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Abstract. A finite poset is an angle order if its points can be mapped into angular regions in the plane 
so that x precedes y in the poset precisely when the region for x is properly included in the region for 
y. We show that all posets of dimension four or less are angle orders, all interval orders are angle 
orders, and that some angle orders must have an angular region less than 180” (or more than 180”). 
The latter result is used to prove that there are posets that are not angle orders. 

The smallest verified poset that is not an angle order has 198 points. We suspect that the minimum 
is around 30 points. Other open problems are noted, including whether there are dimension-5 posets 
that are not angle orders. 
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1. Introduction 

This paper investigates an unusually rich and fascinating class of finite partially ordered 
sets. Members of this class, referred to as angle orders, are representable under proper 
inclusion by angular regions in the plane. Our results are summarized later in this intro- 
duction and verified in ensuing sections. The paper concludes with some interesting 
open problems. 

Throughout, a poset is a pair (X, 4) in which 4 is an asymmetric and transitive binary 
relation on a nonempty finite set X. An angular region is a closed region A of lR2 bounded 
by a pair (I~, r2) of distinct rays emanating from a point z, that contains all points swept 
out by rays from z, in the clockwise direction from rI to r2. The vertex v of A is unique 
unless the angle from r1 to r2 is 180”. We refer to an angular region A as little if its 
described angle is less than 180” and as big if its angle exceeds 180”. Only A that are 
little or are half planes are convex: see Figure 1. The set of all angular regions in lR2 is 
denoted by -id. 

l Research supported in part by the National Science Foundation, grant number DMS-8401281. 
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LITTLE HALF PLANE 

Fig. 1. Angular regions. 

BIG 

DEFINITION. A poset (X,4 ) is an angle order if there exists a mappingfi X+&such 
that, for all x, y E X, 

x4.Y *f(x) CfbJ). 

We refer to such an f as a representation of (X,4). The great variety of representa- 
tions of an angle order is suggested in part by Figure 2, which shows six different ways 
for pairs of little angular regions that {f(x) df(v), f(y) d f(x)} can be realized when 
{x, v} is an incomparable pair. This variety contributes to the challenge of analyzing 
angle orders. 

For every f: X + JY’ there is a dual mappingf*: X -+ &defined by f*(x) = [f(x)] *, 
where A * denotes the closure of the complement of A E &It is easily seen that A* E d, 
(A*)*=A, AnA*=rI Ur,, AUA*=IR2, and ACB*B*CA*, for all A, BEJ&, 
Clearly, A* is little [big] if A is big [little]. 

The dual (X, 4’) of a poset (X, 4 ) has x 4’~ *y 4x. Since f*(x) C f *(y) * 
f(v) C f (x), it follows that the class of angle orders is closed under duality. We shall 
use this fact later. 

Our study of angle orders is related to other investigations of posets with representa- 

Fig.2. AQBandBQA. 
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tions based on closed bodies (usually assumed to be convex) in finite-dimensional Euclidean 
spaces [4, 61. We give two examples for the representing family y of nondegenerate and 
bounded closed intervals in W. 

First, consider the class of posets for which there is a g: X+ fsuch that, for all 

X,YEX, 

It is easily seen that this is the class of all posets with dimension 2 or less. The dimension 
D(X, A’) of a poset [2] is the least number of linear orders (chains) on X whose inter- 
section is (X,4). Consequently, D(X,+) < n if and only if there are gi: X+ IR with 

X #y *gi(X)#gj(y) for i= 1, . . . . n such that, for all X, y EX, X~Y “gi(X) <gi@) 
fori= 1, . . ..n. 

Second, consider the class of posets for which there is a g : X + y such that, for all 

X,YEX, 

x +y * sup g(x) < inf g(u). 

This is the class of interval orders. Since the poset ({a, b, x, y}, {(a, b), (x, y)}) has 
D = 2 but is not an interval order, and since there are interval orders with arbitrarily 
large dimension [ 11, neither of our two y classes is included in the other. However, 
both are included in the class of angle orders. 

The next few paragraphs describe the main results of our study. 
Small dimensional posets are discussed in Section 2. We prove that every poset with 

D < 4 is an angle order. Special representations are used to characterize D < 2 and D < 3 
precisely. It is noted also that there are angle orders of arbitrarily large dimension that 
have representations which use only two angles, both of which can be less than 180”. 

The D < 4 proof in Section 2 uses representations whose angles are all less than 90”. 
The same type of representation is then used in Section 3 to prove that all interval orders 
are angle orders even though their dimensions are unbounded. 

