NOTE

POSET BOXICITY OF GRAPHS

W.T. TROTTER, Jr.*
University of South Carolina, Columbia, SC 29208, U.S.A.

Douglas B. WEST**
University of Illinois, Urbana, Il 61801, U.S.A.
Received 1 October 1985
Revised 8 April 1986

Abstract

A t-box representation of a graph encodes each vertex as a box in t-space determined by the (integer) coordinates of its lower and upper corner, such that vertices are adjacent if and only if the corresponding boxes intersect. The boxicity of a graph G is the minimum t for which this can be done; equivalently, it is the minimum t such that G can be expressed as the intersection graph of intervals in the t-dimensional poset that is the product of t chains. Scheinerman defined the poset boxicity of a graph G to be the minimum t such that G is the intersection graph of intervals in some t-dimensional poset. In this paper, a special class of posets is used to show that the poset boxicity of a graph on n points is at most $\mathrm{O}(\log \log n)$. Furthermore, Ramsey's theorem is used to show the existence of graphs with arbitrarily large poset boxicity.

1. Introduction

"Boxicity" is a representation parameter of graphs introduced by Roberts [2] and Cohen [1]. It is the minimum dimension in which the graph can be represented as an intersection graph of boxes with sides parallel to the axes. More precisely, a t-box representation of a graph encodes each vertex as a box in t-space determined by the (integer) coordinates of its lower and upper corner, such that vertices are adjacent if and only if the corresponding boxes intersect. The boxicity of a graph G is the minimum t for which this can be done. Since it can be assumed that the upper and lower coordinates are all integers, a t-box representation expresses G as an intersection graph of intervals in the t-dimensional poset that is the product of t chains. Scheinerman [3] defined the poset boxicity of a graph G to be the minimum t such that G is the intersection graph of intervals in a t-dimensional poset. (A general discussion of representation parameters of graphs, included the results mentioned here, appears in [6].)

[^0]In this paper, we consider how large the poset boxicity can be for a graph on n points. The best possible upper bound for boxicity is $\left\lfloor\frac{1}{2} n\right\rfloor[2]$, with the extremal graphs characterized in [5]. The only graph achieving boxicity $\frac{1}{2} n$ is $K_{2, \ldots, 2}$, but the poset boxicity of this graph is always at most 4 . We will construct a family of graphs whose poset boxicity cannot be bounded by any constant, which we show by repeated application of Ramsey's Theorem. First, we use a special class of posets to show that the poset boxicity of a graph on n points is always at most $O(\log \log n)$.

2. The upper bound

Theorem 1. The poset boxicity of a graph on n vertices is at most $\mathrm{O}(\log \log n)$.
Proof. Given G on n vertices, we define a poset $p(G)$ of height 2. $P(G)$ has a maximal element a_{i} and a minimal element b_{i} for each vertex v_{i} in $G . P(G)$ has a middle element c_{e} for each edge e in G, and the relations are defined by $a_{i}>c_{e}$ and $b_{i}<c_{e}$ if and only if $i \in e$. For simplicity, we also have $a_{i}>b_{j}$ for all i, j. Clearly G is the intersection graph of the intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$ in $P(G)$; the intervals intersect if and only if G has the edge $v_{i} v_{j}$.

The dimension of $p(G)$ is at most twice the dimension of the poset Q induced by its middle and bottom levels, because any realizer L for Q can be extended to a realizer for P by taking two copies L_{1} and L_{2}, upside-down, replacing each appearance of b_{i} in L_{2} by a_{i}, adding $a_{1}, \ldots a_{n}$ at the top of each chain of L_{1}, and adding b_{1}, \ldots, b_{n} at the bottom of each chain of the modified L_{2}. Hence we consider Q. For any G, the resulting Q is a subposet of the poset induced by the sets of size 1 and 2 among the lattice of all subsets of an n-set. Hence its dimension is at most the dimension of that poset. Spencer [4] showed that the dimension of that poset is $O(\log \log n)$.

3. The lower bound

Theorem 2. For any integer t, there exists a graph whose poset boxicity exceeds t.
Proof. Suppose that every graph can be represented in a t-dimensional poset. Consider a graph G_{n} defined on the 2 -element subsets of $\{1, \ldots, n\}$ by creating an edge between $\{i, j\}$ and $\{j, k\}$ for each triple $i<j<k$. Let P be a poset of dimension at most t in which G has an interval representation, and let $I(i, j)$ be the interval of \dot{P} assigned to the vertex $\{i, j\}$ by the representation. Let $a(i, j)$ and $b(i, j)$ be the top and bottom elements of $I(i, j)$. For each triple $i<j<k$, choose an element $p(i, j, k) \in I(i, j) \cap I(j, k)$.

