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ABSTRACT 

In this paper, we introduce a class of graphs that generalize threshold 
graphs by introducing threshold tolerances. Several characterizations of 
these graphs are presented, one of which leads to a polynomial-time 
recognition algorithm. It is also shown that the complements of these 
graphs contain interval graphs and threshold graphs, and are contained in 
the subclass of chordal graphs called strongly chordal graphs, and in the 
class of interval tolerance graphs. 

1. INTRODUCTION 

An undirected graph G = ( V , E )  is called a threshold tolerance graph if it is 
possible to associate weights and tolerances with each vertex of G so that two 
vertices are adjacent exactly when the sum of their weights exceeds either of 
their tolerances. More formally, there are weights w, and tolerances t ,  for each 
u E V so that 

q E E (=> w, + w), 2 min(t,, t Y )  . (*I 

If we insist that all tolerances be equal, we obtain the class of threshold graphs 
[4]; see also [12; 13, chap. 10; 17; 211. It is easy to see that we may require that 
all weights and tolerances are positive, and that strict inequality holds in (*I. 

Threshold tolerance graphs are interesting because they generalize threshold 
graphs. The complements of threshold tolerance graphs, which we call coTT 
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graphs, are also interesting. This class includes not only all threshold graphs 
(since the complement of a threshold graph is a threshold graph) but is also re- 
lated to other well-studied classes of graphs, as shown in Theorem 1.1 below. 
To prove this theorem we will need the following alternate definition of coTT 
graphs. A graph G = (V,E)  is a c o n  graph if there are numbers a,  and b, for 
every u E V so that 

xy E E (=) a,, 5 b,, and a, 5 b,. 

To see that these are precisely the complements of threshold tolerance graphs, 
set a, = w, and b, = t, - w,. As before, we may take all of these numbers to 
be positive. 

A graph G = ( V , E )  is called an inrerval graph [2;9; 11; 13, chap. 8; 181 if 
there are closed intervals I ,  = [L,,R,] of the real line for each u E V so that 
two vertices are adjacent exactly when their intervals intersect, that is, 

A graph G = (V, E )  is called an interval tolerance graph [14, 151 if there are 
intervals I ,  = [L,,R,] and tolerances 7, for each u E V so that 

xy E E (=) ( I ,  n I , , (  2 min(T,,Ty) 

where (ZI is the length of interval I .  A graph G = ( V , E )  is called a chordal 
graph [3,6,9,10,16,18,22,23] if it contains no induced chordless cycle C,  of 
length n 2 4. We let P,, denote a path on n vertices and K ,  denote the complete 
graph on n vertices. 

Theorem 1.1. 

(a) Every threshold graph is a coTT graph. 
(b) Every interval graph is a coTT graph. 
(c) Every coTT graph is an interval tolerance graph. 

Proof. Let G = (V, E )  be a threshold graph with representation by weights 
w, for every u E V and threshold t .  Define a,  = -w, and b, = w, - t to ob- 
tain a coTT representation for G since w, + wy 2 t if and only if a, 5 by and 
a, 5 b,. [Note that (b) =) (a )  since every threshold graph is an interval graph.] 

Let G = ( V , E )  be an interval graph with representation by intervals I ,  = 
[L,,R,] for every u E V. Define a, = L, and b, = R, to obtain a coTT repre- 
sentation for G since I ,  f l  I ,  # 0 if and only if a, 5 b, and a,, 5 b,. 

Let G = (V, E )  be a coTT graph with representation by a, and b, for every 
u E V. As stated previously, we may take all values to be positive. Define I,, = 
[L,, R,] = [a,, a, + b,] and 7, = a, to obtain an interval tolerance representa- 
tion for G since / I ,  fl I ,  I h min(.r,, 7,) if and only if a, 5 by and a,  5 b,. I 
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The example graphs in Figure 1 show that the containments in Theorem 1 . 1  
are all strict. 

In section 2 ,  we obtain a characterization of coTT graphs. We also show that 
coTT graphs are contained in the subclass of chordal graphs called strongly 
chordal graphs [8] (also called sun-free [5] graphs). In section 3,  we present al- 
ternate characterizations of c o n  graphs, one of which leads to a polynomial- 
time algorithm for recognizing coTT graphs. Concluding remarks and open 
problems are presented in section 4. 

2. CHARACTERIZATION 

Before presenting the characterizations of coTT graphs, we first make a few 
definitions. We say that x sees y in G = (V, E) if xy E E;  otherwise, we say 
that x misses y. An independent set is a set of vertices where each vertex misses 
every other. A clique is a set of vertices where each vertex sees every other. 

The neighborhood N(u) of a vertex u in G = (V, E) is given by the set of 
vertices which u sees. The closed neighborhood i?(u) of u is given by u to- 
gether with its neighborhood. A vertex u in G is called simplicial if N ( x )  is a 
clique in G. Two vertices x and y in G are compatible if f i ( x )  C i?(y) or vice 
versa. A vertex u in G is simple if the vertices in N(u) are pairwise compatible. 
We note that a simple vertex is simplicial. 

A graph G is called strongly chordal [8] if every induced subgraph has a 
simple vertex. A similar characterization holds for chordal graphs. 

62 

( b )  

FIGURE 1. Example graphs. (a) GI is c o n  but not interval or threshold. (b) G2 is 
interval but not con .  
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Theorem 2.1 [6,18]. 
graph of G has a simplicial vertex. 

A graph G is chordal if and only if every induced sub- 
I 

Chordal graphs were originally defined in terms of forbidden subgraphs, i.e.,  
no C, for n 2 4. Farber [8] obtains a forbidden subgraph characterization for 
strongly chordal graphs. A trampoline is a graph G = (V. E )  on 2k vertices for 
some k 2 3 whose vertices can be partitioned into W = {wz,, w2, . . . , wk} and 
U = { u ~ ,  u 2 ,  . . . , u k }  so that W is independent, U forms a clique, and w, is ad- 
jacent to uj if and only if i = j or i = j + l(mod k). Figure l(b) is a trampo- 
line with k = 3 .  

