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In this paper we define the n-cube @,, as the poset obtained by takirg the cartesian
product of # chains each consisting of two points. For a finite poset X, we then define
dimy X as the smallest positive integer » such that X can be embedded as a subposst of
@, For any poset X we then have log, 1X| < dimj X < {X1. For the distributive lattice
L= 2X dim; L = {X} and for the crown Sﬁ, dlmg(S,,) n + k. Foreach k > 2, there
exist positive constants ¢, and ¢5 so that for the poset X consisting of all one element
and k-element subsets of an n-eglement set, the inequality ¢ logy n < dimy/X) <cjzlogyn
holds for all n with k < n. A poset is called Q-critical if dim,(X ~x) < dimy(X) fcr
every x € X. We define a join operation @ on posets under which the collection ¢ of all
@-critical posets which are not chaias forms a semigroup in which unique factorization
holds. We then completely determine the subcollection <® € Q consisting of all posets
X for which dimy(X) = 1 X!.

1. Introduction

A partially ordered set or poset is a pair (X, P) where X is a set and P
is a reflexive, antisymmetric, and transitive relation on X. The notations
(x, y)EP x<yin P, and x Py are used interchangeably. If neither
(x, y) nor (y, x) is in P, we say x and y are incomparable and write
x Iy. For convenience we frequently denote a poset by a single sym-
bol: we also use X = Y and X C Y for X is isomorphic¢ to Y and X is
isomorphic to a subposet of Y.

The n-cube Q,, is the set of all 0--1 sequences of length n. We consider
@, as a poset with the natural partial ordering P defined by f F g ift
Ai) < g(i) for all i < n. Q,, is then isomorphic to the poszt consisting of
all subsets of an n-element set ordered by inclusion. Equivalently, Q,, is
the poset obtained by taking the cartesian product of n copies of the
two elerent chain 0 < 1.

In this paper we denote an n-element chain by n and labe! the points
ofnsothat 0< 1 < 2< ... < n -1 in n. With this notation, @, = 2".
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We also denote an n-element antichain (a poset in which distinct points
are always incomparable) by 7.

For a poset (X, P), Dushnik and Miller [4] defined the dimens:on of
(X, P), denoted dim(X, P), as the smallest positive integer # for which
there exist linear orders Ly, L,, ..., L, on X such that x «{ y in P iff
x € y in each L;. Equivalently, Ore [8] defined dim(X, P)as the smailest
positive integer n for which (X, PYS C; X C; X ... X C, where eachC;isa
chain. For a finite poset X and an mtegcr k Js 2, we deﬁr 2" the k-dlmen-
sion of X, dim, X, as the smallest positive integer n for which X C k".
In this paper we are concerned primarily with the case k = 2, i.e., the
erabedding of finite posets in cubes. We refer the reader to {12, 13} for
theorems when k£ > 3. We also note that the problem of embedding
graphs in cubes is di.cussed in [5, 5].

For each n > 1, the length of the longest chain in Q,, is easily seen to
be n + 1. It we take dim, (1) to be zero by convention, then w2 have
dimy n=» - for all n > 1. On the other hand, it follows immediately
from Sperne”’s theorem [i0], that dim, (77) is the smallest positive inte-
ger t for which ( ) =n.

IfxXzqQ, am} f X~ Q, is an embedding, then the map g X~ Q,
defined by gtx)(z) =1- f(r)t(n is an embedding of the dual J of X in
@, and hus dim, (X) = dzmz(l’)

For any noset X we have the trivial lower bound dim, (X) > log, | X]
since [Q, 1 =2 If X = {x‘, X3. wy X}, then the map f: X > O, defined
by _{\le)(j) =2.0fx;<x;inX and j( r ;) = 1 otherwise is an vmbeddmg
of Xin Qp axd thu% we have the upper bound dim, (X) < |Xi.

A poset X fer which dim, (X—x) < dim, (X) for every x € X is called
a Q-critical poset. Every chain of two or more points is Q-critical. We
denote the set of all @-critical posets which are not chains by @. A poset
X for which dim, (X) = | X is called an MQ poset and we denote the set
of all M() posets by M . Clearly every MQ poset is also Q-critical.

