmediate. The vertex set
of G, is the setA I of incomparable pairs and a subset 1< Iy isan
edgeifitsreverse [ isa strong TM-cycle.

From a practical view point, the hypergraph Gy contains too many
vertices to be of much value in determining the dimension of X . However,
there is a natural way to determine a subhypergraph Hy of Gy so that
H, and Gy have the same chromatic number, and in many cases the
combinational structure of H x is more readily analyzed.

An incomparablé pair gy x,) € I, is called a ’nonforced pair if
X3 <x; implies x; <x, for all X3 €X and X, < Xx, implies x; <x,

~ 714 -

for all x, €X. We'let N, denote the set of all nonforced pairs. It is

- customary to treat N, as both a binary relation and a directed graph.

In the latter interpretation, we draw an edge from x, to .xl whenever
(xy,x,)€Ny. In Figures 1a and 1b we show a 2-dimensional poset X
and its digraph N, of nonforced pairs.

1 4 ol
2 3 4 b6
2 3
5 6 5
o
X Ny
Figure 1a Figure 1b

The graph theoretic properties of the digraph N, are central to the

v theory of rank for partially ordered sets, and we refer the reader to [6], [7],

[8] and [9] for additional material on this topic. In this paper w-e will
require some elementary properties of N, . We state these results without
proof and refer the reader to [7] for details.

The initial advantage gained from considering the set of nonforced
pairs is that they are useful in identifying realizers.

Lemma 3. Let R={X,X,,...,X,} beasetof linear extensions
of a poset X. Then R is a realizer of X if and only if for each (x1 s X,) €
€ Ny, there exists some X;ER sothat x, <x; in , .6 |

It follows immediately from the preceding lemma that if X isnota
chain, then the dimension of X is the minimum number of linear ext'en~
sions of X required to reverse the nonforced pairs of X. This observation
allows us to determine a subhypergraph H, of G, which has the same
chromatic number as G,. The vertex set of H, is the .set Ny of flon:
forced pairs of X. A subset N QNX is an edgein H, if and only -1f N
is a TM-cycle. It is often the case that the hypergraph H, has relatively
simple structure; in particular, it is frequently a simple graph whose col-
oring properties can be easily determined.
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. If 1€ IX, we abuse notation somewhat and denote by XU J the
F)mary relation of the point set of the poset X defined by (xgs x,)EXUT
if and only if X;<x, in X or (x,, X,) € I. Note that an incomparable

pair (xl,xz)EI is a nonforced pair if and only if XU {(x,,x,)} is
transitive. v

.Lemma 4. If X isaposetand N x I8 its set of nonforced pairs, then
the binary relation X U N y IS transitive. n

. A subposet Y of a poset X is said to be partitive (in X ) if the fol-
lowing two conditions are satisfied:

G If x€eX—Y and x>y forsome y€ Y, then x>y forall
yEY.

() If xEX~Y and x<y forsome y€ Y, then x <y forall
yevy.

A partitive subset Y in a poset X isnontrivial when 2 < | Yi<iXx|.

The following result is a special case of the formula for the dimension of
an ordinal sum (see [3] or [7D.

Lemma 5. If Y is a nontrivial partitive subsposet of a poset X and
Yo €Y, then dim (X)= max {dim X —-(Y - WD), dim (V)}. &

In particular, it follows thatif r<2 and X is t-irreducible, then

X contains no nontrivial partitive subposets.

Lemma- 6. Let X bea poset and N v the set of nonforced pairs of

X. If the binary relation X u NX contains a directed cycle {(xi X 1)

- ’ l )

1<i< m}‘U {(xm »X)} where m>2, then the subposet {x1 3Xg, e
.. ,xm} Is a partitive antichain in X. g

The only 2-irreducible poset is a two element antichain. For this
poset Iy =N, =XUN x and each of these binary relations is a directed
cycle of length two. But for 7> 3, no such pathology can occur.

