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On-Line Partitioning of Partially
Ordered Sets

William T. Trotter

William T. (Tom) Trotter received his Ph.D. in 1969 from the
University of Alabama, where he worked under the supervi-
sion of William J. Gray. His Ph.D. dissertation and graduate
work was concentrated in topology, analysis and algebra,
but after the highly successful 1971 Bowdoin Conference,
he has worked exclusively in the areas of combinatorics and
graph theory. Trotter is the author of more than 70 research
publications and has spoken at numerous international and
national conferences. He has served as Assistant Dean and
Department Chair at the University of South Carolina and is
currently Chair of the Department of Mathematics at Arizona State University.

Combinatorial mathematics has as one of its distinguishing characteristics a degree
of elegance that is somewhat surprising in view of the concrete nature of the subject.
Even as combinatorial mathematics matures and the research techniques required to
make important contributions become more sophisticated, elegant combinatorial
theorems accessible to undergraduate students continue to be discovered. The best
of these spark more intensive investigations which, in turn, yield theorems of great
depth and significance. And so it goes.

In this article, we present an example from the combinatorial theory of partially
ordered sets. Our example is representative of a class of combinatorial problems
known as extremal problems, an area of combinatorial mathematics which includes
some notoriously difficult problems. Extremal problems on partially ordered sets are
particularly challenging, but our example yields an elegant solution that can be
readily understood without special background knowledge of combinatorics. As an
added bonus, our example includes a discussion of on-line (recursive) algorithms, an
important topic in discrete optimization,

Partially Ordered Sets

Let us briefly review some of the notation and terminology that will be used in this
article. A partially ordered set or poset consists of a pair (X, <), where X is a set
(usually finite in this article) and < is a binary relation on X that satisfies the
following three requirements:

(i) x<xforeveryxe X [reflexivity]
(ii) f x<yand y<x,then x=y forall x, ye X [antisymmetry]
(i) if x<yand y<z,then x<zforall x,y,z€ X  [transitivity].

A binary relation satisfying (i)-(iii) is called a partial order on X. (For example, a
partial order on any set of positive integers is defined by x < y if x divides y. As a
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second example, let X be any family of sets and define x <y if x is a subset of y.)
In the remainder of this article, we will adopt the convention of using a single
symbol, such as X, to denote a poset—it being understood that X is a set on which
a partial order < has been specified.

The notation y > x means exactly the same as x <y. When x <y and x #y, we
write x <y or y > x. We say that x is comparable to y when either x <y or x > y;
otherwise we say x and y are incomparable and write x|| y. Of course, incomparable
points must be distinct.

A subset € C X is called a chain if x and y are comparable for every x, y € C.
The maximum number of points in a chain is called the length of the poset X.
Dually, a subset 4 C X is called an antichain if x and y are incomparable for every
distinct pair x, y € A. The maximum number of points in an antichain is called the
width of X. Note that {x} is both a chain and an antichain for each x € X.

An element x € X is called a maximal point if there is no point y € X so that
x < y. The set of maximal points is denoted MAX(X). Minimal points are defined
analogously, and MIN(X) denotes the set of minimal points. MAX(X) and
MIN( X) are each antichains of X.

We say x covers y (written x: >y) if x >y and there is no point z € X with
x>z >y. To describe a poset, it is enough to specify the set X and to list the
ordered pairs (x, y) € X X X for which x: > y. When X is relatively small, we can
describe the poset with a drawing in the Euclidean plane of the graph whose vertex
set is X and whose edge set consists of the pairs { x, y} where x: > y. In this graph,
it is customary to use straight line segments for edges, and it is required that the
vertical placement of x be higher in the plane than that of y when x: > y. In Figure
1, we see the diagram of a poset X. Here, MIN(X) = {3,12,13,14} and MAX(X)
= {1,2,6,7,8}, so that the width of X is at least five. However, the width is actually
six, and 4 = {3,4,5,6,7,8} is a 6-element antichain. Also, the length is four, and
C={2,4,9,13} is a 4-element chain.

If YCX and < is a partial order on X, then the restriction of < to Y is a
partial order on Y. Equipped with this partial order, we will refer to Y as a subposet
of X. For example, the poset Y in Figure 2 is a subposet of the poset X in Figure 1.

