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Abstract 

Fishburn, P.C. and W.T. Trotter, Linear extensions of semiorders: A maximization problem, 
Discrete Mathematics 103 (1992) 25-40. 

We consider the problem of determining which partially ordered sets on n points with k pairs 
in their ordering relations have the greatest number of linear extensions. The posets that 
maximize the number of linear extensions for each hxed (n, k), 0 G k G (;), are semiorders. 
However, except for special cases, it appears difficult to say precisely which semiorders solve 
the problem. We give a complete solution for k G n, a nearly complete solution for k = n + 1, 
and comment on a few other cases. 

Let (n, >0) denote the set n = (1, 2, . . . , n} partially ordered by an irreflexive 
and transitive relation >,, c n2, and let 

e(n, >J = I{ (n, >*): >* is an irreflexive, transitive and complete 

(a # b j a >* b or b >* a) relation 

in n2 that includes >,,} 1, 

be the number of linear extensions of (n, >O). We consider the problem of 
determining the posets that maximize e(n, Bo) when >0 has exactly k ordered 
pairs in n2. That is, given 0 c k c (;) and letting 

p(n, k) = {(n, >o): PO1 = k), 

0, k) = pg=j eh >d, 
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our aim is to characterize the members of P(n, k) for which e(n, >,J = e(n, k). 
We are also interested in the values of the e(n, k). 

The extreme cases for k are sufficiently restricted to make their answers 
obvious: 

e(n, 0) = n!, e(n, 1) = n!/2, 

c(n, (n2) - 1) = 2, e(n, (8) = 1, 

with poset diagrams in Fig. l(a)-(d) respectively. A little more effort shows that 
e(n, 2) = n!/3 and e(n, (;) - 2) = 4, see Fig. l(e)-(f). Other cases tend to be far 
from obvious, and we resolve only a small number of them. They are summarized 
at the end of this introduction. 

We refer to a poset (n, >,-J in P(n, k) as a realizer of e(n, k) if e(n, >,J = 
e(n, k). Our search for realizers is greatly aided by a theorem of Trotter [5] which 
says that every realizer is a semiorder. Recall that (n, >J is a semiorder (Lute [2]) 
if, for all a, b, x, y E n, 

U>~X and b>,y j a>,y or b>ox, 

a>ox>ob j a>,y or yBob. 

The only poset of Fig. 1 that is not a semiorder is the suboptimal poset in (e). 

(a) (b) (d) 

k=(z)-1 k=G) 

or ‘if . ... . ( 1 1 l . . . l suboptimal ) 

(e) 

k--Z 

f” Or+ Or xw $etc’ bsuboptim) 

(f) 

k=(z)-2 

Fig. 1. Realizers of e(n, k) for extreme k. 
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Semiorders have played a key role in the theory of ordered sets. We know, for 
example, that if (n, BO) is a semiorder that is not a linear order or chain, then: 

(1) it equals the intersection of either two or three of its linear extensions 
(Rabinovitch [3]); 

(2) there exist X, y E n such that the proportion of its linear extensions in which 
x >.+ y is between f and 3 (Brightwell [ 11); 

(3) there exists f :A+ R such that, for all X, y E n, x Boy @f(x) >f(y) + 1 
(Scott and Suppes [4]). 
Trotter’s addition to these seminal results is proved in the next section. We then 
describe a standard format for semiorders that is used thereafter. This format 
represents a semiorder for which I>,,1 = k by an integer vector r = (I,, . . . , m-J 

in which r, 2. * * 2 r,_r 2 0, I; G n - i for each i, and C ri = k. Our interpretation 
is that, for all 1 <i <j c n, i >,, jej 2 n - rj + 1. Up to relabeling, all semiorders 
on n can be thus represented. 

Section 3 is devoted to the special but important case of 15 k <a We prove 
first that, up to relabeling and inversion, e(n, k) is uniquely realized by the 
height-l semiorder r = (k, 0, . . . , 0) that has e(n, k) = n!/(k + 1). The rest of the 
section considers the runner-up to r = (k), where we omit the O’s in r for 
convenience. When (k) and its inverse are excluded, the number of linear 
extensions is uniquely maximized (up to . . *) by r = (k - 1, l), with n! (k + 

2)/[2k(k + l)] 1’ mear extensions, provided that k 2 7. It follows that, when k <n 

and k is large, the realizer of e(n, k) has nearly twice as many linear extensions 
as the runner-up. 