Lemma 7. Let ¢> 3, let X bea tirreducible poset, and let N ¥
be the set of nonforced pairs of X. Then the binary relation X U NX is
acyclic — that is, it contains no directed cycles. 1

- 716 -

For any poset X for which XUN y 1s acyclic, it is therefore per-
missible to consider X UN, as a partially ordered set. With this inter-
pretation, X U N, is an extension of the poset X. For such posets, a
linear extension X0 = {x1 <x, <x;<...< xn} of Xu NX is said
to be consistent if i<j whenever x; € DX(xn) and x; € IX(xn). A
maximal element x of the poset XUN y 1s called a strongly maximal
element of X.

Lemma 8. Let X be a poset and let Ny be the set of nonforced
pairs of X. If XUN x s acyclic and x is a strongly maximal ele-
ment of X, then there exists a consistent linear extension Xo =
={x1 <x, <x3<...<xn} of XUNX with x=x,.8

If X isa t-dimensional poset and X, is a consistent linear extension
of XUN,, then X, cannot belong to any realizer of size ¢ of X since
)(0 reverses no nonforced pairs. On the other hand, we will frequently
make minor modifications in a consistent linear extension to obtain one
which does belong to a realizer of size ¢. Here is one such instance; others
will be discussed in Section 3.

If X, ={x; <x, < x3<...<x,} is a consistent linear exten-
sion of XU Ny, where Dy(x,)=1{x,x,,... , X}, and Iy(x,)=

= {le,x“z, .. ’xn—-l}' then the linear order

X6‘={x1<x2<x3<...,<xs<xn<

<xg 1 <x,,<...<x, ;}

s+ 1 s+ 2

is called the reverse of X, o- Note that Xy is a linear extension of X .but
that X, 6‘ is not in general a linear extension of XU N X The following
lemma shows that Xy belongs to a realizer of size ¢t for X when X is
t-irreducible. The result is a special case of the theorem due to Hiraguchi
[3] which states that the removal of a point from a poset decreases the
dimension by at most one.

Lemma 9. Let t>3 andlet X bea t-irreducible poset. Also let
X, be a consistent linear extension of XU Ny. Then let x be the
strongly maximal element of X which is the greatest element in 'XO.

- 717 -



If {X',Xé,.f..,X;_l} is a realizer of X ~{x} and for each i=
=L2,...,t—1, we Jorm a linear extension X, of X by adding x to
Xi' as the largest element, then {X*,XI, X,, ... » X, 1} is a realizer
of X.1

3. THE EMBEDDING POSET WHEN =3

In this section, we present an infinite family of 3-irreducible posets
{X(n,3): n> 1}  whose special properties will be particularly useful in
the proof of our principal theorem in the case t=3. Isis of secondary
importance that these posets are irreducible. What actually matters is that
they each have a consistent linear extension (which of course cannot belong
to any realizer of size 3) such that if any one of a large number of minor

modifications is made, the resulting linear extensi

on belongs to a realizer
of size 3.

For each n> 1, the poset X(n,3) isa 3-irreducible poset for which
the linear extension X, = {xl, Xy, Xg,5. .., Xn+s} IS consistent. In

Figure 2, we show a diagram for X(n, 3); for clarity, only the subscripts
are shown.

O 2n + 2

Figure 2

Let X = X(n, 3); then it is straightforward to verify that the set N X
of nonforced pairs is the union of the two sets N v and N i’, where

— 718 —

; P1<i <i<2n+ 4},
Ny =1{(px;, ) 1<i<2nm, 2n+ 2<i

Ny =10, X351 20, (835 %5, 2D, Oy 55 X904 F

Tl;e following lemma gives important information on the structure
of the hypergraph H X

Lemma 10. If n>2 and X = X(n, 3), then the hypergraph Hy is
a simple graph.

Proof. Let N be an edge in the hypergraph H x and suppose that N

. . o

contains at least three vertices of H x- After relabellm.g, we ma)./ ;ssum—

that N = {(c, d): 1<i<m} is a strong TM-cycle in X with m=

l,

= |N|> 3. Since C= {cl,cz, -..,¢,} and D= {d;,d,, ... ,d”&}nage

antichains in X, we may conclude that m = 3 and that Xopsn € .

