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Abstract. Van der Waerden’s arithmetic sequence theorem - in particular, the ‘density version’ 
of Szemeredi - is generalized to partially ordered sets in the following manner. Let w and t be fixed 
positive integers and E > 0. Then for every sufficiently large partially ordered set P of width at most 
u’, every subset S of P satisfying ] S] > E 1 PI contains a chain a, , a2, . . . . a, such that the cardinality 
of the interval [a,, a,, i ] in P is the same for each i. 
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1. Introduction 

The primary objective in what follows is to extend the concept of arithmetic 
progression to (partially) ordered sets and to investigate conditions which force 
subsets to contain long arithmetic progressions. We call a sequence of distinct 
elements al, u2, . . . . a, from an ordered set P a t-term arithmetic progression 
in P if there is a positive integer d so that for each i = 1,2, . . . , t - 1 the number 
of points in the closed interval [a,, a,, i ] = {x E P: a, < x 6 a,, i } is precisely 
d. In particular, aI < a2 < ... < a, must be a chain of P. 

With this generalized notion of arithmetic progression we can extend the 
famous theorem of E. Szemeredi [3] which states that any subset of the positive 
integers having positive upper density contains arbitrarily long arithmetic 
progressions. Szemeredi’s theorem is itself a strengthening of the following 
1927 theorem of Van der Wearden: 

THEOREM 1 (Van der Waerden [5]). In any coloring of the positive integers 
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by$nitely many colors, some color class must contain arbitrarily long arithmetic 
progressions. q 

For our purposes the following finite version of Szemeredi’s theorem is the 
most appropriate: 

THEOREM 2 (Szemeredi [3]). For every E > 0 and every positive integer t, 
there exists N = N(E, t) so that if S is any subset of { 1,2, . . ., n} with n 2 N 
and ISI > in, then Scontains a t-term arithmetic progression. 0 

Recall that an antichain in an ordered set is a set of pairwise incomparable 
elements, and that the width of a finite ordered set P is the cardinality of a 
largest antichain in P. We will prove the following generalization of Szemeredi’s 
theorem. Note that the bound on width cannot be omitted, else we could not 
even guarantee the existence of a long chain. 

THEOREM 3. For every E > 0 and every pair t, w of positive integers, there 
exists N = N(E, t, w) so that ifP is any ordered set with ] P] 2 N and width(P) 6 
w, and if S is any subset of P with ] SI > E ] P 1, then S contains a t-term arithmetic 
progression. 0 

Before proceeding to the proof of Theorem 3, we pause to comment on 
another natural way to extend the concept of arithmetic progression to partial- 
ly ordered sets. We could have required that the intervals [a,, a,+ I ] be iso- 
morphic as ordered sets, instead of equinumerous. It turns out, however, that 
this notion is too strong even to salvage a generalization of Theorem 1. The 
following example illustrates the dilemma. 

In 1906, Thue [4] showed that there exist infinite square-free words on a 
three-letter alphabet, e.g., a sequence X= (x1, x,, . ..) drawn from {I, 2, 3) with 
the property that for every i,k> 1, (xl,xI+r ,...,, ~,+k-I)#(x,+~,~,+~+, ,..., 
,Y,+~~~, ). (For a more modern reference, see [ 11.) 

Let 81, Q2, and Qj be the black-and-white-colored ordered sets whose 
Hasse diagrams are pictured in Figure 1. 

a: (?I c’ 1 

Fig. I. 
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Let PO Q denote the ordinal sum of the ordered sets P and Q, i.e. the dis- 
joint union of P and Q with the relations in P and in Q together with p 6 9 
whenever p E P and q E Q. Let P be the infinite, black-and-white-colored 
ordered set PI 0 P2 0 a . ., where each P, is a copy of Qs,. Then P has width 2, and 
we claim it has no monochromatic 3-term arithmetic progression. 

To see this suppose al < a2 < a3 is an arithmetic progression all three points 
of which are, say, white. Let r, be the rank of a,, that is, the length of the longest 
chain in P whose maximum elements is a,; then il, rz and r3 are either all 
congruent to 1 modulo 4 or all congruent to 2 modulo 4. However, the iso- 
morphism class of the ‘up-set’ {y E Q, : y b x} uniquely determines j whenever 
x is of rank 1 or 2 in Q,. It follows that the intervals [al, a?] and [a?, us] deter- 
mine matching, consecutive subsequences of X (each of length (Y? - rl)/4) 
contradicting the choice of X as a square-free sequence. (The argument for 
black arithmetic progressions is similar but uses down-sets.) 

2. Proof of the Principal Theorem 

We proceed by induction on w; the case w = 1 is Theorem 2, so we assume 
w > 1 and that Theorem 3 holds for all smaller values of u’. 

Let E > 0 and let t be a fixed positive integer. Set m = N(E/~w, t, w - I), 
b = [4wm/el, and no = max(r4/c21, N(e/2b2, t, 1)). We will show that N(E, t, ,v) 
can be taken to be nob. 

Accordingly, let P be an arbitrary ordered set with ] PI 3 N = nob and width(P) 6 
~1, and let S be an subset of P for which 1st 3 E] PI. We claim that S contains 
a t-term arithmetic progression. 

Using Dilworth’s Theorem, we partition P into w chains P = C, u C2 u ... u 
C,,.. We then determine a second partition P = B, v B2 v ... v B,, , into sub- 
sets which we call blocks. This partition must satisfy the following two con- 
ditions: 

(1) IB,]=bforj=1,2,...,nand]B,,+rI<b(thusn>no); 

(2) If16i<j~~+l,x~B,andy~B,.theny~xinP. 
Such a partition can be constructed easily enough from the bottom up by 
inductively assigning minimal elements to successive blocks. 