Theorem 2.2 [8]. 
tains no induced trampoline. I 

A chordal graph G is strongly chordal if and only if G con- 

In order to show that all coTT graphs are strongly chordal, we will need to 
characterize both classes in terms of special types of orders on the vertices. We 
will use the symbol < to denote a partial order on the vertices. We say that x 
precedes y in the order if x < y ;  in this case we also say that y follows x in the 
order. A vertex x that has no other vertex preceding it in the order is called ini- 
tial. We extend this order to sets of vertices S and T so that S < T means x < y 
for every x E S and y E T. 

An elimination ordering [22] of G = (V, E )  is a total ordering < of V so that 
for all u E V, {w E N ( u ) : u  < w} induces a complete graph in G; i.e., u is 
simplicial in the subgraph induced by v and the vertices following u in the or- 
der. A simple elimination ordering [8] of G = (V, E )  is a total ordering < of V 
so that for all u E V, the vertices of {w E N(u):v < w} are painvise compat- 
ible; i.e., u is simple in the subgraph induced by u and the vertices following u 
in the order. A strong elimination ordering [8] of G = (V, E )  is a total ordering 
of V in  which neither of the two ordered induced subgraphs shown in 
Figure 2(a and b) occur. (The order in Figure 2 is given by w < x < y < z . )  
We note that an elimination ordering forbids exactly the induced subgraph 
shown in Figure 2(a). 

Theorem 2.3 [9,22]. 
ordering. Any simplicia1 vertex may start the elimination ordering. 

A graph G is chordal if and only if G has an elimination 
I 

Theorem 2.4 [8]. A graph G is strongly chordal if and only if G has a simple 
elimination ordering. Any simple vertex may start the simple elimination order- 
ing. Furthermore, a graph G is strongly chordal if and only if G has a strong 
elimination ordering. I 

It is not hard to see that if there is a strong elimination ordering of the ver- 
tices in a graph, then each vertex u is simple in the subgraph induced by u and 
the vertices following u in the order. Thus, if G permits a strong elimination 
order then G is strongly chordal. It is not evident that every strongly chordal 



THRESHOLD TOLERANCE GRAPHS 347 

FIGURE 2. Forbidden configurations in proper orders where w < x < y < z. 

graph permits a strong elimination order. Farber developed an algorithm that, 
given a strongly chordal graph G, finds a strong elimination order on G. We 
describe the algorithm below. 

Algorithm 1 (Farber’s Algorithm) 

Input: A graph G = (V, E ) .  
Output: A strong elimination order < if G is strongly chordal, or an induced 

At any given time, we will have a subgraph H of vertices of G whose position 
in the order has not been determined. We know that G - H preceeds H and we 
have a total order on G - H .  

Step 0: Set H + G, U t 0, < t 0. 
Step 1: For each pair of adjacent vertices x and y in H ,  if i H ( x )  C iH( y )  then 

subgraph with no simple vertex otherwise. 

set u t u + 6. 
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Step 2: Select some vertex x that is simple in H and initial with respect to U .  
If there is no such x then stop; H induces a subgraph with no simple 
vertex. 

Step 3: Setx < y for YE H - x, H + H  - x. I f H  # 0, go to Step 1. 
Step 4: Return the strong elimination order <. 

This algorithm works because of the following fact: If H contains a simple 
vertex then H contains a simple vertex that is initial in U .  Now since every in- 
duced subgraph of a strongly chordal graph contains a simple vertex, one will 
be found in Step 2. U is used to ensure that this simple elimination ordering is 
a strong elimination ordering. 

We now present a characterization of coTT graphs based on an ordering 
property which we call a proper ordering. 

Theorem 2.5 (Characterization I). A graph G = (V, E )  is coTT if and only 
if there is a total ordering < of V so that whenever xy e E ,  either x < N ( y )  or 
y < “x). 

Proof. (=):) Let G = (V, E )  be a coTT graph with representation a,, and b, 
for every u E V. Obtain < by ordering the vertices by nondecreasing b, values. 
Suppose, in order to obtain a contradiction, that xy 9 E and there are w E N(x)  
with w < y and z E N ( y )  with z < x. Since wx E E ,  a, 5 b, and a, 5 b,+; 
since w < y ,  b, I by by the choice of <. Similarly, zy E E implies that 
a2 5 by and a, 5 b,; since z < x ,  b, I b,. Together these imply that a, 5 by 
and ay I b,, which implies that xy E E ,  a contradiction. 

((=:) Let < be a total ordering of the vertices of G = (V ,E)  satisfying the 
conditions of the theorem. Construct a coTT representation for G where b, 
equals the position of vertex u in the ordering, and a, = min{b, : w E N(u)}. 
Note that xy E E implies that a, 5 by and ay 5 b,, by definition, and xy @ E 
implies that a, > by if y < N ( x ) ,  or a, > b, if x < N ( y ) .  I 

To obtain the following corollary, we need only observe that every proper or- 
der is a strong elimination order. 

Corollary 2.6. Every c o n  graph is strongly chordal. 

3. RECOGNITION ALGORITHM 

Figure 2 illustrates the five forbidden configurations or obstructions that cannot 
occur as induced ordered subgraphs of a coTT graph; in each case w < x < 
y < z in the ordering. In configurations (a), (c), and (d) the pair of vertices 
yz 4 E violate the conditions of Theorem 2.5, and in configurations (b) and (e) 
the pair of vertices xz E violate Theorem 2.5. It is a simple task to check 
that these are the only forbidden configurations yielding the following theorem. 
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Theorem 3.1 (Characterization 11). A graph G = (V, E )  is coTT if and only 
if there is a total ordering of the vertices with no obstruction of the form shown 
in Fig. 2. I 

As we have previously noted, configurations (a) and (b) of Figure 2 are pre- 
cisely those forbidden by strong elimination ordering. We introduce two rules 
that ensure configurations (c), (d), and (e) will never arise; conversely, the five 
forbidden configurations imply these two rules. Thus, proper orders are exactly 
strong elimination orders that obey these two rules. 

