NOTE

A NOTE ON RANKING FUNCTIONS

V. RÖDL
Faculty of Physical Engineering and Nuclear Science, Czechoslovak Technical University, Praha, Czechoslovakia

W.T. TROTTER*
Department of Mathematics, Arizona State University, Tempe, AZ 85287, U.S.A.

Received 2 December 1986

Abstract

In this issue, W.J. Walker introduces the lattice $L(n, r)$ as the set of all possible results when n competitors are matched in a series of r races. A result is an r-term nondecreasing sequence of integers selected from $\{1,2, \ldots, n\}$. The dimension of $L(n, r)$ is at most r since it is a subposet of \boldsymbol{R}^{t}. Walker conjectures that $L(n, r)$ is in fact the intersection of r consistent linear extensions and verifies this conjecture when $r \leqslant 2$ as well as for the case $(n, r)=(4,3)$. In this note, we show that the general conjecture does not hold by proving that for every $r \geqslant 3$ and every $t \geqslant r$, there exists an integer n_{0} so that if $n \geqslant n_{0}$, then $L(n, r)$ is not the intersection of t consistent linear extensions.

In this note, we follow the notation and terminology of the article by Walker which appears in this issue [2]. We let $L(n, r)$ denote the set of all r-term nondecreasing sequences with entries from $\{1,2, \ldots, n\}$. These sequences are called results and represent the score sequences which arise when n competitors are matched in a series of r races. There is a natural partial order on $L(n, r)$ defined by $\left(x_{1}, x_{2}, \ldots, x_{r}\right) \geqslant\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ if and only if $x_{i} \leqslant y_{i}$ in \boldsymbol{R} for all $i=1,2, \ldots, r$. With this ordering, the largest element in $L(n, r)$ is the r-term vector $(1,1, \ldots, 1)$ which corresponds to a first place finish in every race.

Recall that the dimension of a finite poset P is the least s so that it is possible to assign to each $x \in P$ a vector $\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ of real numbers so that $x \leqslant y$ in P if and only if $x_{i} \leqslant y_{i}$ in \boldsymbol{R} for $i=1,2, \ldots, s$. Equivalently, the dimension of P is the least s for which P is the intersection of s linear extensions. It is obvious that the dimension of a poset and its dual are the same, so the dimension of $L(n, r)$ is at most r. We refer the reader to the survey article [1] for extensive background material on the dimension of posets.

For a result $R \in L(n, r)$, let $S(R)$ be the multiset consisting of the entries of the vector R. In what follows, when we take the union of multisets, we mean that

[^0]repetitions are to be counted. For example, if $R=(1,1,2,3,3,3)$, then $S(R)=\{1,1,2,3,3,3\}$, and $\{1,1,2,3\} \cup\{1,3,3,3\}=\{1,1,1,2,3,3,3,3\}$.

Following Walker, we define a linear extension M of $L(n, r)$ to be consistent when there does not exist an integer $p \geqslant 2$, a result $R \in L(n, p r)$ and two families $\left\{A_{i}: 1 \leqslant i \leqslant p\right\}$ and $\left\{B_{i}: 1 \leqslant i \leqslant p\right\}$ of results from $L(n, r)$ so that:
(1) $A_{i}>B_{i}$ in M for $i=1,2, \ldots, p$, and
(2) $S(R)=\bigcup\left\{S\left(A_{i}\right): 1 \leqslant i \leqslant p\right\}=\bigcup\left\{S\left(B_{i}\right): 1 \leqslant i \leqslant p\right\}$.

Roughly speaking, a consistent linear extension is an ordering of $L(n, r)$ which can arise if prize money is paid on the basis of the competitors' finishing positions in the series of races.

Walker shows that $L(n, r)$ is the intersection of the set of all consistent linear extensions, so we may define the consistent dimension of $L(n, r)$ as the least t for which $L(n, r)$ is the intersection of t consistent linear extensions. Walker shows that the consistent dimension of $L(n, r)$ equals the dimension of $L(n, r)$ when $r \leqslant 2$ and when $(n, r)=(4,3)$. The principal result here will be to show that in general, the consistent dimension of $L(n, r)$ is much larger than its dimension.

Theorem. For every $r \geqslant 3$ and every $t \geqslant r$, there exists an integer n_{0} (depending on r and t) so that if $n \geqslant n_{0}$, then the consistent dimension of $L(n, r)$ is larger than t.