The restriction of k 2 7 for the preceding runner-up result illustrates a problem 
endemic to our study in that certain uniform results apply only when we get 
beyond the first several integers. Consider, for example, the semiorders in Fig. 2 
that have k = 3n - 6. Without claiming optimality in either case, we note that 

r = (n - 1, n - 2, n - 3) has (n - 3)! linear extensions, 

r = (n - 4, II - 4, n - 4, 6) has 18(n - 4)! + 6(n - 3)!/7 linear extensions, 

so the second has more linear extensions when rz < 129 while the first has more 
for all rz > 129. 

Section 4 concludes our present analysis for realizers with a few cases of k 3 n. 

r=(n-i,n-2,n-3) r=(n-4,n-4,n-4,6) 

Fig. 2. k = 3n - 6. 
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We let H denote the height of a poset, so H = c when the longest chain (linearly 
ordered subset) has c + 1 points. The first two of the three main results in the 
section further illustrate the theme of the preceding paragraph; the third 
comments on the smallest k that admits a height-3 semiorder. Uniqueness applies 
up to relabeling and inversion. 

(1) Suppose k = n * 4. Then r = ([n/21, [n/2]) uniquely realizes e(n, n) when 
n c 8, and the H = 2 vector r = (n - 1, 1) uniquely realizes e(n, n) when n 2 9. 

(2) Suppose k = n + 1, n 3 5. For n = 14 and n Z= 16, e(n, n + 1) is realized by 
the H = 2 semiorders (n - 2,2) and (n - 1, 1, l), and by no others. For n < 13, 
e(n, n + 1) is realized by an H = 1 semiorder and never by an H = 2 semiorder. 
For n = 15, e(n, n + 1) is realized by the vectors r = (8, S), r = (14, 2), r = 
(14, 1, 1) and by no others. 

(3) For n 3 5, no H = 3 semiorder realizes e(n, 2n - 2). 
While fragmentary, these results indicate the challenge posed by the realizer 

problem, and we hope they will provoke further research. Additional comments 
on open problems conclude the paper. 

2. Semiorders 

For a poset (n, >J let -, V(X), D(X), and E(n, >0) denote, respectively, the 
symmetric complement of >0, x’s up set, x’s down set, and the family of linear 
extensions of (n, >,,). Hence x - y if neither x >O y nor y >,, x, V(X) = {y : y >O 
x}, D(x) = {y: x%,y}, and e(n, >0) = IE(n, >JI. A\B denotes set subtraction. 

Theorem 1. For all n 2 1 and all 0 s k s (y), every realizer of e(n, k) is a 
semiorder. 

Proof. Assume that (n, BO) E P(n, k) realizes e(n, k). Suppose the first semior- 
der condition is violated. Among all 4-sets in n that have {a >0x, b boy, a - 
y,, b -x}, choose one that minimizes jZI(a)j + IU(b)j. It follows that U(a) c U(b) 
or U(b) c U(a). A ssume U(a) G U(b) for definiteness. Let (n, >‘) be the poset 
obtained from (n, >0) by replacing b >0 z by a >’ z for all z E D(b)\D(a). It is 
easily seen that (n, >‘) E P(n, k). 

We claim that e(n, >‘)>e(n, >,,), thus contradicting our supposition. Let 
(n, >!$‘) denote the linear order obtained by interchanging a and b in (n, >*). 
Suppose 

(n, >*) E E(n, >O)\E(& >‘) 

so that b >* z >* a for some z E D(b)\D(a). Then 

(n, >“*“) E E(n, >‘)\E(n, )o). 
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Moreover, there are linear extensions (n, >*) in E(n, >‘)\E(n, BO), including 
those with a >* y >* x >* b, for which (n, >tb) $ E(n, >O)\E(n, >‘). Therefore 
e(n, >‘) > e(n, >O). 

It follows that the realizer (n, >0) satisfies the first semiorder condition. 
Suppose it violates the second semiorder condition, say with a >,, x >0 b, y - a 
and y -b. Form (n, >‘) from (n, >0) by replacing u >,x by u >‘y for all 
u E U(x)\ V(y). Th en, with the first semiorder condition holding for (n, >,,),it 
follows that (n, >‘) E P(n, k). And, with interchanges of x and y in this case, we 
get e(n, >‘) > e(n, >,,), for a contradiction. 