Let xywz be an induced P4 in G, i.e., xy,yw, wz E E but xw,xz, yz $Z E .  The 
first rule is that x < z (=) y < w in any proper ordering; we call this the P4 
rule. Let xy and wz induce a 2K2 in G, i.e., xy, wz E E but xw,xz, yw, yz E .  
Thesecondruleisthatx < w, (=)x < z ( = ) y  < w ( = ) y  < zinanyproperor- 
dering we call this the 2K2 rule. Together we call these two rules the PK rules. 

Our algorithm for determining if a graph is coTT or not proceeds as follows: 
First, Farber’s Algorithm is used to ensure that the graph is strongly chordal. 
Next, we find a partial order on the vertices such that every linear extension 
satisfies the P4 and 2K, rules; we call such an order conformist since it always 
obeys these rules. We then show that this partial order can be extended to a 
strong elimination ordering using a modification of Farber’s Algorithm. This 
ensures that a proper ordering is produced. 

In order to simplify our discussion, we shall think in terms of orientations 
rather than orders. An order < of a graph’s vertices corresponds tozn acyclic 
orientation U of the complete graph on the same vertex set (where ab E U * 
a < b).  Thus, to a given graph G we associate an order graph 0,, which is 
simply a complete graph on V ( G ) .  Thus, we actually provide acyclic orienta- 
tions of 0,. Orientations will be called conformist, proper, or strong elimina- 
tion precisely if the corresponding orders are. We say that x precedes y (and y 
follows x) in an orientation U if $ E U .  This formalism allows us to discuss 
“directed edges” rather than “ordered vertex pairs .” 

3.1. How to Conform 

In a conformist orientation of O,, the orientation of one edge of 0, may, 
through a sequence of applications of the P4 and 2K2 rules, force the direction 
of many other edges. In fact, the edges of 0, can be partitioned into “forcing 
equivalence classes” such that the direction of one edge in a class determines 
the direction of every other edge in the class. More formally, we define a rela- 
tion R on the edges of 0, such that elRe2 if the orientations of el and e, are 
linked through a direct application of one of our two rules. Thus, the 2K, rule 
yields the following: 

(i) If ab,cd are a 2K2 then acRad, acRbc, acRbd, adRbc, adRac, adRbd, 
and bcRbd. 
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The P4 rule gives 

(ii) If abed is a P4 then abRbc and bcRad. 

The transitive closure R* of R is an equivalence relation on the edges of 0,. 
For any pair of vertices u and u we let S(uu) be the equivalence class under R* 
of the edge uu. Clearly, in any orientation obeying these rules, S(uu) has one of 
two possible orientations: one containing u'v and the other containing v'u. Note 
that these two orientations are mirror images so that one is acyclic if and only if 
the other is. It follows that if either of these two possible orientations is not 
acyclic then the graph is not coTT. We shall call an equivalence class consistent 
if this situation does not occur. The two possible orientations of a consistent 
equivalence class will also be called consistent. 

The purpose of this subsection is to show that a conformist partial order can 
be obtained by orienting the non-singleton equivalence classes of a strongly 
chordal graph provided that all of the equivalence classes are consistent. The 
remainder of this subsection is devoted to proving the following theorem: 

Theorem 3.1. 
are consistent has a conformist partial order. 

Any strongly chordal graph all of whose equivalence classes 

We shall divide the edge-set of 0, into innocuous and dangerous edges. Call 
an edge uu innocuous if S(uu) is a singleton. Call an edge uu dangerous if 
S(uu) contains at least one other edge. If S(i4u) is a singleton then the two con- 
sistent orientations of this class are u'v and 5. It follows that in any acyclic 
orientation of OG, every equivalence class consisting of an innocuous edge will 
have a consistent orientation. Thus, we need only concentrate on the dangerous 
edges of 0, since any acyclic orientation of the dangerous edges of 0, in 
which each non-singleton equivalence class has a consistent orientation will be 
conformist. So, we need only find such an orientation. 

A naive way of doing so would be to arbitrarily choose one of the two con- 
sistent orientations on each non-singleton equivalence class and hope that the 
resulting orientation is acyclic. It turns out that any orientation constructed in 
this way must either be acyclic or contain a directed triangle. Furthermore, this 
directed triangle corresponds to one of two possible structures in the graph as 
described in the following lemma. These structures will be used in a decompo- 
sition approach to recursively generate a conformist orientation. 

Lemma 3.1.1. Consider a strongly chordal graph G = ( V , E )  all of whose 
equivalence classes are consistent. Arbitrarily choose one of the two orienta- 
tions for each non-singleton equivalence class. One of two possible cases can 
occur. 

(a) The resultant Orientation is a conformist orientation. 
(b) The resultant zrie_ntation U contains a directed triangle, i.e., vertices 

a ,  b ,  c where ab, be, and G E U with one of the two possible induced 
subgraphs G, as shown in Figure 3.  



THRESHOLD TOLERANCE GRAPHS 351 

FIGURE 3. Cyclic triangles. 

Proof. If the resultant orientation is a partial order, then we are done. If 
not, there must be a directed cycle of length at least three. [Since S(xy)  = S( x ) ,  
antisymmetry can only occur if it occurs within an e q u i z l e E e  class.] Let a ,  b ,  
and c be three consecutive vertices on this cycle with ab, bc in U .  Since only 
non-singleton equivalence classes were directed, S(ab) and S(bc) must be non- 
singleton. It will be indicated how to show that S(ac) is not a singleton, and 
that either a'c yielding a shorter cycle or condition (b) holds. Repeating this ar- 
gument proves the theorem. 

