LENDS Service

iLiad TN: 256077 NN AAANTAN I

Georgia Institute of Technology

Journal Title: Applications of Discrete
Mathemtics

Volume:

Issue:
Month/Year: 1988
Pages: 45-58

Article Author: Trotter

Article Title: Interval graphs, interval orders
and their generalizations

Call #: QUA76.9 M35 C65 1986

Location: 3E - 8/28

William Trotter (wt48)
School of Mathematics
Georgia Tech

Atlanta, GA 30332

Faculty
Math

COPYRIGHT NOTICE:
This material may be protected by copyright law (Title 17 U.S. Code).



ne route(s) in
what discount
eral different
been attempted
successful to
1 decisions by
. demographic
5s, pleasure),
This approach
each decision
sults can be
dominated the

n the airline
xamples above
awve a favored
y. The future
looks bright:
>~ OR people to

Many of the
ork brought to
e OR analysts
ased levels of
roups promises
prominent in

ind, capacity
aphed, Flight
Institute of

agement = an
mimeographed,

: a heuristic
uting systems,

FORD, Concepts
1 Conservation

~651

troduction To
ewood Cliffs,

> analysis of
cM, 27, 1980,

Interval Graphs, Interval Orders, and Their
Generalizations
W. T. TROTTER, JR*

Abstract. We survey some recent results on interval
graphs and interval orders concentrating on algorithmic
questions and generalizations involving multiple
intervals, intervals in higher dimensions, intervals with
tolerances, and other geometric figures. We include some
open problems and discuss directions for future

research.

1. Imtroduction. Interval graphs and their generaliza-
tions have been investigated intensively by researchers in
the mathematical, social and biological sciences for more
than 25 years. Understandably, a good fraction of this
interest stems from the wide range of applications of
interval graphs. On the other hand, the study of interval
graphs has yielded a substantial body of mathematical
theory of independent interest. To gain some appreciation
for both aspects of the subject and for details on its
history, we encourage the reader to consult the books
[16], [27] by Peter Fishburn and Martin Golumbic and the
special volume [28] of Discrete Mathematics edited by
Golumbic. These references also provide an extensive
bibliography of papers in this area.

The purpose of this article is to survey recent
research on interval graphs and interval orders concen-
trating on algorithmic questions and generalizations
involving multiple intervals, higher dimensional analogues,
and other geometric figures. Our goal is to demonstrate
that interval graphs and their generalizations continue to
provide interesting results even as new problems arise.

*Department of Mathematics, Arizona State University,
Tempe, AZ 85287 . Research supported in part by the National

Science Foundation.
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46 TROTTER

In view of our earlier remarks about the scope of the
research conducted on interval graphs, we confess that this
article cannot inceclude a full discussion of some interesting
and important work. To those authors whose work is not
mentioned, we apologize in advance.

In the interests of brevity, we provide in the article
only the basic definitions and terminology necessary to
understand the results and problems discussed. Additional
background material is given in the books [16], [27], [61],
the papers [12], [14], [24], [25], [261, [341, [36] [37],
[49] [78] [79] [81] and in some recent theses [6], [43],
(471, [551, [58], [64], [73] and [75].

Let F = {IX:x € V} be an indexed family of nondegener-

ate elosed1 intervals of the real line R. It is natural to
associate with the family F a graph G(F) and a partially
ordered set P(F) each having the index set V as point set.
In the graph G(F), the edges are distinet pairs xy from V
for which the intervals IX and Iy have nonenpty

intersection. In the partially ordered set P(F), the order-
ing is defined by x < y when Ix and Iy are disjoint, and

the right end point of IX is less than the left end point of
Iy. The graph G(F) is called an interval graph and the

partially ordered set P(F) is called an interval o;der.