Section 4 considers two n-dimensional subposets [2, 51 of the lattice of subsets of 
{ 1, 2, . . . . n} = n ordered by proper inclusion. The first, L,, takes X as the subsets with 
cardinalities in { 0, 1, 2, n - 1). Then second, B,, takes X as the subsets of n with car- 
dinalities in { 1, n - 2, n - 1, n}. We show that each L, and B, is an angle order. More- 
over, for all large n, every representation of L, has a big angular region and, dually, 
every representation of B, has a little angular region. 

These results are combined in Section 5 with the fact that a big angular region cannot 
be included in a little angular region to prove that there are posets that are not angle 
orders. We have found it surprisingly difficult to construct a small poset that is not an 
angle order. Our best to date has 198 points and dimension 7. 

However, we suspect that the lattice (2’, C) with 32 points and dimension 5 is not an 
angle order. This and other open questions are discussed briefly in Section 6. 
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2. Small Dimensions 
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Here, and later, we shall let v(x), rr(x), and r*(x) denote the parameters of an angular 
region f(x) as described earlier. The vertex of f(x) is V(X) with {v(x)} = rr(x) n r*(x). 

Any one of three simple representations can be used to characterize all posets with 
D < 2. The first uses the same V(X) for allf(x); the second uses the same 90” angle with 
fixed orientation for all f(x); the third has all V(X) on the same line, whiEh also includes 
all r 1 rays. 

To illustrate these, suppose D(X,d ) < 2 and let g, , g, : X + IR satisfy xdy * 
gj(x) <gj(u) for i = 1, 2, along with gi(x) #gi(y) whenever x fy. Assume with no loss 
in generality that the gi are scaled so that 0 <gi(x) < n/2 for all x. The representations 
are as follows: 

(1) v(x) = (0, 0) f or all x. rI(x) lies at an angle of gi(x) radians above the positive 
abscissa; r2 (x) lies at an angle of g, (x) radians below the positive abscissa; 

(2) V(X) = (gr(x), ga (x)). The angle for f(x) is the 90” angle southwest of v(x); 
(3) V(X) = (gr(x), 0). rI(x) extends left from V(X) along the abscissa; rz(x) lies above 

the abscissa in the negative direction at an angle of g, (x) radians. 
These are illustrated on Figure 3. For (l), both gj are used for the angle; for (2) 

both gi are used for the vertex; for (3) one gi is used for the vertex and the other is used 
for the angle. In each case f(x) C f(v) if and only if gr(x) <gr(y) and g2(x) <g, (v), 
s0.e) Cfcy)“X~Y. 

Converse assertions hold. Suppose f is a representation of (X?). If v(x) = v@) for all 
x, y E X, then D(X,+) < 2; if all f(x) have 90” angles with a common orientation, 
then D(X,4 ) < 2; if n, rl(x) includes an infinite half line, then D(X,*) < 2. We omit 
the simple proofs. 

The ideas behind the preceding representations for D < 2 combine to characterize 
D < 3. With x4 y * gi (X) < gi (J) for i = 1,2,3, we use one of the gi to position vertices 
along a straight line and use the other two to position the angles for r1 and rz Details 
are left to the reader. 

Before proving that all posets with D < 4 are angle orders, we note that there are angle 
orders of arbitrarily large dimension that can be represented with just two angles. Two 
representations of this type for the n-dimensional poset [2] formed by the l-sets and 
(n - 1)-sets in n = { 1, 2, . , n} ordered by C are shown in Figure 4. The upper represen- 

(0.0) 

1 2 3 
Fig. 3. Three representations for D < 2. 
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Fig. 4. Representations with two angles. 

tation has all v({ i}) on the same straight line, all v(n\{ i}) on another parallel straight 
line, and every angle in each of the two classes has the same orientation. The lower 
representation has all v({i}) on an arc, and all its angular regions are little. The orienta- 
tions of the larger angle vary in this case. 

Our main result for small D is 

THEOREM 1. Every poset with dimension 4 or less is an angle order. 
Proof Given D(X,+) < 4, let gi: X+ IR for i = 1,2,3,4 be such thatgi(x) #gi(y) 

whenever x fy, with x+y *gi(x)<gi(y) for all iC{ 1, . . . . 4). We use the first two 
gi for vertices: 

v(x) = (g1(x),g,(x)). 

Rescale g, and g4, preserving their orders, so that, for all x E X and i = 3, 4, n/4 - 6 < 
gj(x) < n/4, where S is positive but small. Then let ~-r(x) be at an angle ofg,(x) radians 
counterclockwise from, the line in the southwest direction from V(X), and let r*(x) be 
at an angle ofg,(x) radians clockwise from the same line: see Figure 5. 

