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If P and Q are partial orders, then the dimension of the cartesian product P x Q does not 
exceed the sum of the dimensions of P and Q. There are several known sufficient conditions for 
this bound to be attained, o n  the other hand, the only known lower bound for the dimension of 
a cartesian product is the trivial inequality dim(P x Q) ~> max{dim P, dim O}. In partictdar, if P 
has dimension n, we know only that n ~<dim(PxP)~<2n. In this paper, we show that for each 
n>~3, the crown S ° is an n-dimensional partial order for which dim(S°xS°)=2n-2.  No 
example for which dim(Px Q) <d im P +dim Q - 2  is known. 

On sait que la dimension du produit cart6sien P × O d'ordres partiels P e t  Q ne d6passe pas 
la somme des dimensions de P et de Q. On connm~t plusieurs conditions sutfisantes pour que 
l'6galit6 ait lieu. D'un antre c6t6, le senl minorant connu de dim(P x Q) est max(dim P, dim Q). 
Dans le cas particulier o~ P e s t  de dimension n, on ne connait ClUe les 6galit6s n ~<dim(P x Q) ~< 
2n. Nons montrons dans cet article que, pour tout n ~> 3, la couronne S o est un ordre partiel de 
dimension n pour lequel dim(S°x S~)= 2 n - 2 .  On ne connait ancun exemple pour lequel 
dim(Px Q ) < d i m P + d i m  Q - 2 .  

1. Introduction 

In the past several years, a number of researchers have investigated the 
dimension of partial orders. We refer the reader to [5] for an extensive bibliog- 
raphy and a concise summary of the known results in this area. Here,  we provide 
only the basic definitions necessary to discuss the dimension of cartesian products. 
The dimension of a partial order P is the least integer t for which P is the 
intersection of t linear orders [3]. An incomparable pair (x, y) in P is called a 
nonforced pair if z < y whenever z < x  and x < w whenever y < w. A linear 
extension L reverses an incomparable pair (x, y) when y < x  in L. Then the 
dimension of P is the least positive integer t for which there exist t linear 
extensions of P so that each nonforced pair is reversed in at least one of the 
extensions [5]. 

The cartesian product of two partial orders P and Q, denoted by P x Q, is the 
set of  pairs (p, q) with p ~ P and q ~ Q ordered by (Px, ql) ~ (P2, q2) if and only if 
Pl ~ P 2  in P and qt ~ q 2  in  Q- The dimension of a partial order P may then be 
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alternately defined [7] as the least t for which P can be embedded in the cartesian 
product of t chains. Consequently,  we have the following elementary inequality. 

Fact  1. dim(P x Q) ~ dim(P) + dim(Q) ]:or every P, Q. 

There are many instances in which this bound is achieved. Here  is one such 

condition due to Baker  [1]. 

Theorem 1. If  P and O have distinct bounds, then dim(P × Q) = dim(P) + dim(Q). 

Investigations into the dimension of cartesian products, especially when 
d i m ( P x  Q ) =  d im(P)+d im(Q) ,  have already produced substantial results. Kelly 

[4] devised a novel construction, called a dimension product, which could be used 
to explicitly determine an irreducible part ial  order contained in P x Q and having 
the same dimension as P x Q. Trotter and Ross [13, 14] gave a general method for 
constructing irreducible partial orders with prescribed parameters starting with 

Kelly 's  dimension product. 
However, in this paper  our primary concern will be with lower bounds for 

P x Q. Since P and Q are suborders of P x Q, we have the following trivial bound. 

Fact  2. max{dim(P), d im(Q)}<~dim(Px Q) ]:or all P, Q. 

W e  conjecture that this bound is best possible. 

Conjecture 1. For every m, n with 1 ~< m ~< n, there exist partial orders P, Q with 

dim(P) = m, dim(Q) = n, and dim(/)× Q) = n. 

In addition, we believe the following special case is also valid. 

Conjecture 2. For every n >~2, there exists a partial order P with d im(P)=  
d im(P  x P) = n. 

Little progress has been  made on these conjectures in the past several years. 
Here,  we will show that for each n, there is an n-dimensional  partial order P for 
which d i m ( P × P ) = 2 n - 2 .  This result was announced in [10]. We will also 
discuss some potential approaches to the general problem. 