Hence (n, >0) satisfies both semiorder conditions. Cl 

We assume henceforth that k > 1. 
To develop our standard format for semiorders, let (n, >,J be a semiorder with 

unit interval representation x Boy @f(x) >f(y) + 1, assume with no loss of 
generality that the left ends of the unit intervals [f(x), f(x) + l] are distinct, and 
relabel the points so that 

f(l) >f(2) ’ . . . >f(n). 

The n x n >,-matrix for (n, >0) thus labeled is the O-l matrix with 1 in cell 
(i, j) if i ~~j, and 0 o th erwise. Its l’s in row i (if any) are contiguous, are to the 
right of the main diagonal, and end in cell (i, n). Moreover, with ri the number of 
l’s in row i, r, 2 r, 2 . . .a r, = 0, ri G IZ - i, and C I; = k when I>,,] = k. 

Conversely, if (n, >,,) is defined in the natural way from a O-l matrix with these 
properties, it is a semiorder. 

Up to relabeling, each semiorder on n points is uniquely representable as a 
vector r = (rl, . . . , m-J that has the preceding properties. We refer to r itself as 
a semiorder. Its inverse is the semiorder r’ = (r;, . . . , rL_J in which r] is the 
number of l’s in column n + 1 - i of r’s >,-matrix. The diagram of r’ is obtained 
by inverting r’s diagram and relabeling point i by n + 1 - i for i = 1, . . . , n. The 
inverse of r = (n - 1, n - 2, rz - 3, 0, . . . , 0) in Fig. 2 is r’ = (3, . . . , 3, 2, 1) with 
points 1 through IZ - 3 above IZ - 2, n - 1 and n in order. 

We say that r is in standard format if r, > rl for the smallest i at which r; # r,!. 
When r = r’, the two semiorders are identical, but not otherwise. Since r and r’ 
always have the same number of linear extensions, we generally work with the 
one in standard format since its expression tends to be simpler. Whenever a claim 
of uniqueness is made for r, or a set of r’s, it denotes uniqueness up to relabeling 
and inversion. 

As a further convenience, we usually omit the O’s from r in standard format, 
i.e.,asinr=(r, ,..., r,,Jwithria**. 2 r, 3 1. Since this can disguise the value 
of rz for height-l semiorders if there are isolated points, we denote by e,(r) the 
number of linear extensions of a semiorder (n, >,,) with vector r. 

It is usually quite difficult to compute e(n, B,,) for a poset (n, By), and this is 
often true as well for the computation of e,,(r) for a semiorder r. Our subsequent 
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counts use two simple rules: an a-point antichain has a! linear extensions; the 

union of disjoint u-point and b-point chains has ( 0 z “) linear extensions. We use 

these repeatedly and in various sequences. For example, if a poset has t points in 

a connected component along with n - t isolated points, and if the t-point 

component has c linear extensions by itself, then e = c(n!/t!) for the whole. 

We conclude our preliminaries with two basic lemmas on heights of semiorders. 

Throughout, k = ]>0] with k 2 1. As before, H denotes height. 

Lemma 1. Every n-point semiorder with k < n has H = 1. Zf a semiorder has 
H 3 2, its diagram is connected, i.e., it has no isolated points. 

We omit the simple proof. The complete bipartite diagram with [n/2] top 

points and [n/2] bottom points shows that k for H = 1 can be as large as about 

n*/4. The other lemma goes the opposite way. 

Lemma 2. Given 2 s h s n - 1, the smallest k for an n-point semiorder with 
height h is k = n(h - 1) - (h - 2)(h + 1)/2. 

Proof. Let n and 2 s h d n - 1 be given. We are to minimize the number of l’s in 

an n X n >,-matrix associated with a standard format r so that there are integers 

1<a,<a2<~~~<a,_,<n (*) 

for which the matrix has l’s in cells (1, a,), (a,, a*), . . . , (LZ~-~, n) and in all cells 

northeast of these. This produces the height-h chain 1 >0 a, >{I. . . >” ah-, >. n. 
The number of l’s needed when h = 2 is (n - al) + a, = n, with a, c (n + 1)/2 for 

the standard format. 