Without loss of generality, we may assume that Xopi2 =6 an«tihxfn thi e—r

el

=d,. Then since (dy,c))=(d,, Xop 4 2)EN, .we know_ a In

dy =x, or d; =Xx,. Similarly, either €y = X2n+_3 or ¢, —‘xzn;-}f- :

any case, we would conclude that d;, <c; which contradicts the as
sumption that N isa strong TM-cycle. &

Lemma 11. If n>2 and X = X(n, 3), then the graph Hy isa 3-
colorable graph. Furthermore, the removal from H X of any one of the 2n
vertices in the set {(x,, X;,1): 1<i<2n} leaves a 2-colorable graph. ¥

We illustrate the preceding lemma when n = 2. For clarity only the
subscripts are shown.

7.8)
8 9
) > (3.6)
3 4 6 6,7)
1 2
X=X(2,3) ’ HX

Figure 3
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The reader may note that Lemma 11 has not been presented in the

'stronges.t possible form, but as will become clear, we are only interested
In certain vertices in the graph H

e x- Recall that the consistent linear ex-
.enswn Xo Teverses no nonforced pairs of X » 80 there is no realizer of
size 3 to which X, belongs. Now let i be any integer with 1 < ; < 2n

and let X(’)‘ be the linear extension of X obtained by interchanging x.
and ¥;p1 in X, thatis I

i.‘ N
XO—{xl<x2<...<xi_1<xi+1<xi<
<xi+2<xi+3<...<x2n+5}.
We now show that each Xé belongs to a realizer 6f size 3 of X,

Lemma 12. Let n>2 and let X = X(n,3). Then for each =
=1,2,....2n,  there exist linear extensions x 5 x;

' ' ) 0 [
{X’,X{,Xé} is a realizer of X. ot

Proof. From Lemma 11, we note that for each i=1,2,... 2,

;I: gr:ph IiX - {(xi, X;1 1)} can be 2-colored using the colors {1 2}
en for each j= | { i i i rses
Al oo 52 ]. s %, let X ; be alu}ear extension of X which reverses
€d pairs which have been assigned color j. Since X rl)

: Teverses
the nonforf:ed pair (x;,x, ,), it follows that {Xi,X{,Xi} reverses N
and these linear extensions are a realizer of X.» ? X

4. THE EMBEDDING THEOREM WHEN ¢ = 3

Suppose that X and y are disjoint subposets of a poset Z. We say

that ) 18 an uppe‘ ﬁlle‘ Of ‘k lt ﬂle IOIIOH’HI t“O Condltlons are
g

” (i) For every (xl,xz) ENX, there exisfs Y €Y with x; <y and
x, |l y.
2

(i) For every x€X and evéry YeY, y<£x.

. A linear extension Zy of Z is called an injection of X over Y
wf en foAl’, Y€Y, and x|y imply that x> p in Z,. The concepts
Ol upper filters and injections are related by th i
ey y the following elementary

- 720~

Lemma 13. Let X and Y be disjoint subposets in a poset Z, and
let 'Y be an upper filter of X. If dim (X) =t and Z, isalinear exten-
sion of Z which is an injection of X over Y, then Zo cannot belong to
a realizer of size t for Z.

Proof. Any realizer of Z must reverse all incomparable pairs in Z
and must therefore reverse the incomparable pairs in Ny. Now let
(x;,x,) €Ny; choose an element y € Y so that x, <y and x, |y in
Z. Since Z0 is an injection of X over Y, we must have x; <y<x,
in Z,. Thus Z,, reverses no pairs in Ny. If R is arealizer of size ¢ for
Z and Z; € R, then the restrictions of the other ¢ — 1 linear extensions
to X must reverse Ny . Since dim X = ¢, this is impossible. 8

If X and Y are disjoint subposets of a poset Z, we write X< Y
when x<y forevery x€X and y€ Y. Similarly, we write X || Y
when x|y forevery x€ X and ye€ Y.