2. Algorithmic Questionms. Recall that the chromatic number
of a graph is at least as large as the maximum clique size.
Interval graphs enjoy the special property that these two
parameters are always equal. This phenomenon can be easily
established by noting that interval graphs are rigid circuit
graphs {[11], i.e.,they do not contain induced cycles on four
or more vertices. In fact, interval graphs possess addi-
tional properties which are very useful in designing
algorithms for coloring. To be more precise, suppose

G = (V,E) is an interval graph. Choose a representation

F = {Ix: xeV} with all end points distinet. For each xeV,

let I = l[a(x), b(x)l. Label the vertices v

so that a(v

17 Voseees Vo
1 2)<.e.<a(vn)° If the first-fit (or

greedy) algorithm is then used to color the vertices of G
using this ordering of the vertices, then an optimum color-
ing is acheived. By this we mean that if the maximum clique
size of G is m, then exactly m different colors will be used
on the vertices of G.

A graph G 1s perfect if every induced subgraph of G has
chromatic number equal to its maximum clique size. of
course, interval graphs are perfect. The fact that the

) < alv
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ordering by left end points allows the first-fit algorithm
to produce an optimum coloring is an even stronger
statement. It shows that interval graphs are perfectly
orderable as defined by Chvatal [5], i.e. there is an

ordering of the vertices on which first-fit is optimal on

the graph as well as each of its induced subgraphs. Three
algorithmic questions are immediate.
Ql: Suppose the vertices of an interval graph are labelled

in some arbitrary fashion (not necessarily by left end
points) as Vi Vpseees Voo The first-fit algorithm is then

used to color the vertices in this order. If the maximum
clique size of G is m, how many colors are used (The answer
does not depend on n)?

QZ: How may colors are required to color an interval graph

with maximum clique size m in an on-line fashion? By
"on-line," we mean that the vertices are received one at a
time. When the new vertex arrives, all adjacencies to
previous vertices are given. Based on this information, a
color must then be assigned to this vertex and this assign-
ment is permanent. Only then is the next vertex given.

Q.,: For which graphs is there a bounded number of permuta-

tions of the vertices so that for every induced subgraph,
the first fit algorithm provides an optimum coloring when
applied to one of the permutations? Of course, this
question also makes sense if we replace "bounded" by "small"
and replace "optimum" by "nearly optimum.

The second question was answered completely by
Kierstead and Trotter [45]. They showed that there exists
an on-line algorithm which will color an interval graph with
maximum clique size m using 3m-2 colors. They also showed
that this result was sharp. The optimum algorithm they
produced is polynomial in the number of vertices; however,
this algorithm is not first-fit.

It is surprising the Ql remains open. A. Gyarfas and

J. Lehel [35] have shown that the first-fit algorithm will
not use more than 3mlogm colors, but no one has been able
to show that the correct answer is not linear in m.
Perhaps this is another relatively innocent looking problem
with solution mf(m) where f(m) is a slow growing function
in the spirit of the iterated log or inverse Ackerman
funections. Question 3 is wide open, although the merit of
the answer will no doubt depend on what implications are
obtained.

The concept of a coloring can be generalized in many
ways. In [56], Opsut and Roberts discuss the reduction
of some of these problems to linear programming problems.
Of course, this reduction to a polynomial algorithm is only
valid when the underlying graph satisfies some special
properties, for instance, being an interval graph.

3., Multiple Intervals. Define the interval number of a

graph G, denoted i1(G), as the least t for wich G is the
intersection graph of a family of sets with each set the
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union of t intervals of the real line. An interval graph
has interval number 1, while the interval number of a cycle
of 4 or more vertices is 2.

In [80] Trotter and Harary showed that i(Km n) =
2

[(mn+l)/(m+n)] and conjectured that if G is any graph on n
vertices, then 1i(G) < Rn+1)/4]. This conjecture was
settled in the affirmative by J. Griggs [32] (see also [1]).
The inequality is best possible as 1is evidenced by the com-
plete bipartite graph with balanced sides. For multipartite

graphs, Hopkins and Trotter [40] showed that if nlzpzz...inp

then 1(K ) < i(Kn n n ) ik, )+ 1. Sub-
1272 1’ 2;°°°1p 1:2

sequently, Hopkins, Trotter and West [41l] showed that

1(Kn1’n2) = 1(Knl,n2,.o., ) unless(nl,n2)~ (7,5) or

n, = n% - D, - l. In these two cases, the upper bound may

be obtained.