When h 2 3, our matrix has 

K = (a2 - al) + (a3 - a2)aI + (a4 - a&z2 + . . . + (n - ah_-l)uh-2 + uh--l 

1’s. To minimize K subject to (*), observe that its contribution involving a, is 

al(-l + a3 -a*) with -1 + aj - a2 3 0, so regardless of a2 through ah-I we can do 

no better than to minimize a, at a, = 2. Then 

K = -2 + a*( - 1 + a4 - a3) + a3(2 + a5 - a,) + u&z6 - a5) + . . . , 

so we minimize a2 at a2 = 3 and continue as indicated to conclude that K is 

minimized when (a,, u2, . . . , ah-J = (2, 3, . . . , h - 1). The value of uh_-l is 

immaterial, subject to h - 1 < ah-l s n - 1, since we already have 

K=1+2+3+.. . + (h - 3) + [ah-I - (h - l)](h - 2) 

+ (n - a,_,)(h - 1) + ahPl 

= (h - 1)n - (h - 2)(h + 1)/2. 

This minimum K is the value of k given in the lemma. q 
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3. Analysis for k c n 

We begin with the realizer of e(n, k), then consider the second-best linear 
extension maximizer, which also turns out to be a semiorder. 

Theorem 2. Zf k <n then r = (k) with e,(r) = n!l(k + 1) is the unique realizer of 

e(n, k). 

Proof. The number of linear extensions of r = (k) is 

k!(n-k-l)! k:l =n!/(k+l). 
( > 

To show that this uniquely maximizes linear extensions for semiorders r in 
standard format, consider such an r = (rI, . . . , rm) with m 2 2 nonzero com- 
ponents. We have r, 2 m, ri 2 . * - 2 r,,, 2 1 and C ri = k <a Fig. 3(a) shows its 
diagram. As in Lemma 2, it has H = 1. 

Suppose r2 = - f . = r,,, = 1. Then r, = k - m + 1. By considering the possible 
positions of point IZ in the chain down from point 1 after we linearize the points 
under 1 except for n, and linearize points 2 through m above point n, as shown in 
Fig. 3(b), we get 

(k -m)! (m - l)!/(k + l)! 

=n![(k;l)-l](k-m)!(m-l)!/(k+l)! 

< n!/[m(k + 1 - m)] c n!l(k + l), 

where k + 1s m(k + 1 - m) follows from rl = k - m + la m. Hence 

e,(k + 1 -m, 1, . . . , 1) <e,(k). 

For general r = (rI, . . . , r,,J, m 2 2, let 

z = (rr - r2 + 2)(r, - r3 + 3) . - . (rI - r, + m) 

(rI+l)(rI+2)(rI+3)~~~(rI+m) ’ 

(a) 

Fig. 3. 

(b) 
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and note that e,(r) <n! Z. For if the connected (ri + m)-point component has C 
linear extensions, then e,(r) = n!C/(r, + m)!, and 

c < Q!(r1- r2 + 2)(r, - r, + 3) . . . (q - r, + m) 

as seen by first linearizing the r, points under 1 and then adding in points 

2,3, . . . ) m in sequence in the linear order. 
Suppose rj 2 2 for some i 3 2. Let j denote the largest i for which ri 2 2, and 

modify r by decreasing ri by 1 and increasing r, by 1. A little algebra shows that 
this change increases Z. It follows that Z is maximized when r, = r, = * * . = r,,, = 
1. Since Z = l/(k + 1) in this case, we conclude that if ri 2 2 for some i 2 2, then 
e,(r) G n! Z(r) <n! Z,,, = e,(k). 0 

We now consider the second-best posets for k < n. Exhaustive computations 
for small k show that the semiorders of Fig. 4 maximize the number of linear 
extensions when r = (k) is excluded. The pattern for k E (7, S} persists for all 
larger k. Its r is r = (k - 1, 1) with 

e,(k - 1, 1) = n!(k + 2)/[2k(k + l)]. 

Since e,(k)/e,(k - 1, 1) = 2[k/(k +2)], the realizer has nearly twice as many 
linear extensions as the runner-up when k is large. 

To prove the second-best optimality of (k - 1, l), we begin with a lemma which 
says that the second-best poset, after (k) and its inverse, must be a semiorder. 

Lemma 3. Suppose k < n, X E P(n, k), and e(X) = max{e(n, >0): (n, >o) E 
p(n, k) and e(n, >,,) <e,(k) = n!/(k + 1)). Then X is a semiorder. 

Proof. Suppose X E P(n, k) is second-best as asserted in the hypotheses but is 
not a semiorder. By the proof of Theorem 1, a simple change in X (from b >,, z to 
a>‘z for z l D(b)\D( a ) in the first case; from u >0 x to u >’ y for u E U(x) \ 

U(y) in the second case) yields another poset X’ E Z’(n, k) that has more linear 
extensions than X. Our supposition therefore implies that X’ is the realizer (k), 
hence that X is such that the change yields (k) from X. Up to inversion, the only 
way that this can happen is for X to have height 1 with p points under point 1, 

k=3 N 0 .” 0 

k=4 
Pu 

. ... . 

k=5 rhf . . . . . 

k=6 &&._ l ‘.’ . 

k=7 && . . . . . 

k=8 w . . . . . 