We are now ready to present the proof of our principal theorem for
the case ¢= 3.

Theorem 14. Let P be a poset with dim P< 3. Then there exists
a 4-irreducible poset R containing P as a subposet.

Proof. We first construct a 4-dimensional poset S containing P as
a subposet. In general, S will not be irreducible, but we will prove that S
contains a 4-irreducible subposet R which also contains P as a subposet.
The poset S is the union of five disjoint subposets P, X, Y, U, and V,
with X||U, X<V, U<K@PUY), P<Y, and V| (PU Y). Further-
more, PU Y will be an upper filter of X and V will be an upper filter of
U. The posets X and U will be 3-irreducible posets.

Since dim P < 3, there exists linear extensions PI,PZ, and 1"3 of P
so that p; <p, in P if and only if py<p, in P, for i=1,2,3. These
linear extensions need not be distinct. We suppose that |P|=m and let
Pi={p, <p,<p;<...< p,}. Next choose an integer n so that
n>2 and 2n> m. Then the subposet X is X(#n, 3).

The subposet Y is a chain containing 2xn + 4 — m points Uy <
, <ym+2<...<y2n+4}. Foreach j=1,2,...,m, xl.<p]. in § if and
-721 -




only if i<j. Also, for each j=m + 1, m+ 2,...,2n+4, xl.<y]. in
S if and only if i< j. Tosee that PU ¥ is an upper filter of X, we con-
sider an arbitrary nonforced pair (xi, x].) € NX. Since X, o is consistent,
we know that i<j. If 1<i<m, then p;>x; and p; le].; fm+1<
Si<2n+4, then Y;>x; and il X;. Therefore, PU Y is an upper
filterof X is claimed.

_ The subposet U is the standard example of a 3-irreducible poset.

The linear extension UO = {u1 < U, <uy < Uy <ug < u6} is consistent
and the subposets {u1 sUy,us} and {u,, Us,ug} are antichains. Further-
more, u, < U, g if and only if i#] foreach i,j= 1,2, 3.

The subposet ¥ consists of a single point {r} with u;<v if and
only if i=1,2,3. Note that N, = {(ui, U, )7 i=1,2,3} so that ¥

is an upper filter of U. This completes the definition of the poset S.

We now show that dim $> 4. Suppose to the contrary that dim S <
< 3. Since S contains the 3-dimensional poset X, we conclude that
dim S = 3. Thenlet &= {S,, S,, S5} be a realizer of §. We know that
these three linear extensions reverse all incomparable pairs in S, but we

N, ={(x,z)€IS: X€X, zEPU Y}
N, = {(y,, V)EIS: i=4,5 6}

It is easy to see that no linear extension of & can reverse a pair from
N, and a pair from Nz- Forif (x, z)eNl, and z<x in S;, then
u<z<x<vy in S; forevery ueuy and ve v, Similarly, if (u,v)e
€N, and v<uy in S;, then x<v<y<g forevery x€ X and ze
€PUY. On the other hand, no linear extension in- % can reverse N1
for this would imply that it is an injection of X cver PU ¥ in violation
of Lemma 13. Similarly, no linear extension in % can reverse N,. We
conclude that at least two linear extensions in ¥ reverse pairs in Nl,
and at least two linear extensions in & Ieverse pairs in N,. But this is
clearly impossible. The contradiction shows that dim § =4,

—-722 —~

We next show that dim (S — {p;D =3 for every p,€P. To accc.)m-
plish this, we choose an arbitrary point p;€P and co:struct a rea}ljlzer
{8{,5,,83} of the subposet S —{p;}. First, let' {U ,'Ul, U,} ? a
realizer of U where Uy is the reverse of the consistent linear extension
U, and U, is formed from U; by adding Uy as the largest element.
Then let (UU V)o be the linear extension of UU V d'eﬁ?ned b);
Uung= {ul <uy <ug < u; <v<u, <ug} The restriction 0d
(UuV)y to U is Ug; furthermore (U U V)(’; reverses (4,,7) an
(us, v) butnot (ug, v).