In [33], Griggs and West showed that if the maximum
degree in G is d, then 1(G) < [(a+1)/2]. They also showed
that this inequality is tight if G is regular and triangle-
free. They also showed that there exists an absolute
constant ¢ so the i(G) < c¢4€ where e is the number of edges
in G. The best possible value of ¢ is not known. .

In [69], Scheinerman and West showed that the interval
number of a planar graph is at most 3. This result is
easily seen to be best possible. Scheinerman [67] has shown
that there exists an absolute constant ¢ for which any graph
of genus g has interval number at most c7fg. The complete
bipartite graphs show that this result is best possible up
to the value of ¢. Perhaps it is possible to obtain an
exact answer in the spirit of the Heawood map coloring
formula.

To the best of my knowledge, no one has investigated
algorithmic questions for graphs with bounded interval
number. Even the special case i1(G) < 2 would be challeng-
ing since these graphs need not be perfect. Since forests
have interval number at most 2, it will however be necessary
to provide additional restictions on the class if we seek
an algorithm for coloring graphs with a number of colors
bounded by a function of the maximum clique size. Also no
one has investigated generalizations of interval orders
involving multiple intervals. Here it is not clear what the
appropriate definition should be.

4. Higher Dimensional Analogues. F. Roberts [59] defined
the boxicity of a graph G, denoted Box (G), as the least t

for which G is the intersection of the boxes in Rt (A box is
the cartesian product of t nondegenerate closed intervals in
R). Roberts showed that the boxicity of a graph on n
vertices does not exceed |[n/2] and Trotter [77] and
Witsenhausen [90] completely ‘characterized those graphs for
which the inequality is tight. One such example is the

complement of
shown that the
In fact,he she
intersect onlj
bounds on box:
ments of inte:
such bounds b
of linear ord
an idea intro

Feinberg
G, here denots
a mapping whi
Ax(l), AX(2),

Xy € E(G) exa

Feinberg gave
complete mult:
although if G
[15], then Bo:
whether the m:
on n vertices
dimension are
dimensional p:

It is a
(131, [71] an
absolute cons
vertices have
dimension all
arguments are
ment of a the

The conc
sets., Bogart
of a partiall,
for which the
x € P a sequ

degenerate cl
only if bx(j)

[21, [3] also
interval dime:
cardinality a:
Scheiner
graphs involv
Recall that
which P is th
is a poset an
= {xeP: a < x
G, here denot
intersection
graph with po
The conc
stood at this
there exists
boxicity of a
result is pro



rval graph
r of a cycle

} =

m,n
graph on n
re was

ee also [11]).
by the com-
multipartite

) 2Rp>. .. 2n

1. Sub-

d that
5) or

r bound may

e maximum
also showed
nd triangle-
solute

ber of edges
n.

the interval
sult is

67] has shown
ich any graph
e complete
possible up
btain an
oloring

vestigated
nterval

e challeng-
nce forests
be necessary
if we seek

of colors

€. Also no

1 orders

lear what the

[59] defined
the least t

Rt (A box is

intervals in
h on n

and
e graphs for
e is the

INTERVAL GRAPHS, ORDERS, AND GENERALIZATIONS 49

complement of a matching. Recently, C. Thomassen [76] has
shown that the boxicity of a planar graph does not exceed 3.
In fact,he showed that intersecting boxes may be required to
intersect only along a face. Cozzens and Roberts [8] obtained
bounds on boxicity by studying edge coverings of G by comple-
ments of interval graphs. Cozzens and Roberts [9] obtained
such bounds by relating the boxicity to the notion of a set
of linear orders which forms a k-suitable of arrangements,
an idea introduced by Joel Spencer [74].

