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ABSTRACT 

Let P = (X, <) be a finite ordered set and let I PI denote the cardinality of the universe X. 
Also let A(P) denote the maximum degree of P, i.e., the maximum number of points 
comparable to any one point of P. Fiiredi and Kahn used probabilistic methods to show 
that the dimension of P satisfies dim(P) I c,A(P) log(P1 and dim(P) 5 c,A(P) log2A(P) 
where c ,  and c, are positive absolute constants. In this article, we consider the probability 
space n ( n ,  p) of bipartite ordered sets having n minimal elements and n maximal 
elements, where the events that any minimal element is less than any maximal element are 
independently distributed and each has probability p = p(n).  We show that for every E > 0, 
there exist 6, c > 0 so that: (1) if (log"'n)/n < p  5 l / log n, then dim(P) > Spn log p n  for 
almost all P E n ( n ,  p); and (2) if l / log n ~p < 1 - n-'+', then dim(P) > n - cn /p  log n 
for almost all P E R ( n ,  p). The first inequality is best possible up to the value of the 
constant 6 when p > (log2"n)/n. As to the accuracy of the second inequality, we have the 
trivial upper bound dim(P) 5 n for all PE R(n, p). We then develop a nontrivial upper 
bound which holds for almost all P E n(n,  p), when p 2 1 /log n. This upper bound has the 
same form as the lower bound when p is constant. We also study the space 2 ( n )  of all 
labelled ordered sets on n points and show that there exist positive constants c ,  , c2 so that 
n/4  - c,n/log n < dim(P) < n/4 - c,n/log n for almost all P E d;P(n). 
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1. INTRODUCTION 

For an ordered set P = (X, <), the cardinality of P, denoted I PI, is the cardinality 
of its universe X. The maximum degree of P is A(P) = maxxEP({ y E X: y < x or 
x < y}l. A realizer Z = { L , ,  . . . , L,} of P is a collection of linear orders on X 
such that x < y in P iff x < y in L, for every L E 2. The dimension of P, denoted 
dim(P), is the least t such that P has a realizer of cardinality t. The ordered set S,, 
consisting of the l-element and n - l-element subsets of a n-element set ordered 
by inclusion, is so important to the dimension theory of ordered sets that it is 
called the standard example. The reader should check that dim(S,,) = n, IS,,[ = 2n, 
and A(S,) = n - 1. The problem of determining bounds on the dimension for 
various classes of ordered sets has been a major topic in the theory of ordered sets 
over the past 20 years. The reader is refered to the survey article [6] of Kelly and 
Trotter for further background information. 

In this article we consider upper bounds on the dimension of an ordered set P 
in terms of its cardinality and maximum degree, and then study how tight these 
bounds actually are. There is one elementary bound of this type. Hiraguchi [5 ]  
proved that dim(P) zs I PI /2, when I PI 2 4. The standard example shows that this 
is an optimal bound. Recently, Furedi and Kahn [3] used probabilistic techniques 
to prove the following inequalities. 

Theorem 1.1. There exists a positive absolute constant c, so that if P = (X, <) is 
an ordered set, then dim(P) 5 clA(P) loglPI. 8 

For an integer k 2 2, let m(k) = max{dim(P): A(P) = k}. 

Theorem 1.2. There exists a positive absolute constant c2 so that if P = (X, <) is 
an ordered set, then dim(P) 5 c2A(P) log2(A(P)), i.e., m(k)  I c,k log'k, for all 
k r 2 .  8 

To establish inequality ( l . l ) ,  Furedi and Kahn first showed that the dimension of 
P is the least t such that there exists a collection Z' of linear orders with the 
property that, for all x ,  y E X, either x < y in P or y < U [ x ]  in L for some L E Z', 
where U [ x ]  = {z E X: x 5 z in P}. We shall call such a collection a quasi-realizer. 
They proved Theorem 1.1 by showing that almost all collections of linear orders 
of the given size are quasi-realizers. They proved Theorem 1.2 with a clever 
application of the Lovisz Local Lemma [2]. 

Previously, the best known example of an ordered set with small maximum 
degree and cardinality, but large dimension, was the standard example. In order 
to find better examples, we set out to analyze the probability space n ( n ,  p)  of 
bipartite ordered sets with n minimal elements A,  and n maximal elements A', 
where the events that any minimal element is less than any maximal element are 
independently distributed and each event has probability p = p(n). We establish 
the following inequalities. 

Theorem 1.3. For every E >0, there exbt 6 > O  so that if 

then dim(P) > Spn log pn for almost all P E a ( n ,  p). 8 
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Theorem 1.4. For every E > 0, there exist S ,  c > 0 so that if 

l / l o g n s p < 1 -  n- '+ ' ,  

then dim(P) > max{Sn, n - cn/(  p log n) }  for almost all P E n ( n ,  p ) .  

The inequalities in (1.3) and (1.4) follow easily from the following comprehen- 
sive inequality. 

Theorem 1.5. For every E > 0, there exist 6 > 0 so that if 

(log'+'n)/n < p < 1 - n-'+' , 

then dim(P) > (Spn log pn)  /( 1 + Sp log pn) for almost all P E n ( n ,  p ) .  rn 

A simple calculation shows that if p > (log2+'n)/n, then IA(P) - pnl = o( pn) 
for almost all P E n ( n ,  p ) ;  furthermore, when p > n-'+', log np and log n are of 
the same order, so we have the following result. 

Corollary 1.6. For every E > 0, there exists a S > 0 so that ifn-'+' < p  I 1 /log n,  
then dim(P) > SA(P) logIP1 for almost all P E n ( n ,  p ) .  w 

This corollary shows that the Furedi/Kahn inequality (1.1) is best possible up 
to the value of the constant cl. However, our techniques do not allow us to 
determine the correct exponent on the log(A(P)) term in the Fiiredi/Kahn 
inequality (1.2). In fact when p is small, we are unable to answer whether the 
lower bound on dim(P) provided by Theorem 1.3 is accurate to within a 
multiplicative constant. As for Theorem 1.4, we derive in Section 2 an upper 
bound on the expected value of dim(P) which shows that the inequality 
dim(P) > rz - c n / ( p  log n) ,  for almost all P E O(n,  p ) ,  is best possible up to the 
value of c ,  when p is constant. There is a gap in our bounds when 1/ 
log n ' p  = o(1). We consider the problem of narrowing the gaps in the known 
bounds for the expected value of dim(P) as an important topic for further 
research. 

Another probability model for ordered sets assigns equal probability to every 
labelled ordered set on n points. Using results of Kleitman and Rothschild [8] on 
the structure of random ordered sets in this model, we prove the following 
inequalities. 

Theorem 1.7. There exist absolute constants cl, c2 > 0 so that 

!(I- 4 L ) < d i m ( P ) < z ( l -  logn A) log n 

for almost all labelled ordered sets on n points. rn 

The remainder of the paper is organized as follows. In Section 2 the probability 
space n ( n ,  p )  is introduced, and some easy upper bounds are proved. These 
bounds serve to illustrate some of the issues addressed in the proof of the main 
theorem and to suggest the form of the lower bounds which follow. The main 
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results on the dimension of random bipartite ordered sets are proved in Section 3. 
In Section 4 the probability space 2 ( n )  of all labelled ordered sets on n points is 
introduced, and the dimension of a random ordered set in this model is studied. 
Some concluding remarks are made in Section 5 .  In the remainder of this section, 
we review our notation. 