Suppose gi(x) <gj(v) for i = 1, 2, 3, 4. Then, with 6 smalI,f(x) C f(r). Conversely, 
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(g,(x),g2(x)) 

Fig. 5 Angular region near 90”. 

if both gltx)<glty) and gzty)<g2tx), or if V(X) is southwest of v(y) and either 

g~ty)<g~(x)org~tY)<g~tx),wegetftx)~fty)andf(y)~ftx). q 

We do not presently know whether every five-dimensional poset is an angle order. 
See Sections 5 and 6. 

3. Interval Orders 

The configuration of angular regions used in the proof of Theorem 1 also suffices to 
represent some posets whose dimensions exceed 4, as we now show in proving 

THEOREM 2. Every interval order is an angle order. 
Proof: Let 1, = { [i, j] : 1 =G i< j< n, i and j integers}. It is well known that if (X,4) 

is a finite interval order then there is an n for which the points in X can be mapped into 
the intervals in 1, so that, for all x, y EX, x-<y if and only if x’s interval lies wholly 
to the left of y’s interval on the line. Since each 1, ordered in this way is an interval 
order, it suffices to show that each of these is an angle order. 

Our proof of this is pictured in Figure 6. The vertices v( [i, j]) are ordered from left 
to right along the top left arc of a circle lexicographically with v([i, j]) before v([k, I]) 
if and only if j < 1 or (j = 1, i < k). We label v( [i, j]) as rj on the figure. We also identify 
a point just before the cluster of vertices that end in j. It is depicted as a little open circle 
and labeled j. For each x in I,, r,(x) can be taken vertically downward from V(X) [or 
tilted a little to the left of vertical to conform to the configuration used in the preceding 
proof], and r2 ([i, j]) is the ray emanating from v( [i, j]) that goes through the point 
labeled i (little open circle). It follows by construction and inspection that f( [i, j])C 
f([k Il)*i<k. q 
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ALL r;S PARALLEL 

Fig. 6. Representation for interval order. 

4. Big and Little Regions 

We now prove that there are angle orders which must have a big (little) angular region 
in every representation. Two subposets of (2”, C) will be used in this: 

L,=({xE2”:JxIE{O,1,2,n-l}),C), 

THEOREM 3. Every L, is an angle order. There is an integer no such that if n > n,, 
then every representation of L, has a big angular region. 

REMARKS. Our proof uses no = 21 although some smaller no might suffice. We note 
also that if the (n - 1)sets are deleted from L,, then the remainder is representable by 
little angular regions: see Figure 7. The figure depicts f(g), thef({i}), andf({ 3, 6)). 

r2 (I3 

I r;s FOR SINGLETONS 

Fig. 7. Representation with little regions. 
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A + + 
Fig. 8. Representation of L,. 

Giveni<j,thevertexoff({i,j})isv({j}),r,({i,j})isparalleltor,({i}),and~,({~,j}) 
goes through V( { i}). 

Proofi Figure 8 illustrates a representation of L,. The singleton vertices lie along the 
lower arc of a circle. Their angles open downward and include f(g). The big angular 
region for doubleton {i, j} has rays through v({ i}) and ~({j}). It includes f({ i}) and 
f({j}) but cuts every other f({ k}) b e ow its vertex for incomparability. The vertex of 1 
f(n\{ k}) is just beneath the vertex off({k}), and its angle is near 360”. 

We now show that every representation of L, for n 2 21 must have a big angular 
region. Assume to the contrary that n > 2 1 and that f is a representation of L, with no 
big angular region. We shall obtain a contradiction. 

With no loss in generality, assume that f(p) includes the positive abscissa. Then every 
f(x) includes the positive abscissa. For each singleton in L,, let a(i) and /3(i) be respec- 
tively the angle in radians between rl({ i}) and the positive abscissa and the angle between 
r2({i)) and the positive abscissa. Let (Y* be the largest a(i) and /I* the largest p(i), and 
o(a) = (Y * and P(b) = fl* for a, b E n. Since all angles forf are 180” or less, consideration 
off({a, b}) shows that IX* + /3* < rr. 

Let N = n\{a, b}. By considering the (n - 1)sets in 2” that omit a point in N and 
therefore contain both a and b, it is easily seen that the vertices of the angular regions for 
the singletons in N must be distinct and lie in a ‘convex’ pattern with respect to the 
vertex off(‘): see Figure 9. There is a line through each such vertex that has all other 
singleton vertices as well asf(@) to its right. 

Since n > 21, assume with no loss in generality that { 1, 2, . . . , 19) CN and that 
v({ 1)) through v({ 19)) go from the bottom up on Figure 9. Then, ignoring 1 and 19, 
there are integers i, j, k such that 
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Fig. 9. ‘Convex’ pattern of v(i) for i in N. 

2<i<j<k< 18, 

a(i) < a(j) < a(k) or a(i)> a(j) > a(k), 

P(i)GP(i)GP(k) or P(i)aP(i)aP(k). 