Proof. We present the argument when $t=3$. The extension to larger values of t is immediate. Suppose that $L(n, 3)$ is the intersection of t linear extensions $M_{1}, M_{2}, \ldots, M_{t}$. We show that if n is sufficiently large in comparison to t, then there is at least one $\alpha \in\{1,2, \ldots, t\}$ for which M_{α} is not consistent. The argument uses Ramsey's theorem.

Consider a 6 -element subset $\left\{i_{1}<i_{2}<i_{3}<i_{4}<i_{5}<i_{6}\right\}$ of $\{1,2, \ldots, n\}$. This subset determines a special pair of incomparable elements of $L(n, 3)$, namely $\left(i_{2}, i_{3}, i_{6}\right)$ and $\left(i_{1}, i_{4}, i_{5}\right)$. It follows that we may choose some $\alpha \in\{1,2, \ldots, t\}$ so that $\left(i_{2}, i_{3}, i_{6}\right)>\left(i_{1}, i_{4}, i_{5}\right)$ in M_{α}. This choice function defines a mapping of the 6 -element subsets of $\{1,2, \ldots, n\}$ to be the t-element set $\{1,2, \ldots, t\}$.

It follows from Ramsey's theorem that if n is sufficiently large in comparison to t, then there is an element $\alpha \in\{1,2, \ldots, t\}$ and a 10 -element subset $H=\left\{i_{1}<\right.$ $\left.i_{2}<\cdots<i_{10}\right\}$ of $\{1,2, \ldots, n\}$ so that all 6-element subsets of H are mapped to α. In particular, this means that there is some M_{α} in which the special pairs of incomparable elements determined by the subsets

$$
\begin{aligned}
& S_{1}=\left\{i_{1}<i_{2}<i_{3}<i_{4}<i_{5}<i_{6}\right\} \\
& S_{2}=\left\{i_{3}<i_{4}<i_{5}<i_{6}<i_{7}<i_{8}\right\}
\end{aligned}
$$

and

$$
S_{3}=\left\{i_{3}<i_{4}<i_{7}<i_{8}<i_{9}<i_{10}\right\}
$$

are in the following order in the linear extension M_{α} :

$$
\begin{aligned}
& \left(i_{2}, i_{3}, i_{6}\right)>\left(i_{1}, i_{4}, i_{5}\right), \\
& \left(i_{4}, i_{5}, i_{8}\right)>\left(i_{3}, i_{6}, i_{7}\right),
\end{aligned}
$$

and

$$
\left(i_{4}, i_{7}, i_{10}\right)>\left(i_{3}, i_{8}, i_{9}\right)
$$

Now we use the fact that M_{α} is a linear extension of $L(n, 3)$ to conclude that the following statements hold for M_{α} :

$$
\begin{aligned}
& A_{1}=\left(i_{1}, i_{3}, i_{6}\right)>\left(i_{2}, i_{3}, i_{6}\right)>\left(i_{1}, i_{4}, i_{5}\right)=B_{1}, \\
& A_{2}=\left(i_{3}, i_{5}, i_{8}\right)>\left(i_{4}, i_{5}, i_{8}\right)>\left(i_{3}, i_{6}, i_{7}\right)=B_{2},
\end{aligned}
$$

and

$$
A_{3}=\left(i_{4}, i_{7}, i_{9}\right)>\left(i_{4}, i_{7}, i_{10}\right)>\left(i_{3}, i_{8}, i_{9}\right)=B_{3} .
$$

Taking multiset unions, we observe that:

$$
\left\{i_{1}, i_{3}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}, i_{8}, i_{9}\right\}=A_{1} \cup A_{2} \cup A_{3}=B_{1} \cup B_{2} \cup B_{3} .
$$

This shows that M_{α} is not consistent. With this observation, the proof is complete.

References

[1] D. Kelly and W.T. Trotter, Dimension theory for ordered sets, in: I. Rival, ed., Ordered Sets, (Reidel, Dordrecht, 1982) 171-211.
[2] W.J. Walker, Ranking functions and axioms for linear orders, Discrete Math. 67 (1987) 299-306.

[^0]: * Research Supported by the National Science Foundation under grant DMS-8401281.

