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The dimension D(S) of a family S of subsets of n = (1,2, . . . . n> is defined as the 
minimum number of permutations of n such that every A E S is an intersection of 
initial segments of the permutations. Equivalent characterizations of D(S) are given 
in terms of suitable arrangements, interval dimension, order dimension, and the 
chromatic number of an associated hypergraph. We also comment on the 
maximum-sized family of k-element subsets of n having dimension m, and on the 
dimension of the family of all k-element subsets of n. The paper concludes with a 
series of alternative characterizations of D(S) = 2 and a list of open problems. 
0 1992 Academic Press, Inc. 

1. INTRODUCTION 

We define the dimension D of a finite hypergraph as the minimum 
number of permutations of its ground set such that every edge of the 
hypergraph is the intersection of initial segments of the permutations. 
The paper relates D to other notions of dimensionality and to chromatic 
numbers of certain graphs and hypergraphs, summarizes prior results that 
translate into facts about D, proves some new results, and identifies 
problems for further research. Because many of the theorems for D are 
not new, a main purpose of our study is to interpret and organize other 
topics under one elementary concept. Primary connections to the present 
definition of the dimension of a hypergraph are provided by the theory of 
k-suitable arrangements initiated in Dushnik [8], the interval dimension of 
height 1 partially ordered sets from ‘I’rotter and Moore [28] and Trotter 
[25], and the notion of biorder dimension and related work on chromatic 
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numbers in Bouchet [2], Cogis [S], and Doignon, Ducamp, and 
Falmagne [7]. The last of these, referred to henceforth as DDF, and 
West [30] are particularly rich sources of information on notions of 
dimensionality of ordered sets and their ties to chromatic numbers. 

Let n denote a positive integer. Unless we say otherwise, a finite hyper- 
graph is viewed as a pair H = (n, S) in which n = (1,2, . . . . n > is the ground 
set and S is a family of subsets of n called edges. If every edge in S is an 
r-element subset of n then H is said to be r-uniform. A graph is a 2-uniform 
hypergraph. 

An arrangement or permutation of n is a linear array TV = a, a2 . . . a, of all 
n points in n. The initial segments of TV are 0, (al >, (a,, a2), . . . . n. A set R 
of permutations of n realizes H = (n, S) if for every nonempty edge A in S 
an initial segment s, can be chosen for each Q E R so that 

A= f-j S,. 

A moment’s reflection shows that R realizes H if and only if, for every A E S 
and all x E n\A, x follows an initial segment s of some 0 E R for which 
A c s. Moreover, if A and B are in the family of subsets obtained as inter- 
sections of initial segments of R, then A n B is also in this family. Note that 
the trivial hypergraph (n, 0) is realized by the empty set of permutations. 

DEFINITION. The dimension D(H) of H = (n, S) is the smallest m > 0 for 
which there exists a,set R of m permutations of n which realizes H. 

Clearly D(n, 0) = 0, o(n, (0 > ) = 1, and, by any n permutations with 
different last elements, D <n. Placement of elements in n but not us A 
at right ends of permutations shows that D is independent of those 
elements. We therefore write D(H) as D(S): D( 0) = 0, D( (@}) = 
DC{ (I}, (19 2}})= 4 and so forth. For convenience we assume henceforth 
that S # 0. 

D(S) has the following straightforward interpretation in terms of dimen- 
sionality. Suppose D(S) = m 2 1 and (61, . . . . a,} realizes S. Let L denote 
the lattice nm in N”. Label the n levels (1,2, . . . . n) of coordinate i of L by 
the members of CJ~ in order, and label each point in L with the intersection 
of the m initial segments of labels on the coordinates that define the lattice 
point. Then every nonempty edge in S is the label of some point in L, and 
this cannot be done with fewer than m coordinates. Figure 1 illustrates the 
labeling for cl = 1234 and c2 = 4231. With subset braces omitted, {oI, c2) 
realizes (0, 1, 2, 4, 12, 23, 24, 123, 234, 1234) and every subset thereof. 