Notation. We consider an ordered set P as a pair (X, <), where the universe X is 
a set (always finite in this paper) and < is an irreflexive and transitive binary 
relation on X. Such relations are called strict partial orders. When P = ( X ,  <) is 
an ordered set, we let P* = ( X ,  <*) denote the dual of P, i.e., a < b in P* exactly 
when b < a in P. If a and b are distinct elements of X and either a < b in P or 
b < a in P, we say a and b are comparable; otherwise a and b are incomparable 
and we write allb in P. An ordered set (X, <) is linearly ordered if there are no 
incomparable pairs. A linearly ordered set is also called a chain. A subset A of X 
is called an antichain if a ,  Ila, in P for every a,, az E X. We denote by M A X ( P )  
the antichain of maximal elements of P, i.e., x E M A X ( P )  if x E X and there is no 
y E X for which x < y in P. Dually, MIN(P) is the antichain of minimal elements 
of P. 

Let P = ( X ,  <) be an ordered set and let S C X .  S is called an up-set if a E S 
and a <  b always imply b e  S .  Down-sets are defined dually. We denote the 
restriction of P to S by P 1 S .  If a E X and a FS, we will write a < S, we will write 
a < S in P when a < b in P for every b E S .  Similarly, if S, and S, are disjoint 
subsets of X, we write S, < S, in P if a < S, in P for every a E S,. The notations 
allS and S,((S, are defined analogously. When L,  = (XI, <,) and L, = (X,, <,) 
are linearly ordered sets, and X, n X ,  = 0 ,  we use the notation L, @ L, for the 
linear order L = (XI U X,, <) with L 1 Xi = L, for i = 1 , 2  and X ,  < X ,  in L .  
When P = ( X ,  <) is an ordered set and a E X ,  we use the notation U [ a ]  to 
denote the up-set { b E X :  a I b } .  The down-set { b E X :  b I a }  is denoted D [ a ] ,  
while U(a)  = U [ a ]  - { a }  and D(a) = D [ a ]  - { a } .  All logarithms in the paper are 
natural logarithms (base e) .  

A s  mentioned previously, the cardinality of an ordered set P = (X, <) is the 
cardinality 1x1 of the universe. The degree of a point a E X, denoted deg,(a), is 
I{ b E X :  a < b or b < a}l .  The maximum degree of P, denoted A ( P ) ,  is max- 
{deg, (a )  : a E X } .  

2. RANDOM BIPARTITE ORDERED SETS 

We consider the following probability model for random bipartite ordered sets. 
For each positive integer n and each real number p (in general, p will be a 
function of n)  with 0 5 p I 1, the sample space R = n ( n ,  p )  consists of all labelled 
bipartite ordered sets P = (A U A‘, <) such that A = {a , ,  . . . , a,}, A’ = 
{ a ; ,  . . . , a:}, A C M I N ( P ) ,  and A ’ C M A X ( P ) .  If P has q relations, then 
Pr(P) = p q ( l  - q)n’--q. We let (a, < a;)  denote the event consisting of all ordered 
sets P E R satisfying a, < a; in P. Similarly, (ailla;) denotes the event consisting of 
all P E R  with aillaj in P. Thus Pr(a,<ai) = p ,  Pr(a,Ila;) = 1 - p  and the set of 
events { (a,  < a; ) :  1 I i, j I n }  is independent. Recall that if p > (log’+‘n)/n, then 
IA(P) - pnl = o( pn) ,  for almost all P E R .  
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Consider P E R .  It is clear from Hiraguchi’s bound that d im(P)sn .  In the 
next two inequalities, we bound dim(P) away from n. When p I 1 /log n, we use 
the upper bound on dim(P) provided by the following trivial corollary to the 
Furedi / Kahn inequalities (1.1) and (1.2). 

Corollary 2.1. For each E > 0, there exist a positive absolute constant c so that if 
(log2+‘n) /n < p I 1 /(c log n), then dim(P) I min{cpn log’pn, cpn log n} for al- 
most all P. rn 

When p 2 1 /log n, we need a better bound. This will follow from the following 
preliminary result. The additive constant in this inequality can easily be removed; 
however, since it makes the proof clearer and does not affect the asymptotics, we 
leave it in. 

Lemma 2.2. Let p 2 1 /log n and let t = t(n) be a function of n with 0 < t < n. If 

then dim(P) 5 [t + 21 for almost all P E R(n, p). 

Proof. Let t‘ = [t l .  We actually show that there exists a collection C = 
{Ll ,  L,, . . . , Lr,+,} so that C is a quasi-realizer of P for almost all P. To 
accomplish this, let F‘ = {a:  : 1 I i I t’} and M ’  = {a;  : t‘ < j I n}. Also let 
{ S j :  t’ < j I n} be a partition of (1, . . . , t’} such that llSjl - IS,[( I 1, for all j and 
k. lSjl 2 [t’/(n - t’)] 2 Lt/(n - t)] 2 t/(n - t) - 1 = (2t - n) / 
(n - t ) ,  for each j with t’ < j I n. Then choose a collection I: = {Ll ,  . . . , Lr,+*} 
of linear orders such that 

Observe that 

(i) a;  is the least element in L,, for 1 < i I t’; 
(ii) a; is the second least element in L,, when a;. E M ’  and i E Sj ,  for 1 5  i I t’ 

(iii) L f , + l  = KCB K’ and L,t+2 = K * @ ( K ’ ) * ,  where K and K’ are any linear 
and t’ < j I n; and 

orders on A and A’, respectively. 

It remains to check that for almost all P E R ,  Z is a quasi-realizer of P. It is 
clear that y < U [ x ]  in either L,+, or Lf+,, for all ( x ,  y) E ( A  x A )  U (A’ x A )  U 
(A’ X A’). Let Qi(a, a ‘ )  be the event that a’ < U [ a ]  in L,,  and let R(a ,  a ’ )  be the 
event (a  < a ‘ )  U U::, Qi(a,  a ’ ) .  We must show that Pr( n (., R(a, a ’ ) )  
approaches 1. 

Note that a: < U [ a ]  in L,,  for all (a, a : )  E A X F’. Thus it suffices to show that 
Pr( n R(a,  a ’ ) )  approaches 1. For (a ,  a;)  E A x M’ and i E Sj,  a; < 
U [ a ]  in L, iff alla:, since a: is the only element of A U A’ below a; in Li. Thus the 
event T(a,  a ; )  = (a  < a ; )  U U ,,=sj (alla:) is contained in R(a,  a ’ ) .  The set of 
events { ( a  < a; ) }  U {(allaei): i E S j }  is independent. Since the Sj are pairwise 
disjoint and i E Sj implies a:  gM’, the set of events { T(a, a; )  : (a, a;)  E A X M’} 
is independent. Also, IA x M’I 2 n(n - t - 1). Thus 
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The right-hand side of this inequality approaches 1, which completes the proof. 