We note that the P4 and 2K2 rules imply that if S(xy) is not a singleton, then 
there are vertices u and u such that w, uy E E but uy, ux $Z E;  we refer to this 
as the PK rule. 

The proof proceeds by a case analysis on whether or not, a ,  b ,  and c are ad- 
jacent in G. We consider only the case where the three vertices induce a tri- 
angle. The other cases are proved similarly; the details can be found in [ 191. 

Case I .  ab, bc, ac E E.  

Subcase (i). There is some x that xb E E and xu, xc $Z E. Since S(ab) is not 
a singleton, the PK rule says there is a vertex y with ya E E and yb $Z E. Since 
G is chordal, yx $Z E. We can assuEe that yc $5 E ,  or else the P4 rule applied 
to yabx and ycbx would imply that cb E U ,  a contradiction. Similarly, there is 
some z with zc E E and zb, za, zx, zy  $Z E. Now the P4 rule on yacz implies 
that S(ac) is not a singleton, and that either a'c E U or condition (b) holds. 
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Subcase ( i i ) .  There is no x such that xb E E and xu, xc $! E .  Since S(bc) is 
not a singleton, by the P K  rule there is some x that xb E E and xc e E .  Also, 
since S(ab) is not a singleton, by the PK rule there is some y such that yb E E 
and ya 6 E ,  and some z such that za E E and zb $? E .  Now xu and yc E E ;  if 
not, we would be in Subcase (i). Since G is chordal, xy,zy $Z E .  We may as- 
sume that zc $! E ;  if not, xz $! E implies that { x ,  y ,  z ,  a ,  b ,  c }  induces a trampo- 
line, and xz E E implies that { z , x ,  6 ,  c }  induces a C,. But now the P, rule 
applied to zaby and zacy implies that Z. I 

Case (a) of Lemma 3 . 1 . 1  yields the desired conformist orientation. The fol- 
lowing lemma shows that the structures in Case (b) of Lemma 3 . 1 . 1  can be 
used to decompose the problem of finding a conformist orientation in G to 
one of finding a conformist Orientation for two smaller induced subgraphs. So 
the problem can be solved recursively. 

Lemma 3.1.2. Consider a strongly chordal graph G = ( V , E )  all of whose 
equivalence classes are consistent. Let U be a consistent orientation of O(G). 
Arbitrarily, choose one of the two possible orientations of every non-singleton 
equivalence class. If the orientation is cyclic then G can be partitioned into 
smaller subgraphs G,  and Gz so that a conformist orientation for G ,  and G2 
yields a conformist orientation for G. 

From Lemma 3 . 1 . 1 ,  we know that if the orientation is cyclic then G contains 
one of the two subgraphs shown in Fig. 3 .  The partition of G we will use de- 
pends on which of these two subgraphs is present. This is captured in the fol- 
lowing four lemmas: 

Lemma 3.1.2.1. Let G and U be as Lemma 3 . 1 . 2 .  Assume $x Zrtices a ,  b ,  
c ,  d ,  e ,  and f in G induce 3 K ; s  as depicted in Figure 3 with ab, bc, and Z in 
U .  Set A = { x  1 x sees all of a ,  b ,  c ,  d ,  e , f } .  Then 

(i) A is a clique. 
(ii) The 3 K ; s  are in distinct components of G - A .  Furthermore, every ver- 

tex in A sees all the vertices in these three components. 

Proof. Since G is chordal, A is a clique. The proof of Property (ii) depends 
upon repeated application of the following fact: 

+ +  
Fact I .  If G contains a 3K,,  as in Figure 3 ,  with ab, bc, and Z in U ,  then 

no vertex of G sees a vertex in two of the three K ; s  and misses a vertex from 
the third. 

Proof. Assume x sees a and c, but misses b .  Then bexa an,d be.rc2re both 
either Pis  (if e sees x )  or 2 K ; s  (if e misses x ) .  In either case, ab and cb are in 
the same equivalence class. This contradicts the fact that {a,  b ,  c} is a directed 
triangle in U .  By symmetry, we established Fact 1. I 
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It follows from Fact 1 that every vertex of G - {a ,  b, c, d, e , f }  either sees all 
of {a.  b, c, d ,  e , f }  or sees vertices from at most one of the three K ; s .  Let 
A = { y l y  sees all of a,b,c ,d,  e,f} .  We want to show that no two of the K ; s  
are in the same component of G - A.  This will follow easily from the follow- 
ing observation: Assume x in G - A sees a vertex from one of the KSs. Replace 
the other vertex of this K ,  by x .  We obtain a new 3K2 in G with analogous ori- 
entation. Also, from Fact 1, we see that a vertex sees all of the original six ver- 
tices if it sees all six of the vertices in the new 3 K 2 .  Now, assume that, for any 
subgraph of G as in Figure 3 we have two of the 2 K ; s  in the same component 
of G - A .  Then choose the shortest path in G - A between vertices in distinct 
K i s .  Furthermore, choose the minimum such path over all appropriate choices 
of subgraphs and corresponding sets A .  Denote the two endpoints of this path 
by u and u. Let x be the first vertex on this u to u path. Recall that replacing u 
by x gives a new 3K, .  Furthermore, the set A corresponding to this new 3K,  is 
the same as that for the old 3K2.  Now, we have a path in G - A from x to u. 
This path contradicts the minimality of the path from u to u. Thus, for any sub- 
graph, as in Figure 3, with {a,  b, c} forming a triangle in U ,  each K 2  is in a sepa- 
rate component of G - A .  Call these components C,, C,, and C,. Recall that if 
x E G - A is adjacent to any vertex in a K ,  then we saw that x must see all of 
A .  By induction on the length of paths, it follows that each vertex in A sees all 
of c, u c, u c,. I 

Lemma 3.1.2.2. Let G be a strongly chordal graph partitioned into sets 
A ,  C,, C2, C,, and N as in Lemma 3 . 1 . 2 . 1 .  Assume we have a conformist orien- 
tation U ,  of the dangerous edges of OG-,, and a conformist orientation U2 of 
the dangerous edges of O,,. Then we can obtain a conformist orientation U ,  of 
the dangerous edges of 0, by the following: 

(i) Orienting the dangerous edges of O,-,-, as in U , .  
(ii) Orienting the dangerous edges of 0,, as in U,.  