Now we define a 2 -coloring on the 5 -subsets of $\{1, \ldots, n\}$. Given a 5 -set $i_{1}<i_{2}<i_{3}<i_{4}<i_{5}$, note that $p\left(i_{1}, i_{3}, i_{5}\right)$ cannot belong to $I\left(i_{2}, i_{4}\right)$, since there is no edge from $\left\{i_{2}, i_{4}\right\}$ to $\left\{i_{1}, i_{3}\right\}$ or $\left\{i_{3}, i_{5}\right\}$ in G_{n}. Hence $p\left(i_{1}, i_{3}, i_{5}\right)$ is not greater than $b\left(i_{2}, i_{4}\right)$ or is not less than $a\left(i_{2}, i_{4}\right)$. Color the 5 -set "bottom" if $p\left(i_{1}, i_{3}, i_{5}\right)$ is not greater than $b\left(i_{2}, i_{4}\right)$; otherwise, color it "top". If n is sufficiently large, we can guarantee as large a set H as we desire all of whose 5 -sets get the same color. By symmetry, we may suppose this color is "bottom".

Now we t-color the 5 -sets of H. For each $\left\{i_{1}<i_{2}<i_{3}<i_{4}<i_{5}\right\}$ we know $p\left(i_{1}, i_{3}, i_{5}\right)$ is not greater than $b\left(i_{2}, i_{4}\right)$, so there is some extension L_{j} in the t-realizer for P such that $b\left(i_{2}, i_{4}\right)$ lies above $p\left(i_{1}, i_{3}, i_{5}\right)$ in L_{j}; give the 5 -set a color corresponding to such an extension. If H is sufficiently large, then it has some 6 -set $\left\{i_{1}<i_{2}<i_{3}<i_{4}<i_{5}<i_{6}\right\}$ whose 5 -sets all get the same color j. Applying the defining condition for color j to the 5 -sets $\left\{i_{1}<i_{2}<i_{3}<i_{4}<i_{5}\right\}$ and $\left\{i_{2}<i_{3}<i_{4}<i_{5}<i_{6}\right\} \quad$ yields $\quad b\left(i_{2}, i_{4}\right)>p\left(i_{1}, i_{3}, i_{5}\right) \geqslant b\left(i_{3}, i_{5}\right)>p\left(i_{2}, i_{4}, i_{6}\right) \geqslant$ $b\left(i_{2}, i_{4}\right)$ in L_{j}. This contradiction means that G_{n} cannot have an interval representation in a t-dimensional poset if n is sufficiently large.

Let $R_{s}(k, \ldots, k)$ denote the Ramsey number for t-coloring s-sets to force a set of size k whose s-sets all get the same color. We have shown that if $n>R_{5}(M, M)$, where $M=R_{5}(6, \ldots, 6)(t$ colors $)$, then the poset boxicity of G_{n}, a graph on $\binom{n}{2}$ vertices, exceeds t. This lower bound for worst-case poset boxicity of a graph on N vertices grows unimaginably slowly.

References

[1] J.E. Cohen, Interval graphs and food webs: a finding and a problem, RAND Corporation Document 17696-PR (1968).
[2] F.S. Roberts, On the boxicity and cubicity of a graph, in: W.T. Tutte, ed., Recent Progress in combinatorics (Academic Press, New York, 1969).
[3] E.R. Scheinerman, Intersection graphs and multiple intersection parameters of graphs, Ph.D. Thesis, Princeton Univ. (1984).
[4] J. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hungar. 22 (1971) 349-353.
[5] W.T. Trotter, A characterization of Roberts' inequality for boxicity, Discrete Math. 12 (1975) 165-172.
[6] D.B. West, Parameters of graphs and partial orders: Packing, covering, and representation, in: I. Rival, ed., Graph and Orders Proc. Symposium Banff (1984) (Reidel, Dordrecht, 1985) 267-350.

[^0]: * Research supported by NSF grant DMS 84-01281.
 ** Research supported by ONR grant N00014-85K0570 and by NSF grant DMS 85-04322.