The following result now follows from Lemma 2.2 by an elementary calcula- 
tion. The lower bound on p in this result only serves to limit the inequality on 
dim(P) to the range where the FiiredUKahn bound is no longer useful. 

Theorem 2.3. Let E > 0 and let p = p ( n )  satisfy 1 /log n I p < 1. Then 

dim(P) < n( 1 - - - 2 +  E logn 

for almost all P E n(n, p ) .  

Proof. Let 

Then 0 < t < n. Also, 

(2t  - n ) / ( n  - t )  = ( (2  + E) log(n)/(log $)) - 2 .  

Therefore, 

which goes to 1. 

Corollary 2.4. 
c = c( p )  so that 

When p is a constant with 0 < p < 1, there exists a positive constant 

cn 
dim(P) < n - - log n 

for almost all P E n(n, p ) .  

We have stated the special case in Corollary 2.4 to emphasize that our upper 
and lower bounds on the expected value of dim(P) have the same form when p is 
a constant. 
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3. LOWER BOUNDS O N  DIMENSION 

In this section we prove the following technical result, which is then used to 
obtain the inequalities (1.3), (1.4), and (1.5) discussed in the introduction. 

Theorem 3.10. Let t = t(n) be a nonnegative function of n, and let p = p(n) be a 
function of n with 0 < p < 1. Suppose 

(1) lim p n = m ,  
n-m 

t 
(2) lim - = m ,  and 

n-m p(n - t) 
241 p2(n - 1 ) )  -- ~ 

41 log n log pn 
p ( n - r )  5121 logzpn - (3) n - m  lim e [ l - ( l - p ) e  1 - 0 .  

Then dim(P) > t for almost all P E 0 ( n ,  p). rn 

The proof of Theorem 3.1 will follow from a series of lemmas. As we proceed 
we will explain our approach and point out some of the difficulties which must be 
overcome. Naively, we would like to show that the number of t-collections of 
linear orders times the probability that P E R  is realized by a particular t- 
collection of linear orders is extremely small. However, this is not true. The 
number of such t-collections that realize some P E R is greater than IR(. If, for 
example, p = 112, each of these ordered sets is equally likely, and this approach 
would yield only a lower bound of the form Enllog n. To get around. this problem, 
we introduce the notions of short pairs, short realizers and short dimension. We 
first show that for almost all P E 0, the short dimension of P is less than or equal 
to the dimension of P. We then complete the proof by showing that the number of 
t-collections of short pairs times the probability that a t-collection realizes P E R is 
extremely small. 

Definition 3.2. A bipartite ordered set P E 0 ( n ,  p)  is s-mixed if for all s-subsets 
B C A and B‘ C A’, there exist b E B and b’ E B’ such that b < b’. 

Lemma 3.3. If s = L(2 log pn)/p] and limn-,- pn = 00, then almost all PE  
Q(n, p )  are s-mixed. 

Proof. If P is not s-mixed, there exist s-subsets B C A and B ’ C  A’ such that 
bllb’ for all b E B and b ’ E  B’. Thus 

Pr[P is not s-mixed] 5 

which goes to 0 when 

s = L(2 log pn) /p] and lim pn = m. 
n-m 

Definition 3.4. 
we assume limn+, pn = a. 

In the remainder of this section, we let s = L(2 log pn)/p] , and 
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Definition 3.5. A short linear order a = (B, <) of a set S consists of an s-element 
subset B C S  and a linear order < on B, i.e., a short linear order of S is a 
permutation of s distinct elements selected from S. In what follows, we call 
(a, a’) a short pair when a is a short linear order of A and a’ is a short linear 
order of A’. 

Now let P E n(n, p), let (a, a’) be a short pair with a = (B, <) and a’ = 
(B’, <’), and let (a, a ’ )  E A X A’. We say (a, a’) realizes (a, a ’ )  if any of the 
following conditions hold: 

(1) a<a ‘  in P. 
(2i) a E B and b(la‘, for all b E B with b > a in a. 
( 2 4  a’ E B’ and b’(la, for all b’ E B’ with b’ < a‘ in a’. 

A collection C of short pairs is called a short realizer of P if for every 
(a, a ’ )  E A x A‘, there is some (a, a‘) € 2  so that (a, a’) realizes (a, a ’ ) .  The 
short dimension of P, denoted sdim(P), is the least s such that P has a short 
realizer I: containing t short pairs. The reason for introducing short linear orders 
and short realizers is to eliminate the overcount noted previously when we 
consider linear orders on the entire ground set. 

Lemma 3.6. sdim(P) 5 dim(P) for almost all P E n ( n ,  p). 

Proof. Let P E R ( n ,  p )  and let t = dim(P). Choose a realizer { L l ,  L,, . . . , L,} 
of P. For each i = 1,2, . . . , t, let a, be the restriction of L; to the subset Bi 
containing the s largest elements of Li 1 A ,  and let a: be the restriction of Li to 
the subset B :  containing the s smallest elements of Li r A’. Then let C = 
{(a;, a:) : 1 I i I t}. We claim C is a short realizer for P, provided P is s-mixed. 

Suppose that (a, a ’ )  E A X A’, but that (a, a ’ )  is not realized by any short pair 
(ai, a:) E Z. Then alla’ in P, so there is some j with a‘ < a in Lj .  This requires 
b(la’ for all b E A with b > a in L j ,  and b’lla for all b’ E A’ with 6’ < a’ in Lj .  We 
conclude that a$Bj and a ’ $ B ; .  Thus 6‘ < a’ < a < b in Lj and b‘JJb  for every 
b’ E BJ and b E B j .  This of course implies P is not s-mixed. Since almost all 
P E n ( n ,  p)  are s-mixed, the lemma follows. 

In order to guarantee that we are not giving up too much in working with the 
short dimension of ordered sets in n ( n ,  p), we give the following elementary 
bound. 

Lemma 3.7. dim( P)  I 1 + 2sdim(P) for all P E a(n, p). 

Proof. Suppose that C = {(a1, a;), (a,, a;), . . . , (a,, a:)} is a family of short 
pairs and I: is a short realizer of some P E n(n,  p). For each i = 1,2,  . . . , t ,  let 
ai = ( B i ,  Ci) and a: = ( B : ,  <:). Form a realizer R = { M l , .  . . , M I ,  Mi,. . . , Mi, 
N} of P as follows. Let Mi restricted to A be formed by putting all the elements of 
Bi ordered by a; over all the elements of A - Bi ordered arbitrarily. Extend this 
order to X by inserting the elements of A’ as low as possible with respect to P. 
Notice that if al(a‘ and the short pair (ai, a:) realizes (a, a ’ )  by virtue of (2i), 
then a’ < a in M i .  Similarly, let Mi restricted to A’ be formed by putting all the 
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elements of B :  ordered by a: under all the elements of A’- B:  ordered 
arbitrarily. Extend this order to X by inserting the elements of A as high as 
possible with respect to P. Notice that if alla’ and the short pair (a;, a:) realizes 
(a, a ’ )  by virtue of ( 2 4 ,  then a ’ <  a in M:. Finally, form N by putting all the 
elements of A, ordered by MT under all the elements of A‘, also ordered by MT. 
Clearly R is a realizer of P of the desired size. rn 

Next we observe that the number of families of short pairs is relatively small. 