Since 1<i<m<2n, there exists by I.crm.na' 12 Eil realizer
(Xt x i,X;} of the 3-irreducible poset X where X(‘) is ci)btfl;nedt fr;)liz
X, by interchanging x; and x; +1- Welet (XUPU Y), denote
linear extension of XU PU Y — {p;} defined by:

(XuPu Y)’(']={x1<p1<x2<p2<x3<p3‘<...
S X <Py <X <P <X, <
SX <Py <X <Py <.
...<xm<pm<xm+1<ym+1<xm+2<ym+2<...
S X g Vopsa <Xppush

i : i

Then it follows that the restriction of (XU P U Y)B to X is X,

and the restriction of (XU PU Y)y to P— {p;} is P, —{p;}. Further-

more, we note that (XuPrPu Y)f) is an injection of X over P U.Y — {pl.}.
It also reverses the nonforced pair (x i X;4 1) € Ny. We then define:

S;=U, <(XUPUD <V,

To see that these linear orders form a realizer of S — {p;}, we make
the following observations:

1. Each S].' is clearly a linear extension of S — {p;}-
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- U<X and PUY—{p}<V in §.
- X<U and ¥<PUY—{p} in 5,

. 8] isaninjectionof X over PU Y —{p,}.

- The restriction of {S,5;,5;} to X is {x5, xi, x5y,

2
3
4
5.8, and S; reverse N,.
6
7. The restriction of S]’ to P—{pi} is Pi—{p,.} for j=1,2,3.
8

. The restriction of S’ to U is U] for j= 1,2 and the restriction
of S; to U is Ug.

At this point, the proof of our theorem is essentially complete. We
have shown that dim (S)>4 but that the removal of any point from P
leaves a three dimensional poset. Now for every £2 2, a t-dimensional
poset contains a -f-irreducible subposet. In the situation at hand, any 4-
irreducible subposet R of § must obviously contain P as a subposet: i

Although the poset S is not 4-irreducible, it does not miss the mark
by far. There are exactly two 4-irreducible subposets of S; they are
S—={Usn41} and S=Unsrt

5. THE EMBEDDING POSETS WHEN ¢ > 4

In this section, we construct for each #>4 an infinite family
{X(n,0): n>21} of t-dimensional posets each of which possesses a con-
sistent linear extension in which any one of a large number of minor
modifications allows the resulting extension to belong to a realizer of
X(n, ©) of size t. The construction will utilize the concept of a dimension
product as introduced in [S1by D. Kelly.

If X and Y are posets, then the cartesian product X X Y is the
poset whose point' set is the set of all pairs (x,y) where x€X and
YE€Y with (x1’y1)<(x2’y2) if and only if X, <x, and Y1 <Y,
The cartesian product of » copies of X is denoted X”. It is easy to
see that dim (X X Y) < dim X + dim Y. The following result of Baker
[1] gives a sufficient condition for equality to hold.

-7 =

Theorem 15. Let X and Y be posets. If X contains poset x,,x,
and Y contains point Y1:¥Yy SO that X, SX<x, and y, Sy<y, for
every x€X and y€Y, then dim (XX Y)=dim X+ dim Y. &

For an integer n>1, let n denote the # element chain
{0<1<2<...<n—1}. Also for aposet X, let X denote the poset
obtained from X by adding two new points, one larger than every point
in X and the other less than every point in X. Then dim (X)=dim X
for every poset X. Furthermore, dim (X X ¥) = dim X + dim Y. Kelly’s
dimension product identifies a (relatively small) subposet of X X ¥ whose
dimension is dim X+ dim ¥, and in many cases, Kelly’s construction
precisely determines an irreducible subposet. Such will be the case in the
construction we now present.

For each n>'1 and each ¢> 4, X(n, £) will be a ¢-dimensional
subposet of the cartesian product X(n,3) X 27=3. We will find it con-
venient to use notation similar to that employed in Sections 3 and 4 rather
than the notation of Kelly.