Figure 1. A poset X of width 6 and length 4. Figure 2. A subposet Y of the poset X.
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Dilworth’s Theorem and Its Dual
The poset X in Figure 1 can be partitioned by the 7 chains

(1,3} U {2,4} U {5,14} U {6,10} U {7,11} U {8,12} U {9,13}. (1)
It can also be partitioned by the 6 chains
{1,3} U {4,9,13} U {2,5,14} U {6,10} U {7,11} U {8,12}. (2)

Therefore, it seems reasonable to ask: What is the least number of chains into which
a poset can be partitioned? As (1) and (2) illustrate, a poset X of width » cannot be
partitioned into fewer than n chains since distinct points from an n-element
antichain cannot be assigned to the same chain. The following theorem, due to R. P.
Dilworth [1], provides the surprising answer that the least number of chains always
equals the width of X. (The proof below is patterned after Perles [4]. See Tverberg’s
paper [5] for another short proof.)

Theorem 1. A poset X of width n can be partitioned as X=C,U C,U --- UC,,
where C; is a chain for eachi=1,2,..., n.

Proof. We proceed by induction on | X|, the number of points in X. Obviously, the
theorem is true when |X| =1 and | X| = 2. Now assume that for some integer k > 3,
the theorem is true for every poset having fewer than k points, and let X be any
poset with | X| = k. We may assume that X has width n > 2 (since the theorem
clearly holds when X is a chain).

For each chain C in X, it is easy to see that the width of the subposet X — C is
either n or n — 1. Suppose that X contains a chain C such that the width of X — C
is n—1. Then C# &, and |X — C| < k. By the inductive hypothesis, there is a
partition of X — C into n— 1 chains. However, this implies that X can be parti-
tioned into » chains. So it remains only to consider the case that the width of X — C
is n for every chain C contained in X. Consequently, for every x € MAX(X), there
exists y € MIN(X) so that x > y; otherwise {x} is a chain in X and the width of
X—{x}isn—1

Choose an arbitrary pair x € MAX(X) and y € MIN(X) with x > y. Since the
width of X —{x, y} is n, we may choose an n-element antichain A4 =
{ay, a,,...,a,} contained in X — {x, y}. Now let

U(A)={ucX: u>aforsome acd}
and
2(A)={deX: d<aforsomeacd}.

Observe that both #(A) and 2(A) are nonempty, since x € #(A) and y € Z(A).
Moreover, each of the subposets A U #(A) and A U D(A) has width » and fewer
than k points. Therefore (by our inductive hypothesis), there exist chain partitions

AU#(A)=CUCU---UC,
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and

AUVD(A)=D,UD,U ---UD,.
Without loss of generality, we may assume that a,€ C;N D, for i=1,2,..., n. This
in turn implies that X =(C, U D) U(C,UD,)U --- U(C,U D,) is a partition of X
into n chains. This completes the proof of our theorem.

The proof we have given for Theorem 1 provides an algorithm for partitioning a
width n poset into n chains, but this algorithm is not very efficient. Good
algorithms exist because the problem of partitioning a poset into chains can be
formulated as a network flow problem, an important instance of a linear program-
ming problem.

Theorem 1 has a dual version in which we ask for a minimum partition of a poset
into antichains. This version has an elementary solution.

Theorem 2. A poset X of length n can be partitioned as X=A4, U A4,U --- UA
where A, is an antichain for each i=1,2,..., n.

n*

Proof. For each x € X, let depth(x) be the length of the longest chain C in X
having x as its least element. Then for each i (i=1,2,...,n), let 4,={x€ X:
depth(x) =i}. It is clear that each A, is an antichain, and that {4, 4,,..., 4,}
partitions X.

On-Line Antichain Partitioning Problems

In this section, we consider the problem of providing a minimum “on-line” partition
of a poset into antichains: Given a positive integer n, find the least integer ¢ = ¢(n)
for which any poset of length at most # can be partitioned on-line into ¢ antichains.
In the next section, we will discuss the dual problem of providing a minimum
on-line partition into chains. We begin with the antichain problem because the
arguments given in the preceding section suggest that it may be the easier of the
two. In fact, it is.

The on-line antichain partitioning problem can be formulated as a two-person
game involving three positive integers, k, n,t with ¢ >n. We call this game the
(k, n, t)-game. In the (k, n, t)-game, Player A constructs a k-element poset X of
length at most n, and Player B attempts to partition X into ¢ antichains. However,
both the construction and the partition are to be done one point at a time with the
players alternating turns. The moves of both players are permanent and cannot be
modified at a later time.

