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INEQUALITIES IN DIMENSION THEORY FOR POSETS 

WILLIAM T. TROTTER, JR. 

ABSTRACT. The dimension of a poset (X, P), denoted dim(X, P), 

is the minimum number of linear extensions of P whose intersection is 

P. It follows from Dilworth's decomposition theorem that dim (X, P) s 

width (X, P). Hiraguchi showed that dirn(X, P)< |X1/2. In this paper, 

A denotes an antichain of (X, P) and E the set of maximal elements. 

We then prove that dim (X, P) < Ix- A; dim(X, P) < 1 + width (X -E); 

and dim (X, P) < 1 + 2 width (X - A). We also construct examples to 

show that these inequalities are sharp. 

1. Introduction. Dushnik and Miller [4] defined the dimension of a 

poset, denoted dim (X, P) or dim X, to be the minimum number of linear 

extensions of P whose intersection is P. Equivalently, Ore [7] defined 

dim(X) to be the smallest integer k such that (X, P) is isomorphic to a 

subposet of Rk. We refer the reader to [1], [2], and [8] for other definitions 

and preliminaries. In this paper we establish inequalities involving dimen- 

sion, width, height, and cardinality. A number of such inequalities are 

known and we begin by stating a sampling of them. 

Theorem. For any posets X, Y, any chain C C X, and any point 

x 6 X, the following inequalities hold. 

(1) dim(X - x) < dim X < 1 + dim(X - x) L5], [I], 

(2) dim X < 2 + dim(X - C) [5], 

(3) dim X < width X [5], 

(4) dim X < IX1/2 (Hiraguchi's theorem L5], [1]), 

(5) dim(X x Y) < dim X + dim Y. 

A poset has dimension one iff it is a chain. If a poset consists of an 

antichain of at least two points, then its dimension is two. Throughout the 

remainder of this paper we will assume that X is a poset which is neither 

a chain nor an antichain. We will use the symbols A and E to denote an 

arbitrary antichain in X and the set of maximal elements respectively. If 
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IX -Al = 1, but X is not a chain, then it is trivial to show that dim X = 2. 

Therefore we will assume that for any antichain A C X, IX - Al > 2. Fur- 

thermore we do not distinguish between a poset and'its dual. 

2. Some new inequalities. In this section we establish some new in- 

equalities for the dimension of a poset. 

Lemma 1. Suppose x and y are incomparable points in a poset X, but 

for every z E X - .x, y}, z > x iff z > y and z < x iff z < y. Then dim(X-x) 

= dim X unless X - x is a chain. 

Proof. If X - x is not a chain then dim X - x > 2; let L1, L2* Lt 
be linear extensions of P I X - x = P' whose intersection is P'. In 

L1, L2, ... Lt- 1 insert y immediately over x, and in Lt insert y imme- 

diately under x. The resulting linear extensions of P intersect to give P, 

and thus dim X < dim X - x. We note that if X - x is a chain, then 

dim X - x = dim X - y = 1, but dim X = 2. 

A trivial modification of this argument also proves the following state- 

ment. 

Lemma 2. Suppose x > y in P but for every z 6 X - Vx, y}, z > x iff 

z > y and z < x iff z < y. Then dim X = dim X - x = dim X - y. 

Lemma 3. If IX- Al = 2, then dim X = 2. 

Proof. We may assume without loss of generality that X cannot be 

reduced by either of the preceeding lemmas to a poset with the same dim- 

ension as X by having fewer number of points. Then it is easy to see 

that X is isomorphic to a subposet of one of the following posets. 

(4, 2) (2, 4) (5, 4) 

(4, 2) (3,3) (2, 5) 

(3, 0) (1, 1) (0, 3) (2, 3) 

Figure 1 

But the coordinatizations given in Figure 1 show that each of these has 

dimension 2. 
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Since the removal of a point cannot decrease the dimension more than 

one, we have proved the following result. 

Theorem 2. If X - Al > 2, then-dim X < IX - Al. 

Combining this result with the easily obtained bound dim X < width (X), 

we have established Hiraguchi's theorem1 that dim X < IX1/2 when |XI > 4. 

We also note that the standard examples of maximal dimensional posets, 

denoted So [21, [81, show that the bounds dim X < width (X), dim X < |X - AI 
and dim X < IX1/2 are best possible. 