Fig. 4. Second-best posets, k < n. 
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another q points under point 2, p + q = k, and n - (k + 2) isolated points. This 
requires k 6 n - 2. 

Suppose X is as described. Then 

e(X) =p! q! (n -k - 2)! (“i: : 2)(k : 2) = n!/[(p + l)(q + l)] 

With p 2 1, q 3 1 and p + q = k, e(X) is maximized with p = 1: 

max e(X) = n!/(2k). 

However, we have a semiorder (k - 1, 1) that is not a realizer and has 

e,(k - 1, 1) = n! (k + 2)/[2k(k + l)]. 

Since e,(k - 1, 1) > max e(X), we contradict the supposition that the second-best 
poset is not a semiorder. •i 

Theorem 3. If 7 s k <n, then semiorder (k - 1, 1) uniquely maximizes the 

number of linear extensions over P(n, k) when (k) and its inverse are excluded. 

Proof. Since our complete proof of the theorem is rather long, we omit some 
routine details. By Lemma 3, we need only consider semiorders. The proof is 
organized around the number m 2 2 of positive components of r in standard 
format. For convenience let 

e* = e,(k - 1, 1) = n! (k + 2)/[2k(k + l)]. 

m = 2: For 1 c t s k/2, 

e,,(k - t, t) = n! (k + 2)l[(t + l)(k - t + 2)(k - t + l)]. 

The second derivative of e,(k - t, t) with respect to t is positive, so e,(k - t, t) is 
maximum at either t = l(e*) or t = [k/2]. When k is even, e* > e,(k/2, k/2) for 
k 2 8; when k is odd, e* > e,((k + 1)/2, (k - 1)/2) for k 2 7. Hence the uniquely 
best semiorder for m = 2 is (k - 1, 1) when k 2 7. 

m = 3: Assume k > 9 henceforth. For r = (rI, r,, r3) with r, 2 r2 Z= r3 2 1 and 
C ri = k, we have 

e&i, r2, r3) = n! g(rr, r2, r3MQi + l)ki + WI + 311, 

g(rr, r2, r3) = 2 + 
(rr + l)(r, + r2 + 4)(r2 + r3 + 2) 

(r2+1)(r2+W3+1) ’ 

To prove that e* > e,(rI, r,, r3), it is enough to show that 

g(rr, r2, rM(rl+ l)(rr + 2)(rI + 3)1< 1/(2k), 

i.e., 

2 < (rI + 1) 
[ 

@I+ 2)(rl+ 3) _ (rr + rz + 4)(5 + r3 + 4 

2(rI + r2 + r3) (r, + l)(r2 + 2)(r3 + 1) I ’ (*I 
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Differentiation shows that the right side of this inequality is minimized at either 

r,=l or r,=r,. 

Suppose r3 = r2. Substitution in (*) and differentiation shows that its right side 

is minimized when r2 = 1 or r2 = r,. If r2 = r, then (*) is 

2 < (rl + l)(rl + 2)(r1 + 3)/(6rJ - 4, 

which is true when r, 2 3. When r2 = 1, the desired result follows directly from the 

following lemma. 

Lemma4. e,(k+l-m,l,..., l)<e* ifk>7&3<m~(k+1)/2. 

Lemma 4 is an easy consequence of the expression for e,(r) in the second 

paragraph of the proof of Theorem 2. We also consider r, = 2 because k 29 

allows smaller rl values when r2 + r3 is large. When r2 = r3 = 2, (*) is easily verified 

for r, 3 3. 
We complete verification of (*) by considering small values of r,. When r3 = 1, 

(*) is 

4 < (rl + 1) 
[ 

(ri + 2)Gi + 3) _ (h + 5 + 4)(r2 + 3) 
r, + r2 + 1 I (r2+1)(r2+2) . 

