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A Note on Removable Pairs

H.A. Kierstead!
W.T. Trotter2

Department of Mathematics
Arizona State University

ABSTRACT

A long standing conjecture in the dimension theory for finite ordered sets asserts
that every ordered set (of at least three points) contains a pair whose removal
decreases the dimension at most one. Two stronger conjectures have been made:
(1) If (x,y) is a critical pair, then dim(P) <1 + dim (P — {x, y}).
(2) Forevery x € P, there exists y € P —{x} so that dim(P) <1 +

dim(P - {x, y}).

K. Reuter has disproved conjecture 1 by constructing a four—dimensional
poset P containing a critical pair (x,y) so that dim(P — (x,y}) = 2. In this
note, we construct for every n 25 an n—dimensional poset Py containing a
critical pair (x,y) so that dim(Py~ {x,y}) = n—2. Point y is a maximal point
of Py.

1. Preliminaries

Recall that the dimension of a finite ordered set P in the least positive integer t so
that there exist t linear extensions L1, L3, ..., Ly sothat P=Linlyn..NL. An
incomparable pair (x, y) is called a critical pair if any point less than x is less than y
and any point greater than y is greater than x. The dimension of P is the least t for
which there exist t linear extensions of P so that for every critical pair (x, y), there is
at least one i for which y <x in L;. We refer the reader to the survey article [3] by
D. Kelly and W.T. Trotter and the chapters [6], [7] by Trotter for additional
background information on dimension theory.

1. Research supported in part by the Office of Naval Research.
2. Research supported in part by the National Science Foundation.
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2. Removable Pairs

The following conjecture is one of the best known open problems in dimension
theory and is a featured problem in ORDER. We believe the first reference to the

conjecture is [1].

Conjecture 0 If P is an ordered set having at least three points, then P contains a
distinct pair (x,y) so that dim(P) <1 + dim(P - {x, y}).

A pair x,y € P for which dim(P) £1 +dim(P - {x, y}) iscalled a I-removable
pair, so that Conjecture 0 asserts that every poset contains a 1-removable pair.
The first reference to the following conjecture is apparently [5].

Conjecture 1  Every critical pair is 1-removable.

In {2}, D. Kelly made the following conjecture which is also stronger than

Conjecture 0.

Conjecture 2 For every x € P, there is a point y € P —{x} sothat x,y isa

I-removable pair.

K. Reuter [4] has disproved Conjecture 1 by constructing the ordered set shown in
Figure 1. This ordered set P has dimension 4, (x, y) is a critical pair, and
dim(P - {x,y}) = 2. Note that y is a maximal point.

Figure 1

The purpose of this note is to show that Reuter's example is not an isolated
phenomenon. To accomplish this, we will establish the following result.
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Theorem For every n 24, there exists an n—dimensional ordered set P, containing
a critical pair (x,y) so that y is a maximal element in Py, but (x,y) is not
1-removable, i.e., dim{(P — {x, y}) = n - 2.

Proof For n =4, we have Reuter's example shown in Figure 1. For n 2 5, the point
set of Py contains 4n— 4 points labelled {aj:1<i<n-2}ub:1<i<n-2}u
(ci:1<isn-2}u {d:1<i<n-2} U {x,¥,2 w}. Forall i,j with 1 <i,
JSn-2 and i+ j, we have the cover relations a; <: bj and ¢; <: dj. For each i with
I<i<n-2,wehave ;< y,C < V,€i <X, z< bj, w<:bj, w<dj, x <:bj, and
z<d;. We also have w <:y. We illustrate this definition with a diagram for Py when
n=35.

Figure 2

We first show that dim(Py,) 2 n. To the contrary, suppose dim(Py) <n— 1, and let
L1, Lg, ..., Ly—1 be linear extensions whose intersection is Pp. Without loss of
generality, we may assume that bj<a; in Lj for i=1, 2, ..., n — 2, Thus we must

have x>y in Ly-1 and z>y in Ly_g. However, this implies that for each i =1,
2, ..., n— 2, there exists a unique jie {1,2,..,n—2} sothat ¢;>dj in L;. Hence
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w>x in Lp_1 also. But this implies that w>x >y in Lp-1 which is impossible
since w<y in Pp. The contradiction completes the proof that dim(Py) 2 n.

We observe that y is maximal element of Py and that (x,y) is a critical pair. We
now show that dim(P, — {x, y}) £ n — 2. To accomplish this, consider the poset
Qn=Py—{x,y}. In Qy, we observe that z and w have duplicated holdings so that
dim(Qq — {z}) = dim{Qy). Let Q'h = Qp — {z}. We show that Q'y has n—2 linear
extensions which intersect to give Q'p. Let A = (a1, ag, ..., ap2}, B = {by, by, ...,
bpz}, C={c1,¢9, ..., cno} and D = {d;, dy, ..., dy_2].

For i=1,2,L; is any linear extension of @'y sothat A~ {a;} <C- {cj} <w<
di<ci<bj<a; <B-{b)} <D-{dj}. For i=3,4,..,n~-2,L; is any linear
extension of Q'; sothat w<C - {¢;} <dj<ci<D- {d;} <A - {a;} <b;j<B- {bj}.
It is easy to see that any family constructed by these rules forms a realizer. With this
observation, our proof is complete.

We pause 1o note that the construction given in the preceding family for {Pp:n2 5}
does not work for n = 4. In this case, dim Py = 4, but dim(Py — {x, y}) =3. Thus to
handle the case n = 4, we need a special example, and Reuter's construction suffices.

3. Concluding Remarks

We view the results of this note as providing additional evidence as to the difficulty
of Conjecture 0, but we are unable to decide whether our theorem argues for or against
the conjecture. It is easy to see that the examples satisfy Conjecture 2, so at least this
stronger form of the original conjecutre remains open.
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