(iii) Let c be an arbitrary vertex of C,. For x in C, and y in G - C, - C , ,  

(iv) For x in C, and y in C,, $ is in U,.  
$ (j%) is in U ,  if c3, (jZ) is in U , .  

Proof. If xy is a dangerous edge of O,-,-, or O,, then xy is still dangerous 
in 0,. The only new dangerous edges are those created by 2K;s or Pis ,  which 
are partially but not entirely in C,. It is a tedious but routine matter to verify 
that arty such P4 or 2K,  is of one of the five types listed below. 

( 1 )  2K,  x I x z ,  n l n 2  with x I , x 2  E C ,  and n,, n2 E N .  
( 2 )  2K2 x , x 2 ,  clc, with x I , x 2  E C, and el ,  c2 E C , .  
( 3 )  2K,  x I x z ,  clc2 with xI ,x2  E C, and c,, c, E C,. 
(4 )  2K2 x , a , , n , n ,  with x ,  E C,, a ,  E A and n , , n 2  E N .  
(5) P4 x ,a ,n ,n2  with x ,  E C,, a ,  E A and n , , n ,  E N .  

Given a 2K, of type 4 or a P4 of type 5 we can replace x ,  by c to obtain a corre- 
sponding 2K,  or P4 in G - C,. It follows that if xy is a dangerous edge arising 
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from such a 2K, or P4 (with x E C,) then cy is a dangerous edge of OG-C7. Fur- 
thermore, the orientation of vertices of 2K;s and Pis  of types 4 and 5-in U ,  
obey the P4 and 2K2 rules because the corresponding 2K;s and P i s  in U ,  do. 

Similarily, given a 2K, of Type 1 or 3 ,  we can replace the K,x,x, by the K,  
cc’, where c ‘  is some neighbor of c in C,. Thus, if xy is a dangerous edge aris- 
ing from a 2K2 of Type 1 or 3 (with x in C,) then cy is a dangerous edge of 
Oc-c3. Furthermore, these kinds of 2KSs obey the 2K, rule because the corre- 
sponding 2K;s obey the 2K, rule in U , .  

The 2K;s of Type 2 are the only ones that give dangerous edges of the form 
xy with x E C,, y E C,. Since C, and C, are both connected, it follows that ev- 
ery such edge of 0, will be dangerous. Furthermore, it is clear that our orienta- 
tion of these edges will obey the 2K, and P4 rules. 

Thus, we can construct our orientation U,  as described in the lemma and it 
will satisfy the 2K, and P4 rules. We need only ensure that U,  is also acyclic. 
Let C = {uo, u , ,  . . . , uk- , }  be a cycle in 0,. Furthermore, choose C to have the 
minimal number of vertices in 0, over all such cycles. And further, choose C 
to have the least number of vertices of C, subject to the previous conditions. C 
must contain vertices u,-,  and ui (all addition is modulo k )  such that u, E C, 
and ui- ,  E G - C,; otherwise, C would be a cycle in U ,  or U 2 .  If u,,, is not in 
C, U C, then we can replace ui by c, our special vertex of C,, to obtain a cycle 
C - ui + c in 0,; this would contradict the minimality of C. If u,, ,  is in C, 
then u,-,ui+, is an edge of U,, and thus C - u, is a cycle in 0,; again, we ob- 
tain a contradiction. Therefore, ui+,  is in C,. Now, the edge u,-,u, arises from a 
2K, or P4 of Type 1 , 3 , 4 ,  or 5 .  As before, we can find a corresponding P4 or 
2K2 using ui+, (rather than c).  Since U ,  obeys the 2K, and P4 rules, clearly 
u,-,ui+, is an edge of U,. Thus, C - ui is a cycle in O,, contradicting the mini- 
mality of C. This demonstrates that U,  is acyclic, and therefore a conformist 
orientation of 0, as required. I 

Lemma 3.1.2.3. Assume we have vertjces-a, b, c, d, e, and f in G that induce 
the subgraph depicted in Figure 3 with ah, bc, and ZI in U .  Then we can parti- 
tion G into three stable sets S,, S,, and S,; three cliques C, ,  C2, and C,; and sets 
A ,  B ,  and N such that 

(i) x E A 3 x sees all of S, U S, U S, U C, U C, U C,. 
(ii) x E N 3 x misses all of S, U S2 U S, U C, U C, U C,. 

(iii) x E B 3 x sees all of C, U C, U C, and misses all of S, U S, U S,. 
(iv) S, misses C, for i # j .  
(v) Each vertex of S,  sees a vertex of C, and vice versa for i = 1 , 2 , 3 .  

Proof. The proof of this lemma is similar to that of Lemma 3.1.2.1 and 
can be found in [19]. I 

Lemma 3.1.2.4. Let G be a strongly chordal graph partitioned into sets C,, 
Cz, C,, S,, S,, S,, A ,  B ,  and N as in Lemma 3.1.2.3. Assume we have con- 
formist orientations U ,  and U ,  of the dangerous edges of OG-CJ-S, and Os3uc3, 



THRESHOLD TOLERANCE GRAPHS 355 

respectively. Then we can obtain a conformist orientation U ,  of the dangerous 
edges of 0, as follows: 

(i) Orient the dangerous edges of OG-CJ-S3 as in U , .  
(ii) Orient the dangerous edges of Oc,us, as in U,.  