We consider the game as being played in a series of rounds. Prior to the ith
round, Player A has already constructed a poset on i — 1 points, and Player B has
partitioned this poset into ¢ antichains. During round /, Player A introduces a new
point x to the poset and describes the comparabilities between x and the points
from previous rounds. Player B responds by assigning x to one of the ¢ sets that will
partition X. Since the ¢ sets are to be antichains of X, Player B must be sure that
the new point x is incomparable to all of the points in the set to which it is
assigned.
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The game ends at the ith round (1 <i < k), and Player A is declared the winner,
if Player B has no legitimate move—that is, the new point x is comparable to at
least one point in each of the ¢ sets (so Player B cannot complete his partition of X
into ¢ antichains). Player B is declared the winner if he makes a legitimate move at
each of the k rounds in the construction of the poset. Thus, at round k, Player B
will produce a partition of X into ¢ antichains.

Before giving an illustration of this game, we introduce the following terminol-
ogy. The phrase “posets of length » can be partitioned on-line into ¢ antichains”
will indicate that for each k£ >1, there is a strategy for Player B to win the
(k, n, t)-game. Similarly, “posets of length n cannot be partitioned on-line into ¢
antichains” will indicate that there is some k£ > 1 for which Player A has a winning
strategy in the (k, n, t)-game. Note that if Player A has a winning strategy in the
(k,n, t)-game, then Player A has a winning strategy in the (m, n, t)-game for every
m=k.

Example. To establish that posets of length 2 cannot be partitioned on-line into 2
antichains, we show that Player A has a winning strategy for the (4,2,2)-game. At
round 1, Player A presents Player B with the 1-element poset x. Player B responds
by assigning x to one of two antichains. At round 2, Player A introduces the new
point y with x||y. In responding, Player B has two options: he may assign the new
point y to the antichain containing x, or he may assign y to the other antichain. If
Player B assigns x and y to different antichains, then at step 3, Player A introduces
z with z > x and z > y. Player B has no legal move and the game ends with Player
A the winner. If, on the other hand, Player B assigns x and y to the same antichain,
then at round 3, Player A makes z > x and z||y. Player B’s only move is to assign z
to the other antichain. At round 4, Player A introduces w with w <z, w <y, and
wl}x. Again, Player B has no legal move.

Although posets of length 2 cannot be partitioned on-line into 2 antichains, they
can be partitioned on-line into 3 antichains. The general result is given by the
following theorem which is due to J. Schmerl, although the proof we give for the
lower bound is due to E. Szemerédi (see [3]).

Theorem 3. Posets of length n can be partitioned on-line into n(n + 1) /2 antichains.

Proof. Let n>1 and set t =n(n+1)/2. We shall provide a strategy for Player B
which will unable him to win the (k, n, )-game against any strategy by Player A.
Observe that there are exactly ¢ ordered pairs of the form (r,s) where 1 <r, s<n
and 7+ s<n+ 1. The ¢ antichains that will make up the partition of X will be
denoted { A(r,s): 1 <r,s<nand r+s<n+1}.

In view of the rules governing the game, we need give only the method by which
at each round Player B determines the pair (7, s) and therefore the set A(r,s) to
which x is assigned. To decide this, Player B examines the poset constructed thus
far by Player A and defines » = r(x) as the number of points in the largest chain
% (x) having x as its least element. Then let s = s(x) be the number of points in the
largest chain 2(x) having x as its greatest element (see Figure 3). It is important to
note that r(x) and s(x) are determined once and for all when x enters the poset.
Thus, although it may happen at a future round that x is the least element of a
chain having more than r(x) points, the value r(x) remains fixed.

We now show that each A(r, s) is an antichain. Suppose point x enters in round
i, and a distinct comparable point y enters in round j > i. If x € A(r, s), there is an
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r(x)=4

s(x)=5 <

Figure 3

s-element chain 2(x) having x as its greatest element and an r-element chain % (x)
having x as its least element. Now consider what happens when the comparable
point y enters: If x <y, then 2(x)U { y} is an s + 1-element chain having y as its
greatest element; if y <x, then (x)U { ¥} is an r + 1-element chain having y as
least element. In either case, Player B cannot assign y to A(r, s). Thus, no two
comparable points can be in the same A(r, s). This completes our proof that a poset
of length »n can be partitioned on-line into n(n + 1) /2 antichains.

It remains to be shown that posets of length n cannot be partitioned on-line into
fewer than n(n + 1)/2 antichains. For t < n(n + 1) /2, we will show that there exists
an integer k such that Player A has a winning strategy for the (k, n, t)-game. In
fact, surely for | X| = k <n(n+1)/2, fewer than n(n + 1) /2 antichains are needed.
We will actually prove the stronger result: For every pair n, t of positive integers,
there exists an integer k = k(n,t) that provides Player A a strategy S(n,t) for
constructing a k-element poset X, of length », and this strategy will either (1) win
the (k,n,t)-game, or (2) force Player B to use at least n(n+1)/2 of the ¢
antichains in covering X, while using at least » antichains in covering the maximal
elements of X,. In particular, note that if 1 <n(n+1)/2, then option (1) must
apply. The argument proceeds by induction on n. Note that the statement is trivial
when n =1, since Player A need only present B with a 1 point poset.

