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In this issue, W.J. Walker introduces the lattice L(n, r) as the set of all possible results when 
n competitors are matched in a series of r races. A result is an r-term nondecreasing sequence 
of integers selected from {1, 2 . . . .  , n}. The dimension of L(n, r) is at most r since it is a 
subposet of R'. Walker conjectures that L(n, r) is in fact the intersection of r consistent linear 
extensions and verifies this conjecture when r <~ 2 as well as for the case (n, r) = (4, 3). In this 
note, we show that the general conjecture does not hold by proving that for every r ~ 3 and 
every t I> r, there exists an integer no so that if n/> no, then L(n, r) is not the intersection of t 
consistent linear extensions. 

In this note, we follow the notation and terminology of the article by Walker  
which appears in this issue [2]. We let L(n, r) denote the set of all r-term 
nondecreasing sequences with entries from {1, 2 , . . . ,  n}. These sequences are 
called results and represent the score sequences which arise when n competitors 
are matched in a series of r races. There is a natural partial order on L(n, r) 
defined by ( X l ,  X 2 ,  o • • , Xr) ~ (Yl, Y2, • • • , Yr) if and only if x; ~< y,- in R for all 
i = 1, 2 , . . . ,  r. With this ordering, the largest element in L(n, r) is the r-term 
vector (1, 1 , . . . ,  1) which corresponds to a first place finish in every race. 

Recall that the dimension of a finite poset P is the least s so that it is possible to 
assign to each x • P a vector (xl,  x2, .  • • ,  xs) of real numbers so that x ~< y in P if 
and only if xi <<- Yi in R for i = 1, 2 , . . .  ~, s. Equivalently, the dimension of P is the 
least s for which P is the intersection of s linear extensions. It is obvious that the 
dimension of a poset and its dual are the same, so the dimension of L(n, r) is at 
most r. We refer the reader to the survey article [1] for extensive background 
material  on the dimension of posets. 

For a result R • L(n, r), let S(R) be the multiset consisting of the entries of the 
vector R." In what follows, when we take the union of multisets, we mean  that 
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repetitions are to be counted. For example, if R = ( 1 ,  1, 2, 3, 3, 3), then 
S ( R ) =  {1, 1, 2, 3, 3, 3}, and {1, 1, 2, 3} U {1, 3, 3, 3} = {1, 1, 1 , 2 , 3 , 3 , 3 ,  3}. 

Following Walker, we define a linear extension M of L(n, r) to be consistent 
when there does not exist an integer p t> 2, a result R ~ L(n, pr) and two families 
{Ai: 1 <<- i <~p} and {Bi: 1 <~ i <<-p} of results from L(n, r) so that: 

(1)  A i > B i in M for i = 1, 2 , . . . ,  p, and 
(2) S(R)'-[..J {S(Ai): l <<-i <~p} =[,_J {S(B,): l <~i <~p}. 

Roughly speaking, a consistent linear extension is an ordering of L(n, r) which 
can arise if prize money is paid on the basis of the competitors' finishing positions 
in the series of races. 

Walker shows that L(n, r) is the intersection of the set of all consistent linear 
extensions, so we may define the consistent dimension of L(n, r) as the least t for 
which L(n, r) is the intersection of t consistent linear extensions. Walker shows 
that the consistent dimension of L(n, r) equals the dimension of L(n, r) when 
r <~ 2 and when (n, r) = (4, 3). The principal result here will be to show that in 
general, the consistent dimension of L(n, r) is  much larger than its dimension. 

Theorem.  For every r >>- 3 and every t >>- r, there exists an integer no (depending on 
r and t) so that if n >I no, then the consistent dimension of  L(n, r) is larger than t. 

Proof. We present the argument when t = 3. The extension to larger values of t is 
immediate. Suppose that L(n, 3) is the intersection of t linear extensions 
M1, M2, . . . ,  Mt. We show that if n is sufficiently large in comparison to t, then 
there is at least one a~e {1, 2 , . . . ,  t} for which M~ is not consistent. The 
argument uses Ramsey's theorem. 

Consider a 6-element subset {il < i2 < i3 < i4 < i5 < i6} of {1, 2 , . . . ,  n}. This 
subset determines a special pair of incomparable elements of L(n, 3), namely 
(i2, i3, i6) and (i1, i4, i5). It follows that we may choose some 0c e {1, 2 , . . . ,  t} so 
that (i2, i3, i6) > (i~, i4, i5) in Mo~. This choice function defines a mapping of the 
6-element subsets of {1, 2 , . . . ,  n} to be the t-element set {1, 2, . . . ,  t}. 

It follows from Ramsey's theorem that if n is sufficiently large in comparison to 
t, then there is an element a~ e {1, 2 , . . . ,  t} and a 10-element subset H = {ix < 
i2 < "  • • < i~0} of {1, 2 , . . . ,  n} so that all 6-element subsets of H are mapped to 
a~. In particular, this means that there is some M,, in which the special pairs of 
incomparable elements determined by the subsets 

and 

Sx = (ix < i2 < i3 < i4 < i5 < i6}, 

52 -- {i3 < i4 < i5 < i6 < i7 < is}, 

$3 = {i3 < i4 < i7 < is < i9 < iw} 

are in the following order in the linear extension M,,: 

(i2, i3, i6 )>( i l ,  i4, i5), 

(i4, is, i s )>( i3 ,  i6, i7), 
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and 
(i4, i7, i10) > (i3, i8, i9). 

Now we use the fact that  Mr is a l inear extension of L(n, 3) to conclude that  
the following statements  hold for M,~: 

A1 = (i~, i3, i6) > (i2, i3, i6) > (i~, i4, i5) = B1, 

32  = (i3, is, i8) > (i4, i5, i8) > (i3, i6, i7) = BE, 
and 

A3 = (ia, i7, i9) > (i4, i7, i10) > (i3, i8, i9) = n3.  

Taking multiset unions,  we observe that: 

{il, i3, i3, i4, i5, i6, i7, i8, i9} -- A~ U A 2 U A 3 = B1 U B 2 U B 3. 

This shows that  Mr  is not consistent.  With this observation, 
complete.  [] 

the proof is 
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