2. The cm, teshm p r o d u d  of crowns 

For each n ~ 3 ,  the crown S ° is the poset with n maximal  elements 
{ax, a 2 , . . . ,  an}, n minimal  elements {bx, b 2 , . . . ,  b,}, and ordering bi < a1 if and 
only if i ~ ]. This partial  order can be viewed as the 1-element and n -  1-element 
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subsets of an n-element  set ordered by inclusion. In dimension theory, S ° is 
known as the 's tandard '  example of a n-dimensional partial order. The fact that 
S ° is n-dimensional follows immediately f rom the observations that  S ° has n 

nonforced pairs {(hi, a~)- 1 ~< i <~ n}, but that any linear extension of S ° reverses at 
most one of these nonforced pairs. We refer the reader  to [2, 8, 9] for discussions 
of more  general classes of partial  orders containing S ° as a special case. 

Before proceeding to the determination of the dimension of 0 0 S ,  × S, ,  we pause 
to make  a few simplifying remarks.  Consider the suborder P of S ° × S ° consisting 
of the n z maximal elements {(a~, a~): l~<i, j~<n} and the n 2 minimal elements 
{(b~,bi)'l<~i,j<~n}. We claim that  d i m ( P ) =  " o o d i m ( S , ×  S,).  This fact follows im- 
mediately from the observation that  all the nonforced pairs of 0 0 S ,  × S ,  are pairs of 
the form ((bi, bs), (ak, at)) where either i = k or  j = I. We then let Np denote the 
nonforced pairs in P. 

We find it convenient to visualize the elements of P as being arranged in rows 

and columns with the maximal elements on one plane and the minimal elements 
on another.  In this way, each minimal element  (b~, b i) is incomparable with all 
maximal elements appearing in the ith row and j th column. See Fig. 1. 
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Fig. 1. 

We observe that each minimal element is incomparable with 2 n -  1 maximal 
elements, so INp[= n Z ( 2 n - 1 ) = 2 n 3 - n  z. For  each i =  1, 2 , . . . ,  n, the elements 

{((bi, bi), ( a ,  az)): 1 <~j, l < - n} are,, called the ith row face of Np. Similarly, for each 
] =  1, 2 , . . . ,  n, the elements {((hi, bi), (ak, a~): l<~i, k ~ n }  are called the j th 
column face of Are. It is easy to see that  for each i = 1, 2 , . . . ,  n, there exists a 
linear extension of P reversing all the pairs in any row or column face. Since any 
nonforeed pair  belongs to some row or co lumn face, thi.~ is just another  way of 
expressing the face that dim P ~< 2n. Hereaf ter ,  we will use the term face to mean 
either a row face or  column face. We will say that  a linear extension L reverses a 
face when all the nonforced pairs in the face are reversed in L. 

Let  us say that a linear extension L of P is saturated if there is no linear 
extension L '  of P for which the nonforced pairs reversed by L are a proper  subset 
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of the nonforced pairs reversed by L'. We now proceed to show that every 
saturated linear extension belongs to one of two easily recognizable types. The 
Type 1 extensions reverse a (unique) face of Np. For each i = 1, 2 , . . . ,  n and each 
pair (.]1, ]2) with l <<-ja, j2<<-n, we will define a Type 1 extension LR(i; jl, ]9 
reversing the ith row face of Np. Similarly, for each ] = 1, 2 , . . . ,  n and each pair 
(it, i2) with 1<~il, i2<~n, we will define a Type 1 extension Lc(]; it, iz) reversing 
the jth column face. We find it convenient to specify LR(i; Jl, J2) and Lc(/;  ix, iz) 
in block form. See Fig. 2. 

In the definitions of LR(i, ]1, ]2) and Lc(j; it, i2), the ordering of the elements in 
the blocks is arbitrary, since with any assigned orderings, exactly the same set of 
nonforced pairs is reversed. Furthermore, it is obvious that each of these 
extensions is saturated. The following result summarizes the obvious properties of 
the Type 1 extensions. For convenience, we state the result in terms of rows 
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although in subsequent arguments, we will also require the obvious dual results 
for columns. 

Lemma 1. Let La(i;  Jl, J2) be a Type 1 extension. Then the following statements 
hold: 

(1) LR(i; Jl, J2) reverses n 2 + 2 n - - 2  nonforced pairs. 
(2) La(i  ; 1~, J2) reverses no pairs in any row face except the ith row face. 
(3) If Jl # J2, LR(i; ]I, ]2) reverses n nonforced pairs in each of the jlst and ]2nd 

column faces and reverses one nonforced pair in each of the other n - 2  column 
faces. 