Lemma 3.8. For each n ,  the number of t-collections Z = {(a,, u;), 
(a2, a;), . . . , (aI, a:)} of short pairs is less than e 

Proof. The number of t-collections of short pairs is at most (( ;)s!)” which is 
less than eZsr log n. 

2sr log n . 

Now we consider fixed values of n and p and a fixed t-collection Z = {(a1, a;), 
(u2, a;), . . . , (ar, a:)} of short pairs. For each i = 1,2,. . . , t let a; = (Bi, <i) 
and a: = ( B I ,  <:) Then for each a E B;,  let a;(a) denote [ { b  E Bi: a < b in ai}l, 
and for each a’ E B : ,  let a : (a ’ )  denote [ {b ’  E B :  : b’ < a’ in a:}[. Our goal is to 
produce an upper bound on the probability that I: is a short realizer of a random 
P E n(n, p ) .  The analysis will be simplified by the following elementary property. 

Fact. Among all t-collections C. = {(a,, a;), (a2, a;), . . . , (af, a;)} of short 
pairs, the probability that Z is a short realizer of a random P E R ( n ,  p )  is 
maximum for some 2 for which: 

(1) 

(2) 

[ { a  E A: there is some i with 1 5  i 5 t for which a E B; and ai (a)  = O}l = t, 
and 
I{a’ E A‘: there is some i with 1 5  i 5 t for which a’ E B:  and a:(a’) = 
O}l = t .  

This fact follows from the observation that once an element a E A has occurred 
in first place in some pi, there is no advantage to having a occur in any Bj with 
j # i .  Such an element can be safely deleted from Bj .  The elements preceding a 
are advanced one position in 9 and a new first element is chosen from among 
those elements of A not previously belonging to Bj.  This exchange can only 
increase the set of P E n ( n ,  p) for which Z is a short realizer. 

Accordingly, in what follows, we will assume that I: satisfies conditions (1) and 
(2) of this fact. We then let R be the event that Z is a short realizer for a random 
P E n ( n ,  p). We will show that Pr(R) is very small, in fact much less than 

. To accomplish this, we express R in terms of simpler events. We have - 2sr log n 

where R(a,  a ’ )  is the event that some short pair in Z realizes ( a ,  a ’ ) .  Then 

R(a, a ’ )  = (a < a ’ )  U Q ( a ,  a ’ )  U Q’(a, a ’ )  , 
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where 
I 

Q(a,  a ’ )  = U Qi(a ,  a ’ )  , Qi(a ,  a ’ )  = n { (b l la’ ) :a  < b in mi} 
i = l  

if a E Bi , and Q,(a, a ’ )  = 0 if a g B i ;  and 

I 

Q’(a ,  a ’ )  = U Q:(a,  a ’ )  , Q;(a, a ’ )  = n {(b’llu): b’ < a’ in B ; }  
i = l  

if a ’ €  B ; ,  and Q;(a,  a ‘ )  = 0 if a ’ g B ; .  

We seek a small lower bound for the probability of R. For each (a ,  a ’ )  E A x A‘, 
it is reasonably straightforward to calculate a good lower bound for Pr(1 R(a, a’)) .  
Since 1 R(a, a ’ )  = (alla‘) fl1 Q(a,  a ’ )  f l1  Q’(a ,  a’ ) ,  and these events are indepen- 
dent (they are defined in terms of disjoint sets of possible comparabilities in P), 

Pr(l R(a,  a ’ ) )  = (1 - p )  Pr(l Q(a, a’ ) )  Pr(l &’(a, a ‘ ) )  

Next we consider the probability of 1 Q(a, a ’ )  = n:=, 1 Q,(a,  a ’ ) .  The events 
1 Qi(a ,  a ’ )  are not independent, but as we shall see, are positively correlated. 
Thus 

I 

2 n (1 - (1  - p)“‘“’) . 
i= 1 

Similarly, Pr(1 Q‘(a ,  a ‘ ) )  2 IIf,,(l - (1 - p)ui‘a’)) .  Two problems remain. We 
would like to estimate Pr(R) by II,a,a.,,A,A. Pr(R(a, a’ ) ) .  However, the set 
(1 R(a,  a ’ )  : (a, a ’ )  E A x A‘} is neither independent nor positively correlated. 
Moreover, our lower bound for Pr(1 R(a, a’ ) )  depends on Z. These problems will 
be circumvented by defining a subset Y C A X A‘, and for each (a ,  a ’ )  E Y an 
event T(a, a ‘ )  so that: 

(1) R(a,  a ’ )  c T(a, a ’ ) ;  
(2) Pr( T(a, a‘ ) )  is a reasonable upper bound for Pr(R(a, a ’ ) )  and is approxi- 

mately equal to the average value of Pr(T(a, a ’ ) )  for (a, a ’ )  E A x A‘; 
(3) The events in Y = { T(a, a ‘ )  : ( a ,  a ‘ )  E Y} are independent; and 
(4) Y is a relatively large subset of A x A’. 

These conditions imply that Pr(R) 5 a , ) E Y  Pr( T(a, a’)) .  The price we pay is 

Consider subsets X C A and X’ C A’. For each (a,  a ’ )  E X X X‘ , we define the 
that 1.9’1 C [A x A ’ [ .  When p is very small, we apparently give up too much. 

event R(a,  a ’ / X ,  X’) as follows. 

R(a,  a ‘ /X ,  X ’ )  = (a < a ‘ )  U Q(a, a ‘ / X )  U Q‘(a, a ‘ / X ‘ )  , 

where 
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I 

Q(a, a’lX) = U Q,(a, a ’ / X )  ; 

Q,(a,u’/X)= n { ( b l l a ’ ) : b E X n B i a n d a < b  in a;}; 

Q’(a, a’/X’) = U Q:(a ,  a’/X’) ; 

i =  1 

I 

i = l  

and 

Q;(a ,  a ’ / X ’ )  = n {(b’lla): b’ EX’ f7 B; and b‘ < a’ in a;} 

The events T(a, a ’ )  will have the form R(a, a‘/X(a), X’(a‘)). Note that for every 
X C A ,  X’ C A’ and (a,  a ’ )  E X x X’ , we have R(a,  a ’ )  C R(a,  a ’ / X ,  X’), 
Q(a, a ’ )  C Q(a ,  a’lX), and Q’(u, a ’ )  C Q‘(a,  a’lX’), since &;(a, a ’ )  C Q,(a, a ’ /  
X )  and Qi(a, a ’ )  C Q;(a, a ’ / X ’ ) .  

For a E X, we define the height of a over X in ai by 

J { b E X n B i : a < b i n a i } J  i f a E B ,  
h;(a/X)= if a # B i .  

Similarly, for a‘ E X‘ , the height of a’ over X’ in a; is 

I { b ’ E X ’ n  B::b’<a’in a:}\ 
h; (a ‘ /X’ )  = if a’jZ’Bi. 

if a ’ €  B; 

For a E X, and for k satisfying 15 k 5 s, let the k-multiplicity of a over X be 
u,(a/X) = [{i: h,(a/X) = k } l .  The k-multiplicity of a‘ E X‘ over X‘ is defined 
similarly. Finally, we define a weight function w, which will allow us to choose a 
pair (a ,  a ’ )  E X x X’ so that the probability of the event R(a,  a‘/X, X’) can be 
accurately approximated. 