For arbilrary posets X and Y we define the join (or ordinal sum) of
X and Y, denoted X @ Y, as the poset obtained by placing all elements
of X under all zlements of Y. This operation is znalogous to the join
operat:on G, + G, defined for graphs by Zykov for if G(X) is the com-
parability graph of X, then G(X 2 Y) = G(X) + G(Y). However, in this
paper, we will use the symbol + to denote the free sum or cardinal sum
of posets as defined by Birkhoff [1, p. 55]. In subsequent sections of
this paper, we will show that both ()it , ®) and (Q, ¢) are semigroups

* This concept “as been studied by Novik [7] who used the terminolc g, k-pseudo-dimension.
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with ro prime posets which are composite in the semigroup of all posets
under &, We will then completely determine the set of al' prime MQ po-
sets.

For any pair of posets we have dim, (X X Y) < dim, (X) + dim,(Y)
and dim(X X Y) € dim X + dim Y. If X and Y have universal bounds,
then dim, (X X Y) = dimy(X) + dim,(Y) and dim(X X Y) =dim X +
dim Y (in particular, dim Q,, = n)..":t subsequent sections, we will dis-
cuss the analogy between dim, (X) arrd dim X in more detail.

2. Embedding the join of posets in cubes

In this section, we produce a formula for computing dim; (%) in
terms of its prime join factors.

Lemma 2.1. dim, (X ® 1) 2 dimy(X) + dim, (Y) for every X.Y.

Proof. Let f: X ® Y - (2, be an embedding. Define 4 C {1, 2, ..., n} by
A = {i: there exist x, x' € X such that f(x)(i) = 0 and f(x")(@) = {}. We
observe that for each y € Y and for eachi € A, fliy)(i) = 1. Now define
B = {i: there exist y, ¥’ € Y such that f(y)(7) = 0 and {y')i) = 1}. Then
it is easy to see that 4 and B are disjoint and that |4| > dim, (X) and
iBI = dim, (Y).

Lemma 2.2. If X has a greatest element and Y a least element, then
dimy(X @ Y) > 1 +dim, (X) + dim; (Y).

Proof. Let f: X @ ¥ » (), be any embedding and let 4 and B be de-
fined as in the preceding lemma. Let x be the greatest element of X
and let y be the least element of Y. Then define C= {i: f(: }i) =0
and fiy)(i) = 1}. Tt follows that A, B and C are mutually disjoint and
that C is nonempty.

Theorem 2.3. éim, (X @ ) = dimy (X) + dim, (Y) unless X has ¢ grea-
test element and Y has a least element. In that case dim,(X® V) =
i+ dimz(X) + dilnz( Y)

Proof. Letf: X~ (), and g : Y - Q,,, be embeddings. Defineh: X®Y
+ Qp+n bY H(x)(Ey = 0 for 1 <i<m: h(x)(@)=flx)(i) form + 1<i<nt+m;
YD =gO)i) fort<i<m;and h(pH@) =1 form+1<i<m+n.
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Then h is an embedding of X ® Y unless h(¢) = }:(y) for some x € X,
y € Y. It is easy to sce that this may occur only if X has a greatest ele-
merit and Y has a least element. In this case, it suffices to add one addi-
tionz! term to these sequences: a zero for each point m X and a one for
each pointin Y.

I« should be noted that the order of factors in the jo'm operation is
important. |

|

Corollary 2.4. If X =P, ® P, @ P; ® ... ® P, is the decorposition of X
into prime join factors. then dimy (X) = s + 2 dim, (#,). where s is the
number of subscripts i < t - | such that P;= P, = 1.

3. The stracture of Q-critical posets

I: follows immediately from the formula yor dim, (1) given in the
preceding section that the chains are the only Q-criticsi posets which
have 1 as a join factor. Also we sec that X @ ¥ is @-critical and does not
have ! as a join factor iff both X and Y are (J-critical aad neither has 1
as a join factor. Similarly X @ Y is MQ iff both X and " are MQ.