The poset X(n, #) is the union of four subposets X'(n), X"(n), A, 5,
and B, ,. The subposets X'(n) and X"(n) are botii copies of X(n, 3)
labelled {x;: 1<i<2n+ 5} and {x/: 1<i<2n+5} respectively.
Furthermore, xl." < x,.", x; < x/.’, and x;’ < xl.' if and only if x; < x; in
X(n, 3).

The subposets 4,_, and B,_, are both ¢ — 3 element antichains
labelled {a,,a,,. .. 4, s} and {6,,6,,... ,b,_ 4} respectively. Fur-
thermore, b, < a, if and only if i#j forall i,j=1,2,...,t—3. In
addition X'(n) > B, , and X"(n) < A,_ 5. This completes the definition
of the poset X(n, r).

For graphs G, and G,, the join of G, and G,, denoted by
G, + G,, is the graph obtained by taking disjoint copies of G; and G,
and adding an edge between g; and g, for every vertex g € G1 and
g, € G,: Clearly, the chromatic number of Gl' + G, is the sum of the
chromatic numbers of Gl and GZ' For an integer k> 1, let Kk denote
the complete graph on k vertices. It is straightforward to verify the fol-
lowing results concerning the hypergraph associated with X(n, 7).
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Lemma 16. Let n> 1 and 1> 4. Also let X, = X(n,3) and X, =
= X(n, ). Then

1. The set NX2 of nonforced pairs of X2 is the union of two sets

N)'[,2 and N}Z where N)'k.2 =1{0x/, x)): (x,, xj)GNXl} and
N;z ={(b,, a): 1<i<t—3}

2.If n>2, the hypergraph H X, is a simple graph,

whose vertex set is N'. s

3. The induced subgraph G1 of sz X,

isomorphic to Hy .
1

4. The induced subgraph G, of HX2 whose vertex set is N" s

X
isomorphic to K PP

5. Hy =G, +G,.
6. X(Hy ) = dim (X,) = ¢.

7. For each i=1,2,. .. s 2n, the removal of the vertex (x/, X/ 1)
from H X, leaves a graph with chromatic number t— 1.1

The reader may note that X (n,?) is not t-irreducible but that the
removal of x; and xé’n +s leaves a f<irreducible subposet. For symmetry
we include these points in the definition of the embedding posets X(n, ).
The following linear order is easily seen to be a consistent linear extension

of X(n, ):
X0={bl<b2<b3<.,.<bt_3<
<x1"<x1'<x2"<xé<x§'<xé<x:<.‘.<
< X3 <X, <~xé’n+4<x£n+4<xé’n+5<xén+5<
<ai‘\<a2<a3<...<at_3}.
For each i=1, 2,...,2n, welet Xé denote‘the linear extension

of X obtained by interchanging X< x; with x/, 1 <X/, ;. Note that

exactly four entries in X, change places in this modification. Note further
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that X(’; reverses the nonforced pair (xi", x,.' + 1? an.d thus byiStatement 7
in Lemma 16, there exist linear extensions X7, X5,...,X (.1 so that
xi,xixi, ... ,X!_ |} isarealizer of X.

6. THE EMBEDDING THEOREM WHEN >4

The proof of the following theorem is similar to the argument in Sec-
tion 4 so we will present only the essential steps.

Theorem 17. If t> 4 and P isa poset whose dimension is at most
t, then there exists a t+ l-irreducible poset R containing P as a sub-
b

poset.

Proof. We begin by constructing a ¢+ 1-dimensional poset S con-
taining P as a subposet. Suppose P has m elements. Let » be an integer
with 2n>m. Let {P; s Py, ..., P} be a realizer of P with PI. =
={p, <p, < <p,,}. Then the poset S is the union of the following
= . m : :
disjo;nt suszosets P, X,Y U V,C, and D which are defined as follows:

1. X=X(n, 1.

2. Y isa 2n+ 4 —m element chain labelled {y,, , ; <»,,,,<...

e <Vopsat
3. U is the standard ¢-dimensional poset labelled {u;,u,, ..., u2t}
' i if i#j i, j= P A
with ;< Uy ifandonly if i#j forall i,j=1, 2,

4. V= {v} isa one point pose’;.

5. The subposets C={c;,¢,,...,¢,_ 3} and D={d,,d,,
. ,dt 3} are f— 3 point antichains.

To complete the definition of S, we describe the comparabilities
between these subposets:

6. P<Y, PUY)IIA,_ , and (PUY)>B,_,.
7. For each j=1,2,...,m, xl."<xi'<p]. if and only if i<j.

8. Foreach j=m+ 1,m+2,...,2n+ 4, xi"<xl.'<y’. if and only
if i<j.
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9. V>{u1,u2,...