Feinberg [15] defined the circular dimension of a graph
G, here denoted ¢d(G), as the least t for which there exists
a mapping which assigns to each vertex x € V(G) a sequence
Ax(l), Ax(z)’°"’Ax(t) of arcs of the unit circle so that

xy € E(G) exactly when Ax(i)fj Ay(i) #¢ for 1=1,2,...,%.

Feinberg gave a formula for the circular dimension of a
complete multipartite graph. Evidently, cd(G) < Box(G)
although if G is the complement of a matching of m edges
[15], then Box(G) = m and cd(G) = 1. It is not known

whether the maximum value of the circular dimension of a graph
on n vertices is o(n). Other recent results about circular
dimension are developed as part of a general theory of
dimensional properties of graphs by Cozzens and Roberts [10]

It is a relatively straightforward calculation (see
[13], [71] and [77] for example) to show that there exists an
absolute constant ¢ so that almost all labelled graphs on n
vertices have interval number, boxicity, and cicular
dimension all exceeding cn/logn. More sophisticated counting
arguments are used by Scheinerman [65], [66] in his develop-
ment of a theory of random interval graphs.

The concept of boxicity extends to partially ordered
sets. Bogart and Trotter [3] defined the interval dimension
of a partially ordered set P, denoted Idim(P), as the least t
for which there exists a mapping assigning to each point
x € P a sequence [ax(j), bX(j)], j=1,2,+0., 1 of non-
degenerate closed intervals of R so that x <y in P if and
only if bx(j)<ay(j) for j=1,2,..., t. Bogart and Trotter

[2], [3] also produced a number of inequalities for the
interval dimension of a partially ordered set in terms of the
cardinality and the width of certain subposets.

Scheinerman introduced a generalization of interval
graphs involving intervals in posets of higher dimension.
Recall that the dimension of a poset P is the least t for
which P is the intersection of t linear extensions. When P
is a poset and a < b in P, define the interval [a,b] by [a,b]
= {xeP: a < x < b in P} Then define the poset boxicity of
G, here denoted pBox(G), as the least t so that G is the
intersection graph of intervals in a poset of dimension t. A
graph with poset boxicity 1 is an interval graph.

The concept of poset boxicity is not very well under-
stood at this time. Trotter and West [82] have shown that
there exists an absolute constant c¢c so that the poset
boxicity of a graph on n vertices is at most cloglogn. This
result is probably far from best possible. In fact,
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it is surprisingly difficulty to show that there exist
graphs with arbitarily large poset boxicity [46].

Let G = (V,E) be an arbitrary graph. Define the split
of G, denoted split(G), as the poset of height 1 having V as
minimal elements and E as maximal elements and ordering
x<e when vertex x is an end point of edge e. W. Schnyder
[70] proved the following striking result. A graph G is
planar if and only if the dimension of split(G) is at most
3. It would be quite interesting to develop characteriza-
tions of planar graphs strengthening the previously mentioned
results of Scheinerman, and West [69] and Thomassen [76].

Associated with a digraph D is a related graph G called
a competition graph. In G, two vertices x and y are adjacent
when there is a third vertex z for which D contains directed
edges from x to z and from y to z. An interesting open
problem is to characterize diagraphs whose competition
graphs are interval graphs. There is a great deal of
empirical evidence that real world digraphs arising from
ecological food webs have this property. For every G, there
is a minimum number k(G) of isolated vertices whose addition
to G yields a competition graph. However, Opsut [54] showed
that the determination of k(G) is NP complete. The theses
[55], [58] by Opsut and Raychaudhuri also contain lists of
open problems involving competition graphs, set coloring,
powers of graphs and other topics. i

5. Other Geometrie Figures. For graphs, the most natural
generalization of interval graphs to other geometric figures
(other than cartesian products) is to consider spheres
(discs, balls) in Euclidean space. Define the sphericity of
G, here denoted sph(G), at the least t for which G is the
intersection graph of a family of spheres in Euclidean

t-dimensional space Rte We call the parameter unit
sphericity if we require each sphere to have radius 1.