Let the weight of a over X be w(a/X) = w,(a/X) + w,(a/X), where 

2 
w,(a/X) = 2 u , ( a / X )  log - 

l s k c l  kP 
P 

and 

w , ( a / ~ )  = 2uk(a/x)e-pk . 
l s k a s  
P 

The weight w(a’/X’) of a’ over X’ is defined similarly. It is important to note that 
the value k = 0 is excluded in the definition of weight. This exclusion results from 
the special role played by the last elements in the u,’s and the first elements of the 

Next we shall bound Pr(T(a, a‘lX, X’)) in terms of w ( a / X )  and w(a‘/X’). We 
will need the following special case of the Ahlswede and Daykin [l] inequality, 
which was first proved by Kleitman [7]. 

U ; ” S .  
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Proposition 3.9. 
inclusion, and U,  and U, are upsets of X ,  then I U ,  I l 1x1 5 I U, n U,l/ I U, I. 

If P = ( X ,  <) is the family of subsets of a finite set ordered by 

In applying Proposition 3.9, we view R as a subset lattice as follows: For 
P, P‘ E R, P C  P’ iff a < a’ in P implies a < a ‘  in P’ , for all pairs (a, a’) E 
A X  A’. Thus if El and E, are events which happen to be up-sets of R, 
Pr(E,) 5 Pr(E,IE,). 

Lemma 3.10. Let X C A ,  X’ C A’ and (a,  a’ )  E X x X’  with h , ( a / X )  # 0 # 
w ( o / X ) -  w ( o ’ / X ’ )  h,(a’lX‘)fori = 1,2,  . . . , t. ThenPr(R(a, a‘lX, X ’ ) )  5 1 - (1 - p)e -  

Proof. Recall that R(a,  a’ /X ,  X ’ )  can be expressed as 

R(a, a’ /X ,  X ’ )  = ( a  < a’) U Q(a, a ‘ / X )  U Q’(a, a’ /X’)  . (1) 

The three events (a < a’), Q(a, a‘ lX) ,  and Q’(a, a’/X’)  are independent 
because they are defined in terms of disjoint sets of comparability relations of P. 

Pr( Qi(a, a’ lX))  = (1 - p)hi(a’X! (2) 

Now let Ei = n ;<: 1 Q,(a, a ’ / X )  for each i = 1,2,  . . . , t. Notice that the 
events 1 Qi(a, a’ lX)  and Ei are both up-sets in R. Thus using Proposition 3.9 and 
(2) we obtain: 

e - w l ( a / X ) - w * ( u / X )  - - w ( o / X )  - e  

Similarly, 

(4) Pr(1 Q’(a, a’lx’))  2 e-w(a”X‘) . 

Thus by (1) and independence Pr(R(a, a‘lX, X ’ ) )  5 1 - (1 - p)e-w(o’x)-w(O’/X‘). 
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Lemma 3.11. Let X and X’ be subsets of A and A’, respectively. The mean value 
of w(a lX) ,  for a E X ,  is at most - and the mean value of w(a’/X’) for 
a’ E X ’ ,  is at most 7. 

Proof. 

3t 
3t PIXI ’ 

PIX I 
The total weight of all a E X  is 

31 
I-. 

P 
3t Thus the mean value of w(a lX) ,  for a E X, is at most -. A similar argument 

holds for w(a’/X’), a ‘ E X ’ .  PIXI 

For each (a, a ’ )  E X X X’ , we define the witness set of (a, a ’ )  over ( X ,  X ’ )  to 
be W(a, a ’ /X ,  X ’ )  = ( { a }  x W’(a’/X’)) U ( W ( a l X )  x { a ’ } ) ,  where 

W ( a I X ) = { b E X : a s b  in some mi} 

and 

W’(a’ /X’)  = {b’ E X ‘ :  b’ I a’ in some m i }  . 

We call W ( a / X )  and W’(a’IX’) the witness sets of a over X and a’ over X ’ ,  
respectively. 

Key Observation. In the argument to follow, we observe that a set of events 
{ R(a,  a’lX(a), X’(a‘)) : (a, a ’ )  E Y} is independent if the witness sets { W(a, a ’ /  
X(a) ,  X’(a)): (a, a ‘ )  E Y} are pairwise disjoint. 

Lemma 3.12. 
such that 

There exist a set Y C A x A‘ and events T(a, a ’ )  for (a, a ’ )  E Y 

24f ( 1 )  

( 2 )  
( 3 )  

R(a,  a ’ )  C T(a, a ’ ) ;  

Pr(T(a, a ’ ) )  5 1 - ( I  - p)e  ’(”-‘) 
{ T(a, a ’ )  : (a, a ’ )  E Y} is independent; and 

-- 
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Proof. We will construct Y so that for each (a, a ’ )  E 9, there exist X(a)  C A and 
X’(a ’ )  C A’ such that 

12t 
(i) w(alX(a)) ,  w(a’lX’(a’))  5 

(ii) W(a, a’ lX(a) ,  X’ (a ’ ) )  n W(b, b ’ lX(b ) ,  X’ (b ’ ) )  = 0 ,  

and hi(alX(a))  # 0 # h,(a’ lX(a’))  , 
P(n - 

for 1 s  i 5 t ,  and 

for any (b, b’) E SP - { (a ,  a ’ ) } .  

Then setting T(a, a ’ )  = R(a, a’ lX(a) ,  X’ (a ’ ) ) ,  we will have (1) by our earlier 
remark, (2) by (i) and Lemma 3.10, and (3) by (ii) and our key observation. We 
shall write w(a) ,  W(a) ,  W(a, a ’ ) ,  etc. for w(alX(a)) ,  W(alX(a)) ,  W(a, a’ lX(a) ,  
X’ (a ’ ) ) ,  etc. 

The set Y will have the form 
r 

i =  1 
Y= U(Mi X M i ) ,  

where for 1 5  i < j  I r ,  

(iii) Mi rl Mi = 0 = Mi f l  M ; ;  

( n  - t)’ 
16s’t (iv) [ M i (  = ( M I [  = m = -* , and 

2s2t (v) r = -  
n - t ‘  

Then (4) will follow from ( i i i ) - (v) .  
We shall ensure (ii) by maintaining the following conditions: 

(iia) If a, b E M i ,  for 1 5  i I r and a # b, then W(a) rl W(b)  = 0, and similarly 
for a ’ ,  b ‘ E M i .  

(iib) If a E Mi and b E Mi, for 1 s  i < j 5 r ,  then a $W(b),  and similarly for 
a’ E MI and b’ E M i .  

To see that (iia) and (iib) imply (ii), let (a, a ’ )  and (6, b’) be distinct elements of 
Y. Say a # b. If (a ,  a ’ )  and (b, b’) are both in M i  x Mi for some 1 I i I r ,  then 
by (iia) W(a ,  a ’ )  rl “(6, b’) = 0. Otherwise (a ,  a ’ )  E Mi x Mi and (b, b’) E Mi X 

M I ,  for some i Zj, and thus a’ # b’ . Suppose (c, c’) E W(a, a ’ )  n W(b,  b’). Then 
without loss of generality, a = c and b’ = c’ . Thus a E W(b)  and 6’ E W(a’ ) .  But 
then (iib) implies j < i and i < j ,  which is a contradiction. 