We say that a block B,, 1 6 i < n, is dense if the density of S in Bi is at least 
~12, i.e., Len B,l> &b/2 > 2wm. Note that there are at least &n/2 dense blocks, 
for otherwise we could conclude that ISI < (&n/2)b + (n - &n/2)&b/2 + 
b < ebn d E I PI. For each dense block B,, we now describe a process by which 
a point y, E B, n S, called the root of Bj, will be selected. The root y, and an 
associated pair (r,, s,) of integers are determined as follows. 

Since I B, n SI B 2wm we may choose a chain C’ from the chain partition so 
that I C’ n B, n SI > 2m. Let x, be the least element, and z, the greatest element, 
of C, n B, n S. Then choose yI so that [-xl, yI] n S and [ y,, z,] n S each contain 
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at least rn points of S. Finally, let r,  and s, count the points below and above y, 
i n t h e b l o c k , i . e . , r , = I { u ~ ~ , : u 6 ~ , ) I  a n d s , = I { o ~ ~ , : v 3 y , ) I .  

If in some dense block B, the interval [y,, z,] has width at most w - 1, then 
since the density of S in [y , ,  z,] is at least m/b > &/5w while m = N(&/5w,  t, 
w - 1), [ y, , z,] already contains the desired t-term arithmetic progression. We 
may thus assume that [y, ,  z,] has full width w, and hence intersects every 
chain C k  of the chain partition in at least one element, say uk, of B,. If v is an 
element of some block B, with i < q 6 n then v E C,: for some k, hence v > uk 3 
Yl . 

After dualizing the above argument using the intervals [x,,yl], we may 
assume that the root of every dense block is comparable to every element of 
P outside that block. The situation in a typical dense block is illustrated in 
Figure 2,  where the crooked vertical lines represent chains of the chain parti- 
tion and the circular arcs enclose intervals; the set S and the covering relations 
of P are not pictured. 

I Fig. 2 

For each r ,  s such that 1 6 r  6 b and 1 6 s 6 b, let U,.. , = { i :  B, is dense, r, = 
r  and s, = s}. Since as noted above there are at least &n/2  dense blocks, there 
must be values of r  and s for which I U,.. ,I3 &n/2b2.  Recalling that n = ~ ( & / 2 b l ,  
t ,  1 )  and applying Theorem 2 to the chain of values of i, we obtain a t-term 
arithmetic progression i l  , i?, . . . . ir within U,. , . Let d be the common difference 
1/+1 - 1 / .  

It follows that the corresponding roots y,, , y,, , . . . , y,, form a t-term arithmetic 
progression in Pi because each interval [y,,,-y,,+,] contains exactly s + (d - 
I) b + r  points of P.  Since the roots all lie in S the proof of the theorem is 
complete. 0 
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3. Concluding Remarks and Problems 

Any a-dense subset of a large, width-bounded ordered set will contain a long 
chain C. The function a: C’ + { 1,2, . ..I given by cc(x, y) = 1 [x, ~11 is (essential- 
ly) superadditive, that is, x < y < z implies 01(x, z) 3 a(x, y) + a( y, z) - 1. One 
might thus be led to ask whether any such function leads to a Szemeredi-type 
theorem: if such a function p is defined on a long chain, say (1 < 2 < ... < n}, 
and /?( 1, n)ln is bounded in advance, must there be a long subchain ii, i2, . . . , il 
for which /I(i,, z’,+ i ) is constant? 

It turns out that this will not generally hold. For example, let p(i,,j)= 
3 (j - 2) - 1 if i and j are elements number k and k + 1 of an ordinary arithmetic 
progression beginning with a member of [ 1, j - i], and k is odd; otherwise 
j?(i,j)= 3(,j- i)- 2. It is easily seen that then /I(i,, i2)#/3(i2, i3) whenever 
il < ix < i3. 

Since the structure of partially ordered sets does seem to play a role, it is 
perhaps worth investigating other order-theoretic functions. Two possibilities 
are h(x, y) = the height of [x, y], i.e., the length of the longest chain in P from 
x to y, and n(x, y) = the length of the shortest covering chain from x to y. Each 
leads to another generalization of the notion of arithmetic progression. In 
the case of h(x, v), Van der Waerden’s theorem generalizes easily since P con- 
tains a long maximum-length chain, on which the theorem for positive integers 
can directly be applied. However, it is not obvious to us that the density ver- 
sion holds, and neither version is apparent in the case of the subadditive func- 
tion ;l(x, y). 

Returning to our original definition of arithmetic progression, we ask now 
whether the bound on width can be replaced by other algebraic or combinatorial 
properties for partially ordered sets which force subsets of positive density to 
contain long arithmetic progressions. For example, J. Walker [6] pointed out 
that, as an immediate consequence of Szemeredi’s theorem, a positive fraction 
of the set of subsets of a large set, ordered by inclusion, contains long arith- 
metic progressions. We suspect that this phenomenon may in fact hold for 
general distributive lattices. 

CONJECTURE. For every E > 0 and every positive integer t, there exists 
M= M(E, t) so that if L is a distributive lattice of cardinality at least M, and 
S is a subset of L with 1 S] > E ] L 1, then S contains a t-term arithmetic progres- 
sion. 0 

Although we have made no real progress in establishing this conjecture, we 
comment that the following result of L. Kahn and M. Saks (restated in our 
terms) is an initial step: 

THEOREM 4 (Kahn and Saks [2]). For every E > 0, there exists M= M(E) so 
that ifL is a distributive lattice of cardinality at least A4 and S is any subset qf 
L with 1 SI 2 E 1 L 1, then S is not an antichain. cl 
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