Example 3.1. Foreachn > 2,let L, =n_—_1 + 1. Since every chain in
Q,, . ; of length n — 1 contains at least one of the two universal bounds
and these points compare with every other point ¢f @, _,, it follows
tha: L, cannot be embedded in @, _, and thus Q(L,)) = n. Clearly each
L, s a prime MQ poset.

Exzmple 3.2. For each n > 4, let N,, denote the poset consisting of two
disjoint chainsa; < @, and by < b, < ... < b, _, with a, also covering
b, 3. Then Q(N,)=n - 1.

Exzmple 3.3. The only MQ poset on two points is L, = 2. The only MQ
posets on three points zie L4 and 3. The only prime MQ posets on four
points are Ly, Ly + 1 and 4. The only prime MQ poset on five points is
Ls. :

Lemma 3.4. If a is @ maximal element of a finite poset X and X — a
does noi have a greavest element, then dimy X < 1 + dim, (X - a).
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Proof. Let f : (X — a) - Q, be an embedding. Defineg : X -» Q,,, by
g(x)(@) = flx i) for every x € X — a and every i < ¢; g(a)(i) = 1 for
every i< £;g(x)(t+1)=0ifx<aand g(x). +1)=1if x < a for every
x € X. It follows easily that g is an embedding of X in Q,,,.

Theorem 3.5. For n 2 5, the only prime MQ posetis L,,.

Proof. Assume validity for n < k, where k£ > 5. Now suppose that X is a
prime MQ poset on k + 1 points. Since X is prime, it has two or more
maximal elements. Suppose that X has only two maximal elements e
and b. If a is the greatest element of X — b and b is the greatest element
of X — a, ther X has L, as a join factor. Now suppose that a is the
greatest element of X' — b but that b is not the greatest element of
X — a. Choose ¢ € X such thai a covers ¢ but b and ¢ are incomparable.
By Lemma 3.4, X — a is an MQ poset and if X — a is composite so is X.
If X —aisL;, then X is either L, ., or Ny, and since Ny ,, is not MQ,
Xmustbe L, ..

Now suppose that a is not the greatest element of X — b and that b
is not the greatest element of X — a. Choose clements ¢, 4 such that 2
covers ¢, b covers d, but a is incomparzble with d and b is incomparable
with ¢. Now X — g and X — b are both MQ posets and if either has a
join factor, so does X. Hence we may assume that X —a=X - b=L;.
But it is easy to see that no such pose* :xists. The contradiction shows
that X must have at least three maximal elements.

Choose any three maximal elements g, b and ¢. Then by Lemma 3.4,
we conclude that each of the posets X —a, X — b and X — ¢, must be
L; . Clearly this is not possible.

4. Embedding distributive lattices in cubes

In this section, we develop a formula for dim, (L) when L is a distri-
butive lattice. We employ the concept of exponentiation (cardinal
power) of posets and define XY as the collecticn of all order reversing
functions from Y to X with f< g in XY iff f{y) < g(y) in X for every
y € Y. We refer the reader to [1, p. 57] for elementary properties ot
XY. In particular. we note that for eac’: distributive lattice L there is a
unique poset X for which L = 2X.

Theorem 4.1. If L = 2% is a distributive lattice, then dim, (L) = |X|.
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Proof. Let [X| = n. Then 2% ¢ 27 = 2" = Q, and thus dim,(L) < n.On
the other hand, if we let Y be a linear extension of X, thenn +1=2"=
2¥ ¢ 2% and thus n = dim, (n_+ 1) < dim, (L).

Theorem 4.1 is a special case of a result for embedding distributive
lattices in chains of bounded lengths. We state this result and refer the
reader to [12] for the proof.

Theorem 4.2. Let L = 2X be a distributive lattice and let k > 2 be a posi-
tive integer. Then the smallest positive integer t for which L can be em-
bedded in k' is equal to the smallest posivive integer s for which there
exists a decomposition X = C, U Cy U ... U C, where each C, is a chain
contairing at most k — 1 points.

* We note that Theorem 4.2 includes Dilworth’s elegant result [2] for
the dimension of a distributive lattice, dim 2X = width X.