(iii) Let c be an arbitrary vertex of C,. For x in C, and y in G - C, - S, - 

(iv) For x in S, and y in S,, ,$ is in U , .  For x in C, and y in C,, $ is in U, .  

Proof. The proof of this lemma is similar to that of 3.1 .2 .2  and can be 

C, - S,, $ ( jG) is in U ,  if and only if G( jG> is in U , .  

found in [19]. I 

3.2. How to Be Proper 

The purpose of this subsection is to show that a conformist partial order for a 
strongly chordal graph can be extended to a strong elimination ordering. To- 
gether these results imply that the resultant order is a proper ordering. This is 
proved in the following theorem by an extension of Algorithm 1.  

Lemma 3.2. Consider a strongly chordal graph G = ( V , E )  all of whose 
equivalence classes are consistent. Let P be a conformist orientation produced 
by Lemma 3.1.2. P can be extended to a proper ordering < for G. 

Proof. Let G be a strongly chordal graph all of whose equivalence classes 
are consistent. Using the procedures outlined in Lemma 3.1.2 we can construct 
a conformist orientation U of the dangerous edges of O(G). The following 
modified version of Farber’s algorithm will give us a strong elimination order- 
ing that extends U .  

Algorithm 1’ 

Input: 

Output: A strong elimination order on G such that if & E U then a < b. 

At any given time, we will have a subgraph H of vertices of G whose position 
in the order has not been determined. We know that G - H precedes H and < 
is a total order on G - H .  

Step 0. Set H + G, < 4. 
Step 1. For each pair of adjacent vertices x and y in H ,  if N H ( x )  C N H ( y )  then 

Step 2 .  Select some x that is simple in H and initial with respect to U in H .  
Step 3. Set x < y for y in H - x, set H + H - x. If H is non-empty then go 

to Step 1. 
Step 4. Return <. 

A strongly chordal graph G and a conformist orientation U of the dan- 
gerous edges of O(G). 

set U + U + {$}. 
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We will show that this algorithm works in two steps. First, we will show that 
at all times U remains acyclic and anti-symmetric. We will then show that H 
always contains a simple vertex that is initial with respect to U .  

When we initialize the algorithm, we know that U is acyclic and anti-sym- 
metric. If U becomes-symmetric at any time, it must be through-an application 
of Step 1,Assume ab is added in Step 1; we will show that ba is not in U .  
Clearly ba cannot have been added to U in Step 1 because than NH(b)  C 
NH(a),  contradicting NH(a) C N,(b).+Thus, ba must be the mid-edge of some 
P4 xbay in G. Now, when we added ab to U ,  we knew there was a vertex z in_H 
that saw b but not a. Since G is chordal z misses y ;  thus zbuy is a P4. Since ba 
is U ,  by the P4 rule, so is 5. Since z is in H ,  so is y .  But now y sees a but not 
b, contradicting NH(a) C NH(b) .  The preceding remarks show that at all times 
U is anti-symmetric. 

To see that U also remains acyclic, we will need a few more facts about di- 
rected paths in U .  We shall call arcs of U added in Step 1 Farber edges. Those 
arcs of U with which the algorithm was initiated shall be refereed to as PK 
edges. 

Fact 5 .  -Consider vertices a ,  b ,  and c of H .  If 2 and & are Farber edges 
then so is bc. 

Proof. Note first that-ac is an edge of Ggince NJb)  C NH(c). Assume & 
was added to U after bc. At the instant ub was added we have N,(a) ,C 
NH(b)  C N,,(c). Thus, a'c must also be a Farber edge of U .  Similarily, if bc 
was the second edge to be added, then when it was added we had N,(u) C 
N,(b) C N,,(c). Thus, in either case, a'c is a Farber edge of U .  I 

Fact 6. Consider vertices a ,  b, and c of H .  I f  & and g are PK edges of 
O(G),  then so is Z. 

Proof. This follows from our proof of Lemma 3.1.1. I 

Fact 7. Consider vertices a ,  6 ,  and c of H .  If 2 is a Farber edge, & is a 
PK edge and a sees c ,  then a'c is an edge of U .  

Proof. Since 2 is a Farber edge, N,(a) C NH(b) and so b sees c. If g is a 
Farber %dge, then by Fact 5 we would know that Z is a Farber edge. Further- 
more, cb is not a Farber edge because we have already shown that U remains 
anti-symmetric-Thus, we can assume that bc is not a Farber edge in either di- 
rection. Since bc is a PK edge, there 5 a P4 xbcy in G. Thus, NG(b) is incom- 
parable with NG(c).  If at the instant ab is added to UN,(c) C NH(b),  then bc 
would have to have been made a Farber edge in one of the two possible direc- 
tions. It follows that some d in H sees c but not 6.  Now d misses a since 
NH(a) C N,(b). Furthermore, a sees some e in H ,  which misses c ;  otherwise, 
a'c would be a Farber edge. Since NH(a) C N,(b), b sees e. Furthermore, since 
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G is chordal, e misses d .  Now ebcd and z e d  are both P i s  of G, and by re- 
peated application of the PK rule, we see bc is a P K  edge of U .  I - 

Fact 8 .  Consider vertices a ,  b ,  and c of H .  If ab is a Farber edge, 2 is a 
PK edge, and c misses both a and b ,  then a'c is an edge of U .  