Differentiation again shows that the right side is minimized at either r, = r, or 

else when r2 is small, and Lemma 4 and substitution give the desired result when 

r, 2 3. When r3 = 2, or r3 = 3, we arrive at the same conclusion by similar means. 

m 2 4: For m 2 4 we begin with the precise number of linear extensions 

computed with m = 3 for the first three top points in the connected component 

and then merge top points 4 through m in a greedy manner to get 

e&i, . . . , rm) S r,! g(rI, r2, r3)(rI - r4 + 4) * * - (rI - r, + m)n!/(r, + m)! 

9 
hi, r2, r3)R 

r, + l)(r, + 2)(r, + 3) ’ 

~_i.l,“::,(.6:T’!...(.:,::m). 

To verify e,(r) < e* here, it suffices to show that 

gh r2, r3)R 1 

(rI + l)(rI + 2)(r, + 3) <ii ’ 
(**I 

given4<mcr,and9sk=Cri<n. 

Let s = r, + r2 + r,, so r4 + . . . + r, = k -s. Consider maximization of R first 

since it is the only part of (**) that involves r4 through r,,,. It is easily seen that R 
is maximized by taking r4 = * * * = r, = 1 so long as we arrive at k - s for their 

total and maintain m < r,, i.e., so long as k - s + 3 s r,. Since this might be 

violated by the given values for r, k and m, we consider two cases. 
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Case l(ma4): k-s+3Gr1. 
Then R is maximized by taking r4 = * * .=r,,,=l andm=k-s+3. Thisgives 

R = (rl + 3)/(r, + m). Substitution in (* *) reduces it to 

&I, r2, r3) r, + 112 

(r, + l)(r, + 2) <2(m + s - 3) . 

Since the derivative of the right side with respect to m is negative if and only if 
r, = r, = 1, a case already covered by Lemma 4, we need only consider our 
present inequality at m = 4. When m = 4 is used therein, comparison with (*) and 
the present restriction of r, 24 shows that the analysis for (*) covers the present 
situation, i.e., the preceding inequality holds for all possible cases when m = 4. 

Case2(ma4): r,<k-s+3. 
In this case it is easily seen that R is maximized by taking m equal to rI and 

making the ri for i 3 4 as equal as possible. Ignoring the restriction to integer 
values, we show that (**) holds when r, = . . . = r,,, = (k - s)/(m - 3). Then it 
must also hold when the ri are integers. With m = r, and the equal values of r, 
through r,,,, (**) is 

2g(r,, r,, r3)k fi [(rl +j)(rl - 3) + s - k] < (rl - 3)r1-3(2rl)!/rl!, 
j=4 

subject to s + (rl - 3) < k s s + r3(rl - 3), which requires r3 3 2. With r,, r, and r3 
fixed, the left side of this inequality is maximized when k is as small as possible. 
Hence it suffices to show that the inequality holds when k = s + r, - 3. Substitu- 
tion for this value of k and comparison with (*) as in Case 1 shows that our 
present inequality holds when r, 2 4 and r2 Z= r3 3 2. 0 

4. Special cases for k 2 n 

We consider the three special cases for k 2 rz outlined at the end of the 
introduction. 

Theorem 4. Suppose k = n 3 4. Zf IZ G 8, r = ([n/2], Ln/2j) is the unique realizer 
of e(n, n); if n > 9, the H = 2 semiorder r = (n - 1, 1) ti the unique realizer of 

e(n) n). 

Proof. The possible H = 2 semiorders for k = n s 4 are shown in Fig. 5. We have 
e,(n - 1, 1) = (n - 1)!/2 and, for 2 s t s (n - 1)/2, 

e,(n - t, 1, 1, . . . , 1) < [(t + 1)!/2](n - t - 2)! 
(,“I’2) 

= (n - 1)!/2, 

where < follows from merging the t - 1 with the 3-point chain and then 
overcounting the merger of the II - t - 2 with the others. Hence the unique H = 2 
maximizer is (n - 1, 1). 
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r=(n-i,l) r=(n-t,1,...,4), ZStr(n-t)j 

t 

Fig. 5. Height-2 semiorders for k = n. 

Consider next the H = 1 semiorders with m = 2 positive components in r. They 
are (n -f, t), 2~t<n/2, with 

n!(n+2) 

e~(n - t’ ‘) = (t + l)(n + 1 - t)(n + 2 - t) . 

Since the denominator of the ratio is concave over the range of t, e,(n - t, t) is 
maximized at either t = 2 or t = Ln/2] . For even n we get 

e,(n/2, n/2) > e,(n - 2, 2) for n s 12, 

e,(n - 2, 2) > e,(n/2, n/2) for n 3 14; 

for odd n, 

e,((n + 1)/2, (n - 1)/2) > e,(n - 2, 2) for n 6 9, 

e,(n - 2, 2) > e,((n + 1)/2, (n - 1)/2) for n 3 11. 