The advantage of (iia) and (iib) over (ii) is that they allow us to construct the 
Mi and Mi independently. We now construct the M i ,  for i = 1, . . . , r .  The M i ,  
i = 1, . . . , r are constructed analogously. The Mi will have the form Mi = 
{ x i , l ,  . . . , where the elements x i , j  are constructed by recursion on the (i, j )  
ordered lexicographically. 
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We first need a preliminary step. Let X,= { a E A : 0 - ~ ( a ) # 0 ,  for all i =  
1, . . . , t}. Then IX,,l>- n - t. For a E X,, we defme the multiplicity of a, denoted 
p(a) by p(a) = I { i :a  E Bi} l .  Since there are at most sc pairs (a, i) such that 

a E X,, n Bi, C,,, p(a) 9 st. Thus the set X =  ( a  E X,: p(a) I - 2st } has car- n - t  
dinality at least - . Note that if a E X(a)  C X, then I W ( a ) l s  - 2 n - t '  

Now suppose that for some i l r  and i s m ,  we have constructed xu,,, and 
X(xu,,,),  for all (u,  u )  <(i, j ) ,  such that (i), (iia), and (iib) hold. Set Y = 
X - (( U 1 5 Y 4 i M U )  U (U { f,: xi,, E B,, for some u < j and k I t})). Then 
I YI 2 (n - t) /2 - rn - 2ms tl(n - t) 2 (n - t)/4. By Lemma 3.11, there exists 
y E Y such that w( y l Y )  = 3t/( pl YI) I 12tl( p ( n  - t)). Let xij = y and X(xii )  = 
Y U {a :  crk(a) = 0, for some k with xi j  E B, r l  Y}. Then xij and X(xi j )  satisfy (i), 

n - t  2s2t 

(iia) and (iib). This completes the proof. rn 

We collect our results in the following lemma. 

-- 24r (n-r)3 

Lemma 3.13. Pr(R) I [ l  - (1 - p ) e  '("-') 1- 128szl. 

Proof. Let Y and T(a, a ' ) ,  for (a ,  a ' )  E Y be as in Lemma 3.12. Then 

-24, 

R C  0 R ( u , u ' ) c  n T ( u , u ' ) ,  and 
( a ,  o ' ) E Y  ( a ,  c7')EY 

Since { T(a, a ' )  : ( a ,  a ' )  E Y} is independent 
follows. 

( n  - t)' and IYI=- the result 
128s2t ' 

rn 

Proof of Theorem 3.1. By Lemma 3.3, almost all P E Q(n, p) are s-mixed. Thus 
by Lemma 3.6, it suffices to show that sdim P 2 t. By Lemma 3.8, the number of 
t-collections of short linear extensions is at most 1 = ear log ". Using Lemma 3.13 
and hypothesis (2) of Theorem 3.1, the probability that any one of these 

t-collections realizes P is at most q = [I - (1 - p ) e  P(n-f)]128s4. n u s  it suffices to 
show that Iq-0 as n + m .  But, after substituting s = L(2log p n ) l p J ,  this is 
exactly what Theorem 3.1 asserts. 

241 (n-r )3 

rn 

We are now ready to derive the lower bounds on dim(P) discussed in the 
introduction. 

6pn log pn 
1 + Sp log pn Proof of Theorem 1.5. 

provided 6 is sufficiently small in comparison to E 

Let E > O  and set t = We show l q + O  
and (log'+%) ln  

< p < 1 - n-'". Observe that: 
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n 
n - t =  1 + 6 p l o g p n  ’ 

4t log n log pn 
P 

4 6n(log2pn) log n 
1 + 6p log pn 

; and - - 

p2(n - t)3 - - Pn2 
512t log’pn 5126 log3pn( 1 + 6pn log pn)’ * 

Thus: 

Now 

41 log n log pn 46n log2pn log n 
1 +6p log pn I = e  = e  

In order to force Iq --.* 0, it suffices to require 

86n log’pn log n 
5126 log3pn( 1 + 6p log pn)’ - 1 + 6 p  log pn 

pn2(1 - ~ ) ( p n ) - ’ ~ ~  > 

which is equivalent to: 

( ~ n ) ’ - ’ ~ ~ (  1 - p)  2 40966 ’(log5pn)( 1 + 6p log pn) log n . (1) 

Case 1. p 5 1 /log n. 

In this case, we note that 1 + 6p log pn 5 1 + 6. Since pn --* m, inequality (1) 
can be replaced by: 

6 (pn)1-246 2 log pn log n 

1 + 1006 Now (1’) is satisfied if p > (log n)/n and n is sufficiently large. 

Case 2. p > 1 /log n. 

In this case, 1 + 6p log pn I 2 p log pn so (1) can be replaced by: 

(1”) 
7 (1 -p)’log n .  nl-246 

Again this inequality is satisfied if p < 1 - n-1+1006 and n is large. 

satisfied when 6 = €/loo. 
We summarize the two cases with the observation that (1‘) and (1”) are 
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4. THE DIMENSION OF A RANDOM LABELLED ORDERED SET 

In this section we consider the probability space Y = 2(n)  of all labelled ordered 
sets on n elements with Pr(P) = l/IY(n)l for every P E  Y(n), i.e., each labelled 
ordered set is equally likely. The following result is simply a restatement of the 
Kleitman/Rothschild [8] estimate for the number of labelled ordered sets on n 
elements. In fact, we use weak estimates for the error terms since these estimates 
suffice for our purposes. 

Theorem 4.1. Almost all ordered sets P E 2(n)  satkfy the following properties: 

(1) The set A of minimal elements and the set A" of maximal elements each 
contain at least n/4 - n2'3 and at most n/4 + n2'3 points; 

(2) A < A in P; and 
A' = P - A - A" is an antichain in P. (3) 

In view of Theorem 4.1, we let 9 = 9(n)  denote the subspace of X(n) 
containing all ordered sets P satisfying ( l ) ,  (2), and (3) as given in the conclusion 
of the theorem. Theorem 1.7 will then follow from (4.1) and the following more 
technical result. 

Theorem 4.2. There exist absolute positive constants c1 and c, so that: 

n/4 - c,nllog n < dim(P) < n/4 - c,n/log n 

for almost all P E Y(n). m 

Before proceeding with the proof of Theorem 4.2, we need to develop some 
additional preliminary material on matchings in bipartite graphs. 

Let S, and S, be disjoint nonempty n-element sets, and let p = p(n)  satisfy 
O s p  5 1. We then let 93(S,, S,, p) denote the probability space of all bipartite 
graphs on the vertex set S, U S, where the edge set is a subset of S, X S,. If 
G E 93(Sl, S,, p) and G has m edges, we set Pr(G) =p"(l -p)"*-"'. Now let 
G E 93(Sl, S,, p); recall that a perfect matching in G is a bijection f : S, + S, so 
that (s,, f(s,)) is an edge of G for every s1 ES,. In this paper, we need a 
randomized version of the matching problem. For the sake of completeness, we 
give the following elementary result. 