Proof. By the P K  rule, some x in G sees c but not b. Now baxc induces 
either a 2 K ,  or a Pa. In either case, G is in U ,  and since a is in H ,  so is x. But 
now, since NH(a) C NH(b),  x misses a .  It follows that ab, xc is a 2K2,  and a'c is 
in U .  I 

Fact 9 .  Consider vertices a ,  b ,  and c of H .  Assume & is a P K  edge of U ,  
$ is a Farber edge of U ,  and a sees b ,  then a'c is an edge of U .  - 

Proof. Since bc is a Farber edge, N&(b) C NH(c); thus, a sees c .  Since ab is 
a PK edge, there is a P4 xaby in G. As ab is not a Farber edge in either direction, 
there is some d in H ,  Thich sees a but not b.  Since G is chordal, d misses y .  
Now, daby is a P4 so dy is in U.  Since d is in H ,  so is y .  If NH(u) C NH(b),  
then a'c would be a Farber edge. Otherwise, some e in H sees a but not c .  Since 
G is chordal, e misses y. Since NH(b) C NH(c), e misses b. Now eaby and eacy 
are P ~ s  and it follows that a i  is  in U .  Consider now a shortest path 
P = { x  = p 0 , p 2 , .  . . , p n  = y }  in U between any two vertices x and y of H .  
Facts 5 and 6 imply that this path must alternate between PK and Farber edges. 
Facts 7 and 8 imply that a PK edge that follows a Farber edge must correspond 
to a nonedge of G. However, Fact 9 implies that a P K  edge that precedes a Far- 
ber edge must correspond to an edge of G. Thus, we cannot have a Farber, P K ,  
Farber sequence of edges on P. It follows that any shortest path in U must have 
at most three edges. Furthermore, consider such a path P = {po,p,,p2,p3} with 
three edges. We know that popl and are PK edges while p 1 p 2  is a Farber 
edge. Also, Facts 7, 8, and 9 imply that po misses pI and p 2  in G, while p 3  sees 
p 2  but misses pI .  Now, if po  saw p ,  then p o p 3 p 2 p I  would be a P4. But then p3pz 
would be in U ,  contradicting the fact that U is anti-symmetric. Thus, po misses 
p 3 .  Now, by the PK rule, p g p l p 2  would be a 2K2 and p o p 2  would be in U ,  con- 
tradicting the minimality of P. Thus, z sees p 2 .  Now, p+p ,p ,  is a P4 so ZpZ is in 
U .  Clearly, z sees p 3 ,  as otherwise p+p2p3 would be P4 and, by the P, rule, 
p o p 3  would be in U .  Now, zpz is a P K  edge of G and p2p3 is a PK edge of G, so 
by Fact 6, zp3 is a P K  edge of G. If were a Farber edge in U ,  then p,,zp3 
would be a shorter path between po and p 3 .  Thus, there is some a in H that sees 
po but not z .  Now, since G is chordal, a misses {uI ,u2 ,u3} .  But then up,, p , p z  
and up,, p 2 p 3  are 2 K l s .  It follows that pop3 is in U ,  contradicting the minimal- 
ity of P. Thus, the shortest path in U between any two vertices has length at 
most two. 

We turn now to the shortest cycle in U .  By the above remark, this must be a 
triangle. But this triangle must have either two PK edges or two Farber edges. 
In the first case, by Fact 6, we will contradict the fact that U is anti-symmetric. 
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In the second case, Fact 5 leads to the same contradiction. Thus, U contains no 
triangles. It follows that U remains acyclic throughout our application of 
Algorithm 1’. I 

We will now show that after each application of Step 1 of Algorithm l’, H 
contains a simple vertex that is initial with respect to U .  Since G is strongly 
chordal, H contains a simple vertex. Since U is acyclic, H contains a simple 
vertex x such that E = { y  I there is a y to x path in U }  contains no vertex that is 
simple in H .  We will assume that E = 0 and obtain a contradiction. 

Fact 10. 

Proof. 

No y in E sees .x. 

Recall that the shortest path from y to x has at most two edges. 
Facts 5-9 imply that if xy is an edge of G and there is a path of length two 
from y to x in G, then $ is an edge in U .  Farber showed that if j5 is a Farber 
edge and x is simple in H ,  then y is simple in H ,  contradicting our choice of x. 
Consider now a y in E that is adjacent to x. We know .G is a PK edge of U and 
not a Farber edge of U .  Now, in G there is a P4 axyb. Thus, N,(s )  is incom- 
parable to N G ( y ) .  Since x?, is not a Farber edge in either direction, we know 
that some c in H sees v but not x. Since G is chordal, c misses a. Now cyxa is 
a P4 and since jG is in U ,  so is c‘a. This implies that since c is in H .  so is a. But 
now x sees y and a in H which are non-adjacent. This contradicts the fact that x 
is simple in H .  The desired result follows. I 

Fact 11. yx is a dangerous edge of O ( G )  for every y in E .  

Proof. Consider a shortest path in U from y in E to x. We know that this 
path has at most two edges. Assume the path has two edges, then there is a z in 
E ,  such that the path is yzx. Now, by Fact 10, z misses x and is a PK edge of U .  
If ,@ is a PK edge of U then, by Fact 6, jG is an edge of U .  If .G is a Farber 
edge of U then, by Fact 8 ,  j% is an edge of U .  In either case, we contradict the 
minimality of our path. Thus, for every y in E ,  j% is in U .  However, by 
Fact 10, y misses x in G ;  so this must be a PK edge, implying Fact 11. I 

I L ~ N ’ ,  set A = { y  l y  E H - E ,  y misses x,y sees some z in E }  
B = { y  Iy E H - E - A ,  y misses x , y  sees some z in A }  
C = { y l y  E H - E - A - B ,  y misses x}. 