U4} and V|| {u

t+1° ut+2"' "u2t}'

10. For each i,]'=l,2,...,t—3, di<c]. if and only if i#].
I. Xu <, XUD)<V, and (UUD)<(PU 7).
12. Py Niwu o), VIC, XII(UUD), and Ul D.

Note that PU Y s an upper filter of X and ¥V jsan upper filter of
U. We now shos-v that dimS> ¢+ 1. To the contrary, suppose that
{S1 s Sz, cee, St} 1s a realizer of . Then these extensions reverse all non-

forc.ed pairs of [, 's- In particular they reverse all nonforced pairs in the fol-
lowing three sets:

N, = {(x, 2): X € X, ze»PU Y, x|z},
Nz—-{(u, Vi ueU ye V, ullv},
N3={(di,c’.): i=1,2,...,t—3}.

We then note that no linear extension of § can reverse pairs from
any two of these three sets. F urthermore, a linear extension can reverse at
most one pair from N, . This implies that one of the S;’s is an injection of

X over PUY oran injection of U over V. Neither of these statements
can be true, so we conclude that dim S> ¢+ 1.

W"e ne);(t show that dim S - D=1t for i= L,2,...,m. Toac
Cf)rpphsh this we x.nake the following observations. There is a linear exten-
sion (XU PuU Y)b of Xupuy such that

(a) The restrictionto X is x Z.
(b) The restriction to PUY — {pi} is P1 —-ipi<y
kS I -
(c) Itisan injection of X over PUY —{p.}.
4

Furthermore, there is a realizer {UF, v, u,,..

LU
where U; oy

is the reverse of the consistent linear extension Uo =
={y; < U, <...< u,,}, and U, is formed from U; by adding u,, as
the largest element. It follows that there is a linear extension (Uu p)*
such that ' | ’
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(a) The restrictionto U is Uy-
(b) It reverses all nonforced pairs in N, except (uy,, ¥).

Let C, and D, be arbitrary linear orders on C and D respectively.
Then define

S1=Dy<U; <XVPUYN<V<C,
Sy =Uy<X{<Dy—{d}<¢, <d; <Cy—{e;}<

<P, —{p}<Y<V
S3=Uy <X; <Dy —{d,}< ¢, <dy<Cy—{c,} <

<P, —{p}<Y<V

2= Ur~2<Xti—3<Do‘{dt—3}<ct—3<dt—3<
<C0—{ct_3}<Pt_2—{pi}< Y<V

Sl

t—

Si_1=Dy<X]_,<U,_,<¥V< Uy <P,_, —{p}<Y<C,

S =Dy <X]_ ;| <K(WUMI<P,—{p}<Y<C,.

t

It is straightforward to verify that these ¢ linear extensions of
§—{p;} form a realizer so we conclude that dim (S — {p;) =t foreach
i=1,2,...,m It follows that any z-irreducible subposet R of § con-
tains P asasubposet and the proof of our theorem is complete. §

7. CONCLUDING REMARKS

The reader is encouraged to compare the results and techniques of
this paper with [12] where it is proved that every #-irreducible poset
is a subposet of a ¢+ l-rreducible poset. In contrast to the situation
here, the weaker result presented in [12] requires no specialized knowl-
edge of the nature of particulér irreducible posets or such devices as
dimension products and upper filters. The authors consider the stronger
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searchers should consider more restrictive properties of irreducible posets

in order to make further progress toward understanding these struc-

tures.
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