This follows from the Erdijs-Szekeres theorem [3, 71 which says that every linear 
arrangement of the first m* t 1 positive integers has either an increasing sequence or a 
decreasing sequence of at least m t 1 integers. The 17 = (4)* t 1 indices in { 2, 3, . . . . 18) 
yield five a(h) that are monotone nondecreasing or monotone nonincreasing in the 
natural order of their h’s; these 5 = (2)2 t 1 then have an internal subsequence of at least 
three P(h) that is nondecreasing or nonincreasing. 

Figure 10 illustrates the situation established in the preceding paragraph. By the 
monotonicities of (II and p over {i, j, k}, v({j}) must be to the left off({i, k}). This 
angular region can cut to the right (see dotted lines) at or above v({k}), or at or below 
v( { i}), but the solid line - which could contain v( { i, k}) - to the right of V( {j}) must 
extend either upward or downward indefinitely. 

v(191, 
/ 

f ( n\ ii91 I 

Fig. 10. Set-up for contradiction. 
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Now consider the angular regions f(n\ { 1)) and f(n\ { 19)). These are presumed to be 
little or to be half planes. With no loss in generality, assume they are half planes. Because 
of o* and fi*, the line for f(n\{ 1)) must pass to the right of v({ 1)) and the line for 
f(n\{ 19)) must pass to the right of v({ 19)). Moreover, for inclusion, each line must have 
all other singleton vertices on it or to its right: see the dashed lines on Figure 10. 

Finally, since f is assumed to be a representation of L, , we require f( { i, k}) k f(n\ { 1)) 
and f({ i, k}) C f(n\ { 19)). But this is clearly impossible under the conditions established 
in the preceding two paragraphs. q 

Theorem 3 has the following simple corollary. 

COROLLARY 1. Every B,, is an angle order. There is an integer no such that if n > no 
then every representation of B,, has a little angular region. 

Proof. By the discussion of duality in the introduction, f is a representation of L, if 
and only if f* is a representation of the dual of L, . Since B, is order-isomorphic to the 
dual of L, under the mapping x + n\x, Corollary 1 follows from Theorem 3. Cl 

5. Not all Posets are Angle Orders 

COROLLARY 2. There are posets that are not angle orders. 
Proof: Let LA and BA be disjoint copies of L, and B, respectively, and define a poset 

(X, ,-K) as follows. The points in X, are the members of LA and BA . For all x, y E X,, 
define 4 by 

xdy if (x,yareinLAandxCy) 

or (x, y are in BL andx C y) 

orx isinLA andy isinBA. 

When n 2 no in Theorem 3 and Corollary 1, (X, ,+) cannot be an angle order since a 
big angular region (from Lh) cannot be included in a little angular region (from Bk). 0 

Since the smallest no that suffices for our proof of Theorem 3 is 2 1, the proof of 
Corollary 2 shows that there is a poset with 2 1 Lzl I= 706 points that is not an angle 
order. 

We can do better. A proof like that used for Theorem 3 shows that if ({x E 2’: 
Ix I < 4}, C) is an angle order, then every representation must have a big angular region. 
Since this poset has 99 points, a proof similar to the proof of Corollary 2 yields a poset 
with 198 points that is not an angle order. 

However, 198 is probably much larger than the cardinality of the smallest poset that 
is not an angle order. 

6. Open Questions 

We have not been able to determine whether (25, C) is an angle order. The delicacy of 
resolving this is suggested by the fact that if any 4-element set is removed from 25 then 



ANGLE ORDERS 343 

the remainder has dimension 4 and is therefore an angle order by Theorem 1. If (25, C) 
is not an angle order, then it seems likely that the smallest poset that is not an angle order 
has about 30 points. 

Two related questions: What is the dimension of the least-dimension poset that is not 
an angle order? What is the smallest n such that (2”, C) is not an angle order? If (2’, C) 
can be shown not to be an angle order, then these questions are obviously closed. 

A somewhat different concern that is not directly involved with dimensionality is 
whether it is always possible to add a new least point x,, (+everything in X) to an angle 
order (X,4) so that the augmented poset is also an angle order. Equivalently, if (X,4) 
is an angle order, must it have a representation f such that nf(x) includes an angular 
region? A more demanding question: Does there exist an angle order such that for every 
representationf there are x, y E X for whichfjx) andfb) are disjoint? 

Finally, we return to the matter of specialized representations. We know that D < 2 

and D < 3 are precisely characterized by representations that obey simple restrictions. 
Is this true also for D < 4? The proofs of Theorems 1 and 2 show that the southwest- 
angles restriction used in Theorem 1 will also suffice for some angle orders of arbitrarily 
large dimension. Is there some other way to represent D < 4 that will exclude all angle 
orders with dimension 5 or more? 
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