Then H = E + A + B + C + x + N ( x ) .  Farber has shown that any strongly 
chordal graph is either a clique or contains two non-adjacent simple vertices. 
Since E is non-empty, and x misses every element of E ,  it follows that H - C 
is not a clique. Thus, H - C contains two non-adjacent simple vertices. We 
shall now show that one of these vertices is in E ,  and that this vertex is simple 
in H .  We note first that x + N H ( x )  is a clique. Thus, H - C - x - N H ( x )  
contains at least one vertex that is simple in H - C. Note that H - C - x - 
N H ( x )  = E + A + B .  Consider a vertex a in A .  By definition, a sees some h in 
H .  By Fact 11, hx is a dangerous edge of O(G) ,  SO h misses some y in N , ( x ) .  
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Now, if a missed y ,  then ha,xy would be a 2K, and aTx would be in U .  But a is 
in A not E and so a must see Y. Now, hayx is a P,, and so @ is in U .  Since a is 
in H ,  this implies that y is in H .  Thus, a sees y and h, which are non-adjacent. 
If follows that no vertex of a is simple in H - C. Consider a vertex 6 in B .  We 
know that b sees some a in A .  As above, a sees h in H and y in NH(x) such that 
y misses h. Now a ,  y E NH-C(b)  but a and y have incomparable neighborhoods 
in H - C (since x sees y but not a ,  and h sees a but not y). Thus, no vertex of 
B is simple in H - C. 

To summarize, we  know some vertex of H - C - x - NH(x) = E + 
A + B is simple in H - C. Furthermore, we know that no vertex of A U B is 
simple in H - C. Thus, some vertex y in E must be simple in H - C. We 
claim that y is simple in H .  Clearly no vertex in C sees y. Thus, y is still simpli- 
cia1 in it. If y were not simple we would have vertices {c, e ,  f, g} of H such that 
y saw e and f, e saw c but not g, and f saw s but not c. Since e is simple in 
H - C, we can assume that c E C. Now, c misses E U A + x. Also, y misses 
B U C + x. Thus, e must be in NH(x). Iff were in NH(x), we could replace y 
by x, contradicting the fact that x is simple in H .  

This completes the proof that Algorithm 1 ’ extends a conformist partial order 
for a strongly chordal graph to a strong elimination order. 

I 

3.3 An End to Propriety 

We note that the results of sections 3.1 and 3.2 give two additional characteri- 
zations of coTT graphs, one of which yields a polynomial-time recognition 
algorithm. Define a graph to be a PK graph if there is a total ordering < on the 
vertices that satisfies the P4 and 2K, rules. 

Theorem 3.3.1 (Characterization 111). 
only if G is a strongly chordal graph and a PK graph. 

A graph G is a coTT graph if and 
I 

Theorem 3.3.2 (Characterization IV). A strongly chordal graph is coTT if 
and only if each PK equivalence class is consistent. I 

The verification of Theorem 3.3.2 also yields a polynomial-time recognition 
algorithm for coTT graphs. 

Algorithm 2 

Input: 
Output: A proper order if G is coTT, or either an induced subgraph with no 

Step 1. Check to see if G is strongly chordal by applying Algorithm 1. If G is 

A graph G = ( V , E ) .  

simple vertex, or a cyclic PK equivalence class, otherwise. 

not strongly chordal then stop; G is not coTT. 
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Step 2. Apply the P4 and 2 K ,  rules to form the equivalence classes. If any 
equivalence class is not consistent then stop; G is not coTT. 

Step 3.  Arbitrarily choose one of the two orientations for each non-singleton 
equivalence class. If the orientation is conformist then go to Step 4; if 
not, partition the graph into smaller subgraphs and apply the algorithm 
recursively to form a conformist orientation for G as in the proof of 
Theorem 3.1. 

Step 4. Use Algorithm 1 ’  to extend the conformist orientation to a proper 
order. 

We note that Algorithm 2 provides a proper order for a coTT graph G. From 
this order, we can obtain weights and tolerances for each vertex that satisfy the 
requirement for a threshold tolerance representation for G using the proof of 
Theorem 2 . 5 .  If we only want to check if G is coTT, we need only use Steps 1 
and 2 of Algorithm 2 to check that G is strongly chordal and form the P4 and 
2K2 equivalence classes, and to check to see if they are consistent. Step 3 can 
be thought of as constructing a binary decomposition tree with G as the root. 
Each time we split a graph G we make two children G,  and Gz, as described in 
Lemma 3 . 1 . 2 .  The leaves of the tree are disjoint subgraphs and so we apply 
Algorithm 2 at most 2 - IVI times. It should be clear that since this partitioning 
can be done in polynomial-time, so can the entire Algorithm 2 .  

Theorem 3.3.3. The algorithm correctly recognizes coTT graphs. 

Proof. By Corollary 2 . 6 ,  a coTT graph is strongly chordal, so if G is found 
not to be strongly chordal in Step 1 then G is not coTT. Every proper ordering 
must be consistent with the equivalence classes, so if some equivalence class 
itself is not consistent then no ordering exists in Step 2 .  Theorem 3.1 ensures 
that a conformist orientation is found in Step 3. Theorem 3 . 2  ensures that a 
proper order is found in Step 4. I 

4. CONCLUDING REMARKS 

We have introduced a class of graphs generalizing threshold graphs by adding 
threshold tolerances. We have obtained several characterizations of these 
graphs and a polynomial-time recognition algorithm. We have also shown that 
the complements of these graphs contain the class of interval graphs and are 
contained in both the classes of strongly chordal graphs and interval tolerance 
graphs. 

Benzaken et al. [ l ]  also studied a generalization of threshold graphs, which 
they called threshold signed graphs. These graphs are incomparable to coTT 
graphs since C, is in their class but not ours, and the graph in Fig. l(a) is in our 
class but not theirs. 

Chordal graphs [ 3 ,  10,231 and strongly chordal graphs [7] are also character- 
ized in terms of intersection graphs of certain subtrees in a tree. These and 
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FIGURE 4. Forbidden subgraphs for COT graphs. 

other classes of graphs arising as the intersection graphs of paths in a tree are 
studied in 1201. We leave such a characterization for coTT graphs as an open 
problem. 

Another open problem is to characterize coTT graphs in terms of forbidden 
induced subgraphs. A partial list of forbidden subgraphs is given in Fig. 4. [4] 
characteristic threshold graphs as those graphs with no induced C,, P,, or 2K,. 
We also leave as an open question the characterization of P K  graphs. 
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