Theorem 3. dim X < width(X - E) + 1. 

Proof. Let t = width(X - E); then by Dilworth's theorem [3], there 

is a partition X- E = C1 U C2 u ... u Ct, where each C. is a chain. For 

each i, let Li be a linear extension of P which is a lower extension L1] with 

respect to C.. Form a linear extension Lt+, of X by placing all maximal 

elements on top of some linear extension M of X - E and then ordering the 

maximal elements in Lt +1 in the reverse order imposed on them by Lt. It 

is easy to see that L1 n L2 n * n Lt +1 = P, and the proof of our theorem 

is complete. 

For w = 1 and w = 2, the following examples show that the bound is 

best possible. 

1igure 2 

For n > 3, we construct a poset Yn as follows. Yn has 3n + 2 points 

a1, a2' , n' ana+1} U ly1 Y29 * * ` Yn} U {xl, x29 . ., xn} U {p} 
The points la, I i < n}, ly, I i < n} form a copy of So. Each yi covers xi; 

p covers a1, a2,, an but pIan+1; and an+1 covers all x's. We illustrate 

this construction with the Hasse diagram for Y3. 

1 K. P. Bogart first suggested that an elementary proof of Hiraguchi's theorem 
might be produced by considering the complement of the largest antichain. R. Kimble 
has independently discovered this result; his proof will appear in his thesis [6]. 
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I a2 

x1 x~~~~2 

Figure 3 

It is clear that if E = sp, an+1 }, then w(Yn - E) = n. We now show that 

dim Y =n+ 1. n 
Suppo se dim Y n < n; let L 1.1 L2 * * Ln be linear extensions of Yn 

whose intersection is the partial ordering on Yn. We may assume that the 

L's have been numbered so that x. is over a in L .. Now an+l is over 
z z z n+ 

all x's; since YiI an1 but Yi< a. for all j; i, j <n, yi is under a- Yi n+1 Yi I n +1 

in all lists except possibly L Hlence we must have Yi over an+1 in Li. 

Since p > Yi for all i, this implies p is over a in every L.. The contra- 

diction shows that dim Y = n + 1. n 
We note that it is straightforward to show that each Yn is irreducible; 

i.e., the removal of any point from Y lowers the dimension to n. We n 
refer the reader to L9] for details. 

Theorem 4. dim X < 2 width(X - A) + 1. 

Proof. Suppose t = width(X - A) and let X - A = C1 u C2 U * Uc t 
be a decomposition into chains. For each i, let L2i 1 and L2i be upper 

and lower extensions, respectively, of Ci. Then let M be an ordering of 

A which is the reverse of ordering imposed on A by L2t; then let 

L 2t+ be any linear extension of P whose restriction to A is M. Clearly 

L 1n L 2 r * r* L 2t +1 = P and the proof of our theorem is complete. 

To show that the inequality of Theorem 4 is best possible, we construct 

for each n > 1, h > 1 a poset X(n, h) as follows. X(n, h) contains a maxi- 

mal antichain A, and X(n, h) - A = X U XL is the natural decomposition 

into upper and lower halves. Xu and XL each consist of n incomparable 

chains with each chain containing h points. Every point in Xu is greater 
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than every point in XL. For each ordered pair (S, T) where S is an order 

ideal of Xu and T is an order ideal of XLI there is a point in A which 

is less than all points in S and greater than all points in T. We illustrate 

this definition with the Hasse diagrams for X(1, 2) and X(2, 1). 

X(1, 2) X(2, 1) 

Figure 4 

We note that the width of X(n, h) - A is n. However, it can be shown 

[10] that for sufficiently large h, dim X(n, h) = 2n + 1. 

3. Some open problems. Although we have outlined in this paper an 

elementary proof of Hiraguchi's theorem: dim X < IX/21, it is not known 

whether or not every poset contains a pair of points whose removal lowers 

the dimension at most 1. 

A second problem involves cartesian products. Although dim(X x Y) 

< dim X + dim Y, it is easy to construct posets X, Y for which dim(X x Y) 

< dim X + dim Y. (In fact dim (S0 x SO) < 2n - 2.) The question involves the 

accuracy of the lower bound dim(X x Y) > max dim X, dim Y}. 
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