Thus, given m = 2 and H = 1, the unique maximizer is 

( [n/2], [n/2]) for n s 10 and n = 12, 

(n - 2,2) for n = 11 and n 2 13. 

Since it is easily checked that e,(n - 1, 1) > e,(n - 2, 2) for all n 3 9, we ignore 
(n - 2, 2) henceforth. In addition, 

e,( [n/21, [n/2]) > e,(n - 1, 1) for n S 8, 

e,(n - 1, 1) > e,( [n/2], [n/2]) for n 3 9. 

Complete enumeration for n c 8 shows that ( [n/21, Ln/2]) is the unique realizer 
of e(n, n) when 4 G n =Z 8. To conclude the proof of the theorem, we show that 
e,(n - 1, 1) > e,(r) for all H = 1 semiorders r with m 2 3 positive components 
when n Z= 9. To ensure H = 1 we require r, 2 2. 

Suppose m = 3. The m = 3 proof for Theorem 3 gives 

e,(r) = nl g(ri, rz, r3)/[(r1 + l)(ri + 2)(r1 + 311. 
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Therefore e,(n - 1, 1) > e,(r) if and only if g < (rI + l)(r, + 2)(r1+ 3)/(2n), or 

2<(r,+1) 
[ 

(r1+2)(r1+3) (r1+r2+4)(r*+r3+2) 

2(fi+r,+r,) - (r2+1)(r*+2)(r3+1) 1 . 
This is (*), and we have already verified it when rl + r2 + r3 2 9. 

It remains to compare e,(n - 1, 1) to e,(r) when m 3 4 for n 2 9. This has 

already been done in the m 3 4 part of the proof of Theorem 3 by our use of 

1/(2k) instead of [1/(2k)](k + 2)/(k + 1) on the right side of (**). It follows that 
the H = 2 semiorder (n - 1, 1) is the unique realizer of e(n, n) for all n 3 9. Cl 

Theorem 5. Suppose k = n + 1, n 2 5. For n c 13, e(n, n + 1) is reulized by an 

H = 1 semiorder and no H = 2 semiorder. For n = 14 and n 3 16, the H = 2 

semiorders (n - 1, 2) and (n - 1, 1, 1) ure the only realizers of e(n, n + 1). For 

n = 15, e(15, 16) is realized by (8, S), (14, 2) and (14, 1, l), and by no other 

semiorders. 

Proof. With k = n + 12 6, Lemma 2 tells us that no semiorder has H = 3. The 
possible H = 2 semiorders are shown in Fig. 6. For the top two, 

e,(n - 1, 2) = e,(n - 1, 1, 1) = (n - 1)!/3. 

When t 2 2 and r2 = 2 (bottom left), there are eight ways to merge a and b with 
the 3-point chain. The maximum number of ways to merge the remaining n - 5 
with the 5-point chain occurs when a and b go between 1 and It. Therefore 

e,(n -t, 2, 1, . . . , 1) < 8(t - 2)! (:‘i)(n-t-3)!(n”T’3)=v. 

(n-1.2) (n-1,1,1) 

t-1 t+t 

(n-t. 2,Z) In-t,RII 

2StS(n-t)/2 2S1S(ll-2)/2 

Fig. 6. Height-2 semiorders for k = n + 1. 
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When t 5 2 and r2 = 1 (bottom right), we get 

e,(n - 1, 1, . . . , l)<2(t-l)!(~~~)(,-t-3)!(n”;‘3)=~. 

Therefore (n - 1, 2) and (n - 1, 1, 1) are the only linear extension maximizers 

among the H = 2 semiorders. 

Each H = 1 semiorder with m = 2 has r = (n - t, t + l), 2 S t S (n - 1)/2, and 

e&z - t, t + 1) = 
n!(n+3) 

(t + 2)(n - t + l)(n - t + 2). 

This is maximized at c = 2 or t = [(rr - 1)/2]. Calculations show that the unique 

maximizer for (H, m) = (1, 2) is 

([(n + 1)/2], [(n + 1)/2J) for IZ S 15, 

(n - 2,3) for n 2 16. 

Comparisons to the H = 2 maximizers give: ([(rr + 1)/2], [(n + 1)/2]) beats 

H = 2 if n s 13; the H = 2 best beat the (H, m) = (1, 2) best if n = 14 or rr L 16; 

the H = 2 best tie (8,8) at rr = 15. 