In a series of papers [50], [51], and [52], H. Maehara
and P. Fishburn [18] have investigated the unit sphericity of
a graph and the relationship between this parameter and other
graph parameters., As discussed in [63], there are a number
of interesting applications of graphs with sphericity 1. For
graphs, other natural variations include line segments or
strings in the plane [46], chords of a circle (see Chapter 11
of [27]), arcs on a circle [83], [84], [85], [86] cubes in
n-space [59], boundaries of rectangles [75], and convex
bodies in the plane [38].

For posets, there are several natural variations.

Define the spherical dimension of a poset P, denoted by
sph dim(P), as the least t for which there exists a mapping

which assigns to each xeP a sphere S(x) in Rt so that x<y in

P if and only if S{x) 1is a subset of S(y). Note that this
concept is actually a generalization of the notion of
dimension. In particular sph dim (P) < 1 exactly when
dim(P) < 2.

The case where sph dim(P) < 2 is particularly interest-
ing. These posets are called circle orders, although we
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should really call them disc orders. Fishburn [17] has shown
that every interval order is a circle order. Recently,
several researchers have been trying to determine whether
every 3-dimensional poset is a circle order. In the

positive direction, Scheinerman and Weirman [68] have shown
that if P is any finite 3-dimensional poset and p > 3, then
there exist a mapping which assigns to each x p a convex
region SX in the plane so that each Sx is a regular p-gon

(and the bottom side of SX is horizontal) with x <y in P if
and only if SX is a subset of Sye On the other hand, these

same authors have shown that the countably infinite poset 73
is not a circle order. These results almost seem to
contradict each other.

In another direction, Fishburn and Trotter [23] con-
sider angle orders. These are posets which arise from
considering angular regions in the plane ordered by inclu-
sion. They showed that every poset P satisfying dim(P) < 4
is an angle order. They also conjectured that there exists a
poset P with dim(P) = 5 which is not an angle order. This
conjecture has just been settled in the affirmative by
R. Jamison [42].

Every interval order is also an angle order [15]. There
is a natural notion of angle dimension for posets, and it is
probably the case that for every number k, there exists a
poset P and a point x e P for which the angle dimension of
P exceeds the angle dimension of P- x by more than k.

Given a collection C of real valued (piecewise linear)
functions defined on the unit interval [0,1], define a
partial order on C by f < g when f(x) < g(x) for all x.

As observed in [29], every partial order arises in this
manner. In particular, the 2-dimensional posets result from
collections of linear functions. For each distinet pair

f, g € C, let X(f,g) = x£[0,11:f(x) = g(x) |. Then let
X(C) be the maximum of X(f,g) taken over all distinet pairs.
Finally, define the crossing number of a poset P, denoted
X(P), as the minimum value of X(C) where C is a representa-
tion of P. J. Sidney, S. Sidney, and J. Urrutia [72] proved
that X(P) < dim(P) - 1 and that this inequality is best
possible. The techniques in [72] and Urrutia's paper [87]
can be used to provide a relatively simple proof that there
exist 5-dimensional posets which are not angle orders.

6. Tolerances and Thresholds.

In [21], Golumbic, Monma, and Trotter introduced the
concept of a tolerance graph. These graphs arise from an
indexed family F = {I_:x €7V } of intervals and a set

{tx:x e V} of nonnegative real numbers called tolerances.