(4) If ]1 = J2,  LR(i; ]1, ]2) reverses 2n -- 1 nonforced pairs in the ]1st column face 
and reverses one nonforced pair in each of the other n - 1 column faces. 

Now, we define a second type of saturated extension. For convenience, we also 
describe these Type 2 extensions in block form. For each (i, j, k, l) with i # k and 
] # l, we define Mp.(i, ], k,, l) and Mc(i, ], k, l) as shown in Fig. 3. 
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The fonowing result follows immediately from the definition. As before, we 
state the result only for rows. 

Lemma ~.. Let MR(i, j, k, l) be a Type 2 saturated linear extension of P. Then the 
following statements hold: 

(1) MR(i, j, k, l) reverses 4 n -  2 nonforced pairs. 
(2) MR(i, j, k, l) reverses 2 n -  1 nonforced pairs in the ith row face, 1 nonforced 

pair in the kth row face, and no nonforced pairs in any other row face. 
(3) MR(i, j, k, l) reverses n nonforced pairs in the j th column face, n nonforced 

pairs in the kth  column face, and no nonforced pairs in any other column face. 

We are now ready to show that  every saturated linear extension of P belongs to 
one of these two types. 

Lemma 3. Let L be a saturated linear extension of P. Then either L is a Type 1 or 
Type 2 extension. 

Proof.  A saturated linear extension which reverses a face will be shown to be a 
Type 1 extension, and one which does not reverse a face will be shown to be a 
Type 2 extension. Let L be an arbitrary saturated linear extension of P. T h e n  
consider the two largest minimal elements in P. There are two cases. Either they 
share a common coordinate or they do not. Suppose first that the largest minimal 
element in L is (b~, bj) and the second largest minimal element is (bk, b i) where 
i ~ k. We then show that L is a Type 1 extension Lc(j ;  i, il) for some ix. To see 
this, we observe that  the maximal elements {(a~,az):l<~l<~n, l ~ j }  are under 
(b~, b i) but over (bk, bj). Furthermore,  the maximal elements {(a~,, a~) : 1 ~< i'~< n} are 
under (bk, bj). If we let (a~,, a i) be the lowest maximal element in L, then the 
minimal elements {(bi,,bt):l<~l<~n, l~:j} are over (a~l, a j) but  under  all other 
maximal elements. Since the minimal elements {(/~, b j ) : l  ~< k ~< n} are also over 
(a~, ai), it follows easily that L =Lc(];  i, il}. Dually, if the highest two minimal 
elements in L are (b~, b i) and (bi,/h) with j #  l, then there is some Jl for which 
L = LR(i; j, jl). 

For the second case, suppose the highest minimal elements in L is (bi, bj) and 
the second highest is (bk,/~) where i ~  k and j ~  l. Then there are exactly two 
maximal elements under (b~, b i) and (bk, bt), namely (a~, at) and (ak, a~). If (a~, a t )<  
(ak, a~) in L, then it follows easily that  L =MR(i, j, k, l). Similarly, if (ak, a i )<  
(a~, at) in L, then L = Mc(i, j, k, l). [] 

We are now ready to prove the principal result of this paper.  

T h ~ r e m  2. For each n >I 3, dim(S ° x S~) = dim(P) = 2n - 2. 

Proof.  To show that  d i m ( P ) ~  2 n -  2, consider the following set of 2 n -  2 Type 1 
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extensions: 

.~ = {LR(i; n- -  1, n): l<- i  ~< n}U{Lc(/'; 1, 2): l<~]~<n -2} .  

We claim that every nonforced pair is reversed in at least one extension in ~ .  