Next, we assume the statement is true for all » satisfying 1 <n <m. Now
suppose ¢ is any positive integer. Let kK = k(m, t) and k' = 3k + 1. We now describe
a strategy S(m + 1, ¢) for Player A to construct a k’-element poset X,. of length
m + 1, where S(m+1,t) will either (1) win the (k’, m + 1, t)-game, or (2) force
Player B to use at least (m + 1)(m + 2) /2 antichains in covering X,. while using at
least m + 1 antichains in covering the maximal elements of X,..

First, Player A follows strategy S(m, t) to construct a k-element poset having
length m. Clearly, we may assume that Player B is able to respond during each of
the first k rounds of the game. For convenience, we let Y, denote the k-element
poset constructed thus far. We know that Player A has forced Player B to use at
least m(m + 1)/2 antichains in covering the points of Y, and to use at least m
different antichains in covering the maximal elements of Y.
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Without regard for the results of the first k rounds, Player A begins from scratch
to follow strategy S(m, t) a second time to construct a k-element poset Y,. There
are no comparabilities between points in Y; and points in Y,. Since the length of the
poset determined by Y; U Y, is m, we may assume that Player B is able to respond
during each of the first 2k rounds. Therefore, Player B is forced to use at least
m(m + 1)/2 antichains in covering the points in Y, and to use at least m different
antichains in covering the maximal elements of Y. It is important to remember that
even though Player A follows the same strategy in constructing Y, and Y,, they need
not be isomorphic because Player B may not partition them in the same fashion.

If Player B has used at least m + 1 antichains to cover the antichain M, =
MAX(Y,) U MAX(Y,), then Player A employs strategy S(m,t) a third time to
construct a k-element poset Y;. However, this time Player A makes y, < a and y||y
for every y;€Y,, a€M,, and ye(Y,UY,)— M, The poset is completed by
adding an element x, incomparable to all other points (see Figure 4). Note that the
length of the resulting poset is m + 1, so we may again assume that Player B has
responded at each round. Since M, U { x,} is the set of maximal elements, Player B
has used at least m + 1 different antichains in covering the maximal elements.
Finally, we observe that any antichain used by Player B to cover a point in Y;
cannot have been used to cover a point of M. This implies that Player B will have
used at least m(m +1)/2 + (m+ 1) = (m + 1)(m + 2) /2 antichains in covering the
points of the poset. This is exactly what we claimed.

Figure 4

Next, we turn to the case where Player B has used only m antichains in covering
M,. In this case, at round 2k + 1, Player A adds the point y, with y,||y, for every
y €Y, and y,>y, for every y,€ Y,. It follows that Player B will use m+1
antichains in covering the set M; = MAX(Y;)U {y,}. Then Player A follows
strategy S(m, t) to build a k-element poset Y; with y; <a and ys||y for every
»EY,aeM,ye(Y,—M)UY,. As before, we conclude that Player B will use
at least (m + 1)(m + 2)/2 antichains in covering the resulting poset while using at
least m + 1 antichains in covering the maximal elements. This observation com-
pletes the proof.
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The On-Line Chain Partitioning Problem

In comparing Theorems 1 and 2, it is clear that the antichain partitioning problem is
easier than the chain partitioning problem. This is also true for the on-line versions.
H. Kierstead [2] has shown that posets of width »n can be partitioned on-line into
(8" — 1) /4 chains. But it is not known whether this bound is the best possible. The
correct value when n = 2 is not known. It is either 5 or 6. (As a challenging exercise,
the reader may enjoy trying to devise a strategy for partitioning on-line a poset of
width 2 into 6 chains.) The argument in the preceding section can be modified to
show that posets of width n cannot be partitioned on-line into fewer than n(n + 1) /2
chains. However, it is an open (and probably difficult) problem to determine
whether the on-line chain partitioning problem is polynomial or exponential in the
width. The interested reader is encouraged to consult Kierstead’s survey article on
recursive combinatorics [3] for additional information concerning optimization
problems done in an on-line fashion.

Acknowledgment. Research supported in part by NSF grant DMS 87-13994.
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God Made the Integers but Who'’s Keeping Track of Them?

The Pooka MacPhellimey, a member of the devil class, sat in his hut in the middle of a firwood
meditating on the nature of the numerals and segregating in his mind the odd ones from the even.

Flann O’Brien, At Swim-Two-Birds, Plume Books
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