Lemma 4.3. 
have a perfect matching. 

If p > (log'+'n)/n, then almost all bipartite graphs in B(S,, S,, p) 

Proof. If G E 93(S,, S,, p) and G does not have a matching, then by Hall's 
theorem [5] ,  there is a subset S; C S, for which the set S; = {s, E S,: there is some 
s; E S; with (s;, s,) an edge in G} satisfies IS;l< IS;(. When p > (log'+%) /n, this 
almost never happens. 

We are now ready to proceed with the argument for (4.2). 
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Proof of Theorem 4.2. We first establish the lower bound. Let P E Y(n) and let 
A ,  and A; be subsets of A and A’ with [All  = IA;I = n/4 - n213 = m , .  Then the 
ordered set Q determined by restricting P to A,  U A; behaves just like our 
original bipartite model fl(m,, p) with p = 1 / 2 .  Now dim(P) 2 dim( Q) since Q is 
contained in P, and for almost all Q in fl(m,, p), we have dim( Q) 2 rn, - c ,m, /  
log m,, where c, is the constant provided by Theorem 1.4 when p = 1 /2. The 
desired inequality follows since n213 = o(n/log n). 

It is 
enough to show dim(P) 5 t + 1 for almost all P E Y(n). To accomplish this, we 
set m = n/4 + n213 and let %(4m) be the subspace of Y(4m) consisting of all 
ordered sets PE Y(4m) with [ A [ =  [A”[ = m and (A’)  = 2m. It suffices to show 
that dim(P) 5 t + 1 for almost all P E %(4m). To prove this statement, we let 
Y =  ( A  X A’)  U (A’ x A )  and we consider the event R, consisting of all P E 
%(4m) for which there exists a family Z = { L , ,  L,, . . . , L,} of linear extensions 
of P so that for every (u,  u )  E Y with ullu in P, there is some i I t with u < u in 

Every ordered set P E R, satisfies dim(P) 5 t + 1, since we can construct a 
realizer Z’ of P by adding one new linear extension L,,, to Z. The linear order 
L,,, is defined by L,,, r A = LT 1 A, L,,, 1 A’ = Lr r A’,  L,,, 1 A = L: r A” 
and A < A’ < A” in L,,,.  We now proceed to show that Pr(Z?,)+ 1. As before, 
we find it convenient to express R,  in terms of simpler events. Without loss of 
generality, we assume t is an even integer. 

Let F and F” be t-element subsets of A and A“, respectively. Then let FI and F; 
be disjoint t-element subsets of A’. To preserve independence in future argu- 
ments, we partition each of these t-elements sets into two subsets each containing 
t / 2  elements. To distinguish between the two subsets, we call the points in one of 
them red points, while points in the other subset are called blue points. The four 
subsets of red points are denoted F,, F; , , ,  F;, , ,  and F: ,  and the subsets of blue 
points are denoted F,, F; , , ,  F;, , ,  and F i .  

Now define events S, and S, as follows. The event S, consists of all ordered sets 
P E %(4m) for which the red points can be labelled as F,{ b,, b,, . . . , btp}, 
F ; , ,  = {ci ,  c;, . . . , ci12},  Fa,, = { d ; ,  da ,  . . . , d,’/,}, and F:= {eq, e l , .  . . , e,,,} 
so that for all i = 1 ,2 ,  . . . , t / 2 ,  the following condition is satisfied: 

We now establish the upper bound. Let t = n/4  - En/log n where E = 

Li. 

Similarly, S, consists of those PE %(4rn) for which the blue points can be 
labelled so that condition (*)  holds for i = t / 2  + 1, t / 2  + 2 , .  . . , 2 t .  Clearly, S, 
and S b  are independent. We show that Pr(S,)-l and Pr(S,)+l. This will be 
accomplished by finding perfect matchings and using these matchings to de- 
termine the labellings. 

First, we consider the red points. Let B, E 9 ( F r ,  F; , , ,  112) be the bipartite 
graph where (a, a‘) E F, x F ; , ,  is an edge in B, if and only if a(la’ in P. Similarly, 
let B, E 9 ( F : ,  F;,, ,  1 / 2 )  be the bipartite graph where (a”, a ’ )  E F: x F;,,  is an 
edge in B, if and only if d’lla’ in P. For i = 1,2, let Si be the event that Bi has a 
perfect matching. Then S, and S, are independent, Pr(S,)-* 1 and Pr(S,)+ 1. 

Let S, and S, be given, and let f ,  : F,+ F; , ,  and f,: FY-* F;, ,  be perfect 
matchings in the bipartite graphs B, and B,, respectively. Then let B, E 9 ( F , ,  FA 
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1 /4) be the bipartite graph where (a ,  a”) E F, x F: is an edge in B, if and only if 
fl(a) < a” in P and a <fi(a”)  in P. Let S, be the event that, given S,, S, and the 
perfect matchings f, and f,, there exists a perfect matching in B,. Then 
Pr(S,) + 1. 

Now let f3 : F‘i+ F;,, be a perfect matching in B,. We use f,, f2 and f, to label 
the red points as follows. Begin with an arbitrary labelling of F, as { b , ,  
b,, . . . , b,,*}.  Then label the other red points by c j  =f , (b i ) ,  e ;= f , (b i )  and 
dj =f , ( f3(b i ) )  for i = 1,2 ,  . . . , t/2. Clearly, this labelling satisfies condition (*), 
which proves that Pr(S,)+ 1. Similarly, Pr(Sb)+ 1. 

Now set R, = RIIS,Sb. We need to show Pr(R,)-+ 1. To accomplish this, we 
assume the red and blue points have been labelled so that condition (*)  is 
satisfied for i = 1,2, . . . , t .  We then construct a family I; = { L , ,  L,, . . . , L,} of 
linear extensions of P. The construction will have both explicit and random 
components. 

Set M = A - F ,  M ’ = A ’ - ( F I U F ; )  and M ” = A ” - F ” .  For each i = l ,  
2, . . . , t, we perform the following random trial. Choose at random an element 
x E M ,  an element w ” E  M” and distinct elements y’ , z‘ E M ’  . Call the trial a 
success if the following requirements are satisfied. 

Otherwise, the trial is a failure. Evidently, the probability of success is 1/64. 
If the trial is a failure, we take Li as any linear order on A U A’ U A satisfying: 

When trail i is a failure 

It is clear that any such Li is a linear extension of P. However, observe that Li 
also satisfies: 

(1) If a E A and allc:, then c: < a in L,; 
(2) If a”€ A” and djllay, then a”< d :  in L,; 
(3) If c E  Fl and c’lley, then ey<c‘ in L,; and 
(4) If d E F2 and b,JJd ‘ ,  then d’ < bi in Li. 