To see that  this is t rue we observe that every nonforced pair  in any row face is 
obviously reversed. Similarly, we are certain that every nonforcext pair  in any one 

of the first n -  2 column faces is reversed. This leaves only the nonforced pairs in 

the (n-1)s t  and n th  column faces. But  for each i= 1, 2 , . . . ,  n, the nonforced 
pairs in {((bi, b,-1), (ak, a~-l)) : 1 ~ k ~< n} are reversed in LR(i; n -- 1, n). Similarly, 
for each i = 1, 2 , . . . ,  n, the nonforced pairs in {((bk, b~), (a~, an)) : 1 ~< k <~ n} are 
reversed in La(i; n -  1, n). Thus all nonforced pairs are reversed,  and dim(S ° × 
S~) ~ < 2 n -  2. (The reader  should note that  in the definition of ~ ,  the choice of 

(il, i2) = (1, 2) in the extensions Lc(j ;  il, iz) was arbitrary. A n y  extension reversing 

the ]th column face would suffice.) 
To show that dim(S°×S°)>-.--2n-2, we assume to the contrary that 

dim(S ° × S~) = t <~ 2n - 3 and choose a collection L = {L1, L z , . . . ,  ~ }  of linear 
extensions of P reversing all nonforced pairs. Clearly, we may  assume that each 

extension in L is saturated.  We adopt  the terminology of saying that the ith row 
face is used in L if there is some L~ e L with either L~ =LR(i ;  it, 12) or  
L~ =MR(i ,  j, k, l). Otherwise, we say that the ith row face is unused. Dual 

statements apply to column faces. 

Since no extension in L reverses more  than n 2 + 2 n - 2  nonforced pairs and 
there are n2(2n-  1) pairs to be reversed, we know that 

>[ 2 n 3 - n  2 "1>_ 

Now suppose that  there are four  (or more) unused faces. Choose four of them. 
Then there are 4n  2 nonforced pairs to be reversed in these faces if all four are 
row faces or if all four  are column faces. If three are row faces and one is a 
column, or  three columns and one row, then there are 4 n 2 - 3  pairs to be 

reversed. Finally, if two axe rows and two are columns, then there are 4 n Z - 4  
pairs to be reversed. However ,  we observe from L e m m a  1, that  a Type 1 

extension reverses a total of at  most 2n + 2 nonforced pairs on faces other than 
the one it reverses. F rom L e m m a  2, we observe that a Type 2 extension reverses 

exactly 2n + 1 pairs on faces other  than the one it uses. Thus, we must have 

t(2n + 2 ) ~ > 4 n Z - 4 ,  and thus 

4 n 2 - 4  
t ~  = 2 n - 2 .  

2 n + 2  

The contradiction shows that  all but  at most three of the 2n row and columns 
faces must  be used. We  conclude that t = 2 n -  3 and that  there are exactly three 

unused faces. 
Suppose first that  there are three column faces which are unused. Then there 
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are 3n 2 nonforced pairs to be reversed in these three faces. However,  any Type 1 

extension in L reversing a column face contributes nothing to thi~ effort while a 
Type 2 extension using a column face reverses at most 1 nonforced pair  on the 
unused column faces. On the other hand, the n extensions using row faces each 
reverse at most 2n + 1 pairs among the three unused column faces. This requires 

(n - 3)1 + n(2n + 1) ~ 3n 2, 

which is a contradiction. 
Next, suppose that there are two unused row faces and one unused column 

face. Then there are 2n 2 nonforced pairs on the unused row faces. The Type 1 
extensions reversing row faces contribute nothing towards this effort, and the 
Type 2 extensions using row faces reverse at most 1 nonforced pair  on the unused 
row faces. On the other  hand, the extensions using column faces each reverse at 
most 2n nonforced pairs on the unused row faces. This requires 

(n - 2)1+ (n - 1)2n ~>2n 2, 

which is also a contradiction. The argument when there are two unused column 
faces and one unused row face is dual. With this observation the proof is 
complete. []  

3. C o a ~  remarks 

Despite the specialiTed nature of the result proved in the preceding section, it 
can be shown that the basic approach is valid under the assumption that 
Conjecture 1 is true. Specifically, if there exist partial orders P and Q for which 
d i m ( P ×  Q) is significantly less than d im(P)+d im(Q) ,  then such partial orders 

can be found among the height one partial orders. This may be  deduced from the 
observation made by Kimble  [6] that if P is a partial order of arbitrary height and 
C is a sufficiently long chain, then there is a height one partial order P '  contained 

in P x C with 

dim(P) ~ d i m ( P ' )  ~ 1 +dim(P).  

The partial order P '  is called the horizontal split of P (see [12] for details). 
Furthermore,  it is easy to see that for height one partial orders P and Q, we can 
restrict our attention to reversing the nonforcext pairs of P ×  O which involve 
incomparable rain-max pairs. This amounts to computing the interval dimension 
but for height one posets, this invariant differs from dimension by at most one 
[11]. 
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