From these families, we determine a graph whose vertex set
is V by making xy an edge when the length of the overlap of
Ix and Iy is at least as large as the minimum of the
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tolerances tx and ty. Using |Il to denote the length of the

interval I, we can write symbolically that xy € E(G) exactly
when lIxf\Iy > min {tx,ty }

In [30], it is shown that every interval graph is a
tolerance graph. So are permutation graphs. It is also
shown that tolerance graphs are perfect. This is
accomplished by showing that the complement of a tolerance
graph is perfectly orderable. It is not known how difficult
it is to recognize tolerance graphs and the problem of
providing a forbidden subgraph characterization appears very
difficult.

In another direction Monma, Reed, Saks and Trotter
[53] have investigated generalized threshold graphs. The
graphs arise from two families {wx: xeV}, {tX: xeV } of

real numbers with the rule xyeE(G) <=> Wy Wy > min{tx,tf}.

They show that the complement of a generalized threshold
graph is a tolerance graph. However, they also provide a
Polynomial time algorithm for recognizing generalized
threshold graphs.

The general notions of tolerance and threshold as well
as other more subtle rules for adjacency appear to be ripe
areas for future investigation. The appropriate definitions
will (and should) be motivated by considering physdical
models., However, we do not know of appropriate definitions
for partial orders with tolerances.

7. Restriction om Lemgths. The interval count [46] of an
interval graph G, denoted here ic(G), is the least t for

which G has a representation using intervals of exactly t
different lengths. Interval graphs with ic(G) = 1 are

called unit interval graphs. These graphs have received a
great amount of attention. For example Roberts [60] showed
that an interval graph has ic(G) = 1 if and only if it does

not contain K . On the other hand, it is easy to see that

1>
for each k>2, tgere are infinitely many forbidden subgraphs
for the class of interval graphs with 1.6) < ko In [47],

an example is given where the removal of a vertex can
decrease the interval count of a graph by 2. Certainly,
the removal of a vertex can decrease the interval count by
an arbitrarily large amount, but no one has yet found the
proof.

Several years ago, I conjectured that if 1 < r < s < %
and if G was any interval graph with iC(G) = 2 having two

representations - one using only intervals of length 1 and r
and another using only intervals of length 1 and t then G
also had a representation using only intervals of length 1
and s. P. Fishburn [19], [20] disproved this conjecture.

In [14], Fishburn and Graham investigate the problem of
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characterizing interval graphs having representations in
which all intervals have lengths from the interval [1,r].
They show that if r is a rational number, then the number of
forbidden subgraphs is bounded and is a unique graph when r
is an integer. In his thesis [31], Greenough investigated
the minimum positive integer r(P) so that an interval order
P could be represented using only intervals with integer end
points from the first r(P) positive integers. Greenough
also gave simple formulas for the number of unlabelled
interval orders with a given value of r(P). However, to my
knowledge Greenough's interesting ideas have not received
further attention. In a slightly different direction it
would be nice to extend Hanlon's fundamental work [39] on
counting interval graphs to related structures. Even a
parallel result for circular arc graphs would be an
important step.

Note Added in Proof: Since this paper was prepared, I have
learned of some additional references for the on-line
interval graph coloring problems discussed in Section 2.

At the 1973 British Conference, D. R. Woodall posed question
Ql using slightly different terminology. In his JCT (A) 21

(1976) 222-229 paper, Witsenhausen showed that the first fit
algorithm may use (4-g£)m colors on an interval graph with
maximum clique size m. The same problem has been
investigated by M. Chrobak and M. Shusarek who indicate in a
preprint "On Some Packing Problems Related to Dynamiec
Storage Allocation" that they can improve this lower bound
to 44m/10. Apparently, the dynamic storage problems
associated with this problem were first investigated by

J. M. Robson in J. ACM 18 (1971) 416-423.

Second Note: H. Kierstead has solved gquestion Q1 by

showing that the first fit algorithm will color an interval
graph of maximum clique size m in cm colors where ¢ is an
absolute constant. Kierstead's argument yields the value c
= 40 and with additional work he can improve this to ¢ =
26. The best possible value of ¢ remains unknown.
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