If the trial results in success, then for each a’ E M ‘  - { y ’  , z‘}, we flip a fair 
coin. We let H’ consist of those a’ for which the coin toss results in heads, and we 
let T’ consist of those a’ for which the coin toss results in tails. Then let Li be any 
linear order on A U A‘ U A” satisfying: 

When trial i is a success 
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< ( (F;  - { d i } )  U T ’ )  fl U(b i )  < ((FI - {c:}) U H ‘ )  fl D(e’,) < e’, 

< ( ( F ;  U H ’ )  - D(e’,)) fl D(w”) < w”< ( ( F ;  U H ’ )  - (D(w”) U D(e;)) 
< A” - ({ e’,, w”} U U ( z ’ )  U U ( d : ) )  < z’ < U ( z ’ )  - U(dj) < d :  < U ( d : )  in L, . 
First, observe that any such Li is a linear extension of P, and Li satisfies (l), 

(2), (3), and (4). However, in this case L, satisfies the following additional 
properties: 

( 5 )  If a €  A and ally’ in P, then y ’ < a  in L, unless a < c j  in P; 
(6) If a” E A and a“(lz‘ in P, then a”< z’ in L, unless a”> d :  in P; 
(7) If a’ E F; U H ’  , a”€  {w”, e‘,} and a’((a”, then a”< a’ in L, unless a’’ = w” 

and a’ < e’, in P; and 
(8) If a’ E F; U T‘  , a E { x ,  b i }  and a( la ’ ,  then a‘ < a  in L, unless a = x and 

bi < a ‘  in P. 

Now the number of pairs in Y= (A X A’)  U(A’ x A )  is less than n’. To 
complete the proof, we define for each (u,  u )  € Y the event Q(u, u )  by Q(u, u )  = 
(u  < u )  U Q’(u, u )  where Q’(u, u )  holds when ulIu in P and there is some L, in Z 
with u < u in L,. We need only show that Pr(1 Q(u, u))  5 n-3  for all ( u ,  u )  E 9’. 
The argument will be simplified by the observation that if (u ,  u )  E Y and u and u 
have different colors, then Pr(u < u )  = 112. Furthermore, since the construction 
of Z is obviously symmetric, we need only consider the case where (u, u )  E 
A x A’. We now subdivide the argument into cases depending on the location of 
U. 

Case 1. U E  F ; .  

In this case, u = c: for some i 5 t. If u < u in P, then Q(u, u )  holds. If ullu in P, 
we see that u < u in Li by property (1). Thus, Pr(1 Q(u, u))  = 0. 

Case 2a. u E F; and u E F. 

Choose i, j 5 t so that u = d :  and u = b j .  If u < u in P, then Q(u,  u )  holds. If 
uI(u,  we must have i # j .  Thus u < u in Lj by property (4), and Pr(1 Q(u, v)) = O .  

Case 2b u E FS and u E M. 

For each j 5 t for which bj and u have different colors, let Qj(u, u )  be the event 
which holds if Trial j is a success, the point u = x is selected from M and bjllu in 
P. Clearly, 9 = { Qj(u, u ) :  color(bj) # color(u)} is a family of independent events 

for each event in 9. Furthermore, if any and Pr(Qj(u, u ) ) =  

Q,(u, u )  E 9 holds, then either u < u in P, or u < u in Lj by property (8). 

1 
128(m - t) 

Now m - t I 2 ~ n l l o g  n and (91 = t/2 2 d 1 0 .  Thus 



DIMENSION OF RANDOM ORDERED SETS 273 

< n-3  as required . 

(Recall that E = 

Case 3a. u E M’ and u E F. 

Choose i r  f for which u = 6,. This time, for each j ”  t with color(b,)# 
color(c;), let Q j ( u ,  u )  be the event which holds if Trial j is a success, the point 
y’ = u is selected from M’ and billc;. Also let Ce denote the family of all such 
events. If any Q j ( u ,  u )  E Ce holds, then either u < u in P, or u < u in Lj by 
property (5 ) .  By the same analysis as in the preceding case, we see that 
Pr(1 Q(u, u) )  < nP3. 

Case 3b. u E M’ and u E M. 

In this case, for each j 5 t, let Qj(u ,  u )  be the event which holds if Trial j is a 
success, x = u is selected from M, u E T’ and bill u .  Let X be the family of all such 
events. If an event Q j ( u ,  u )  E X holds, then either u < u in P, or u < u in Lj by 

1 2 m - 2 t - 2  1 
256 2m-2 t  m - t  

and there are t events in X. As in the preceding two cases, we conclude that 

property ( 5 ) .  
Now each event Q j ( u ,  u )  E X satisfies Pr( Q j ( u ,  u))  = - 

Pr(1 Q(u, u ) )  < n-3. With this observation, the proof of the theorem is complete. 
rn 

5. CONCLUDING REMARKS AND QUESTIONS 

Our original motivation in studying the probability space n(n, p) came from the 
possibility that for properly chosen p, a typical ordered set from n ( n ,  p) would 
show that the Fiiredi/Kahn bounds given in Theorems 1.1 and 1.2 are best 
possible. In the case of Theorem 1.1, this goal has been accomplished. For 
Theorem 1.2 our results are not tight. We show that dim(P) = n(A log(A)), for 
almost all P E n ( n ,  p), while Theorem 1.2 gives dim(P) = O(A log’(A)). These 
considerations give rise to the following specific problems. 

(5.1) For p satisfying log’pn = o(1og n), find improved bounds for the expec- 
ted value E(dim(P)) of the dimension of P. As of now, we know 
c2pn log pn < E(dim(P)) < c ,pn  log’pn. 

(5.2) Can random methods be used to find a (possibly quite rare) ordered set 
P with dim(P) close to A(P) log’A(P)? 

(5.3) Alternately, can the Fiiredi/Kahn inequality dim(P) < cA(P) log’A(P) 
be improved by lowering the exponent on the logA(P) term? 
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Because of our model’s sensitivity to the choice of p, we believe it will provide a 
rich source of examples for dimension theoretic problems. We mention one such 
application. Trotter [9] asked what is the maximum valuef(n, k) of the dimension 
of an ordered set P such that I PI = n and P does not contain a standard example 
s k .  No nontrpal lower bound for f (n ,  k) was known. Our techniques show that 
f ( n ,  k) > nl-’ when n is large relative to k, land k itself is large. To see how this 
inequality is *rived, observe that if p = n ,, then almost all P E n(n,  p) satisfy 
dim(P) > nl-’ and do not contain a standard example S,. 

(5.4) Is the inequality f (n ,  k) > n l - k  best possible? 

We also consider it important to study the evolution of random ordered sets. 

_ -  

1 

(5.5) 

(5.6) 

(5.7) 

There 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Asp increases, when does P first satisfy dim(P) 2 k, for k = 3,4,5, . . .? 

Is the expected value of dim(P) unimodal as p increases? 

exist, and what is its value? 
E(dim( P)) 

n-.= pn log pn When does lim 

are several technical questions suggested by our approach. 

How does dim(P) behave when p is very close to l? 

when p = 1 /log n. dim(P) Evaluate lim - 
n-- n 

How tight is the inequality sdim(P) 5 dim(P)? We suspect that this 
inequality is very tight for almost all P E n ( n ,  p). 

How does dim(P) behave if we consider a bipartite model with n 
minimal elements and m maximal elements with m > n? 

How do the results change when the comparabilities in P are the union 
of k random edge disjoint matchings? This approach may prove particu- 
larly useful when k is very small. 
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involving a,. Azuma's inequality then gives Pr( 1 M, - M, I 2 t )  zs 2e-"',. Now M, 
is the actual dimension of the ordered set and M, is the expected dimension. 
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