5. Embedding crowns in cubss

Foru= 3, k2 (0, the crown S‘:, is defined in [11] as a poset with
n + k maximal elements a;, d,, ..., @, 4 and n + k minimal elements
b,. by, ..., b, .. Each b; is inrcomparable with a;, a;,, ..., 8, (cyclic-
ally) and less than the remaining n — 1 maximal elements. In [11], it
is shown that dim SX = {2(n + k)/(k + 2)}. To determine dim,(S%), we
note that dim,(S¥) is the smallest integer ¢ for which there exists an
order preserving map f : Sﬁ - {, such that for every incomparable
max-min paira, b € Sﬁ, there exists i < ¢t with fAb)({) = 1 and fla)(i) = 0.

Theosem 5.1. dim, (S¥) = n + & foreveryn> 3,k > 0.

Proof. The map f: Sﬁ - Q, +i » defined by f(b,-)(i) =1ifi=j, 0 other-

wise, and fla)(i) = 0 if a I b;, | otherwise, shows that dim, (SX) < n + k.

Mow suppose that dim, (Sﬁ) = t. Choose an embedding g : Sk -+ Q, with
t

M=2 2. ()i
i=1 xe&Sn
as small as possible. For each i < ¢, let B; denote the sct of minimal ele-
ments b for which g(b)(i) = 1. Iu is clear that each B; # ¢ and that
gla)(i’ = O «ff a is incomparable with each b € B,. I 'r each i, choose a
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maximal element a' such that g(a’)(i) = 0 and let A4, be the set of all
maximal elements a such that g(a)(i) = C. Then B, is a subset of the set
D; consisting of all k + 1 minimal elements which aie incomparable
with a'. Subscripts interpreted cyclically impose a linear order on each
D;. Then for each i, let b’ be the largest element in B, as determined by
this linear order on D). Suppose that there exist distinct integersi, j < ¢
with b = p/. It follows that cither A; C A; or 4; C A;; we assume with-
out loss of generality that A C A;. Then define h : Sk > Q, by
h(b))(i) = 0 and h(x) = g(x) otherwise. It is easy to see that 4 is an em-
bedding but M has been reduced by 1. The contradiction shows that

bi # bf for every distinct pair i,j and thus dim, Sk =2 n + .

6. Embedding collections of sets in cubes

Dushnik [3] and Spencer [9] use the notation N(n, k) for the dimer.-
sion of the poset X consisting of all one clement and (kX — 1)-element
subsets of an n-eleruent set (n 2 k£ 2 3) ordered by inclusion. We will
denote dim, (X) by Q(n, k). It is easy to see that the foilowing alternate
definition of Q(n, k) is valid. |

Lemma 6.1. Q(n, k) is the smallest integer t for which there exists a col-
lection A|. A,, ..., A, of subsess 6f {1, 2, ..., n} so that jor each k-ele-
ment subset FC {1, 2, ...,n} and each a € F, there exists i < t such

that Fn A; = {a}.

Since |X| =n +(; n 1)» we see that for each k = 3, there exists a posi-
tive constant ¢, so that Q(, k) > c, log; n for alln > k. We can modify
Spencer’s probabilistic argt ment [9] to produce the following upper
bound

Theorem 6.2. For each k > 3, ther exists a positive constant ¢, so that
Q(n, k)< c, log,y n foralln > «.

Proof. Let s be a positive integer. Then there are 2"° s-tuples of subsets
of {1, 2, ..., n}. For each k-element subset FC {1, 2, ..., n} and each

a € F, (2% — 1)°275-ks of these s-tuples fail to satisfy the requirements

of Lemma 6.1. There are (})k < n* *!ways to choose F and a. In order

to insure the existence of an s-tuple of subsets of {1, 2, ..., n} satisfying
the requircments of the lemma, it is sufficient to chocse s so that
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nk 12k —1)s2ns-ks < 278 But it is easy to see that this inequality holds
if
s> {tk+ 1Yk - log,(2* ~ 1)]}og, n,

and the theorem is proved.
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