To complete the proof it suffices to note that n 3 14 implies (n - 1)!/3 > e,(r) 
whenever m 2 3, rl s rz - 2 and (r2, r3) $ ((1, l), (2, 1)). The H = 1 semiorders 

for m = 3 have the expression used earlier for this case (with rl + r, + r3 = n + 1 

here), and when this e,(r) is compared to (n - 1)!/3 we conclude that the latter is 

larger if and only if 

2< (ri + 1) 
L 

(rl + 2)(r1+ 3) (r, + r, + 4)(r2 + r, + 2) 

3(rI+r2+r,-l)- (r2+1)(r2+2)(r3+1) I ’ 
This is like (*) except that 3(r, + r, + r, - 1) replaces 2(r, + r, + r3) in the first 

denominator. Analysis similar to that for m = 3 in the proof of Theorem 3 shows 

that it holds for all n Z= 14. The analysis for m 14 also mimics that for Theorem 3. 

In the present context we replace the right side of (**) by 1/(3n), or the slightly 

smaller 1/[3(r, + - . * + r,)], and find that (**) thus modified holds for n 2 14. We 

omit further details. 0 

By Lemma 2, k = n is the smallest k that admits an H = 2 semiorder, and 

Theorem 4 shows that an H = 2 semiorder uniquely realizes e(n, n) when II 2 9. 

Lemma 2 also says that k = 2n - 2 is the smallest k that admits an H = 3 

semiorder. However, no such semiorder realizes e(n, 2n - 2), i.e., all realizers of 

e(n, 2n - 2) have height 1 or 2. 

Theorem 6. If n 2 5 then no semiorder that is a realizer of e(n, 2n - 2) has H = 3. 

Proof. Assume that n 2 5 and k = 2n - 2. By following the logic in the proof of 

Lemma 2 we find that the standard format semiorders with H = 3 are those shown 
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(n-4,11-2,1) (n-d,n-b+i,ld), 4SbSn-1 

b-2 

Fig. 7. Height-3 semiorders for k = 2n - 2. 

in Fig. 7. The first of these has e,(n - 1, n - 2, 1) = (n - 2)!/2, and those for 
b 34 have 

e,(n - 1, )2 -b + 1, 1, . . . , 1) < 
(b - l)! (n -b - l)! 

2 
= (n - 2)!/2. 

Hence (n - 1, n - 2, 1) is the unique height-3 maximizer. 
We claim that (n - 1, n - 2, 1) never realizes e(n, 2n - 2) when n 2 5. For 

n = 5, e,(n - 1, n - 2, 1) = e,(4, 3, 1) = 3, but the H = 2 semiorder (3,3,2) has 
e,(3, 3, 2) = 4. For n > 6 the H = 2 semiorder (n - 2, n - 3, 3) shown in Fig. 8 
has 6(n - 2)!/4! linear extensions for each of the two ways that point 2 can be 
above point 3 in a chain on {1,2,3}, and has (n - 3)! linear extensions when 2 is 
below 3. The total is 

e,(n - 2, n - 3, 3) = (n - 3)! + (n - 2)!/2, 

which exceeds (n - 2)!/2 for PI 2 6. Cl 

5. Discussion 

Although Theorem 1 identifies semiorders as the only posets that maximize the 
number of linear extensions of an n-point poset with k pairs in its ordering 
relation, characterization of the specific semiorders that accomplish the maxi- 

1 2 

n-2 n-t n 

(n-2,n-3.3) 

Fig. 8. A height-2 semiorder with k = 2n - 2. 
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mization appears difficult. We have done this only for k s n, and for k = n + 1 
and n 2 14, with further comments on a few other cases. As pointed out in the 
introduction, there is a ‘small integers’ problem that complicates complete 
characterizations for all (n, k) pairs in which k relates to IZ in a particular way, 
such as k = n + 1. 

There are several avenues for further research. One is to focus on specific 
cases such as k = n + 2 or on all cases that do not admit semiorders of height 3 or 
more, i.e., those with k < 2n - 2. 

Another avenue considers large n behavior to avoid the ‘small integers’ 
problem. For example, we have seen that, for a few cases, the optimal semiorder 
patterns that realize e(n, k) when k = an + b for fixed a and b are all similar 
when PZ is large. Is this true in general and, if so, can these patterns be described 
in a simple way? 
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