Various other dimensionality notions for graphs, ordered sets and other 
relations were defined in Dushnik and Miller [9], Erdos, Harary, and 
Tutte [lo], Trotter and Bogart [27], Trotter, Moore, and Sumner [29], 
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Lovasz, Nesetril, and Pultr [17], Trotter [26], DDF, Steif [23], West 
[30], and Cozzens and Roberts [6]. Some of these have no apparent 
connection to D, but others are intimately connected to it. Of particular 
importance are the dimension (Dushnik and Miller [9]) and interval 
dimension (Trotter and Bogart [27]) of a partially ordered set. The latter 
notion is a special case of biorder dimension developed in Bouchet [2], 
Cogis [3], and DDF, and we refer readers to DDF and to West [30] for 
more about this. 

We recall that a finite irreflexive partially ordered set, or poset, is a pair 
(X, < 0) in which < 0 is an irreflexive and transitive binary relation on a 
nonempty finite set X. A hear extension of < 0 is a linear (strong, strict, 
total) order < * on X that includes < *. The dimension d(X, < O) of poset 
(X, co) is th e minimum number of linear extensions of < 0 whose inter- 
section equals < 0. Alternatively (Hiraguchi [15], Ore [lS]), d(X, -co) is 
the smallest number of one-one mappings fi, . . . . fm from X into Iw such 
that, for all X, y E X, 

x<O Y efi(x)<Lf;.(Y) for i= 1, . . . . m. 

The interval dimension I( X, < o) of (X, < o) is the minimum number of 
mappings F,, . . . . F,,, from X into closed real intervals such that, for all 
4 J-x 

x<, y-sup F,(x)CinfFi(y) for i= 1, . . . . m. 

In general, I < d. 
Consider d( S, c ), the order dimension of S ordered by proper inclusion. 

It is easily seen that d(S, c ) = 1 c> D(S) = 1, but, when S is the family of 
all (n - 1 )-element subsets of n and n > 2, d(S, c ) = 2 and D(S) = n. 
Indeed, we always have d(S, c ) < D(S), so D(S) is related to the dimen- 
sion of the inclusion poset (S, c ). But D also depends on the specific 
contents of the edges in S, as recognized in Trotter [26]. In particular, if 
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(S, c ) and (T, c ) are order isomorphic then d( S, c ) = d( T, c ), but D(S) 
and D(T) need not be equal. The simplest example is 

S=(1,2,3) and T= { 12, 13,231 

with (S, c) g (T, c), d(S, c) = d(7’, c) = 2, D(S) = 2 by (gl = 123, 
g2 = 321}, and D(T) = 3. 

An outline of the paper follows. 
Section 2 summarizes elementary facts about D, concluding with a not so 

elementary proof that a graph on n points and D = 3 can have 3(n -2) 
edges but no more. 

Section 3 says more about d and Z. We define the membership poset P(H) 
of H= (n, S) by 

P(H) = (n u S, E}. 

Figure 2 shows P for H= (4, (0, (11, (2}, (2,3), (1,3,4}}). In Section 3 
we define another poset P*(H) whose elements are nonempty subsets of 
n u S and observe that 

d(S, = ) d W’(H)) = d(P*(H)) = D(S) < d(P(H)) < D(S) + 1. 

Thus D is identical to d and to Z for suitably defined derived posets, and 
W, = ) d D(S) 6 d(fW)) so that the dimension of a hypergraph is 
bounded by the order dimensions of its inclusion and membership posets. 
Proofs in Cogis [3], Trotter [25], and DDF establish most of these 
results. 

Let Sk,n denote the set of all k-element subsets of n. We note here that, 
when 1 dk<‘n-- 1, 

D&Go: IAl Qk})=D(S,,,) 

since it is transparent that if foI, ..,, a,> realizes Sk,n then it also realizes 
Sk- l,n, “‘, Sl,,. D(S,.) was first studied in Dushnik [S] and denoted by 
N(n, k + 1). Dushnik defined it as the minimum number of arrangements of 

{I} (2) (2.3) (493.4) 

o. l/-bvI 
3 4 

diagram of P(H) 

FIGURE 2 
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n that are (k + l)-suitable in the sense that, for every (k + 1)-set A and 
every iE A, i follows the other k elements of A in at least one arrangement. 
His interest in suitability stemmed from his earlier work on the order 
dimension d; in particular, he noted that if 1 < k < n then D(S,.) equals 
4s,,n ” &Jo = )* 

Dushnik’s [S] paper led to other work on suitability and related 
things in Spencer [21,22], Trotter [24], Cozzens and Roberts [S], and 
Fiiredi and Kahn [12]. We review selected results of these papers in 
Section 4, including D(S,,) 3 1 + log, log, n and D(S,,) < (k + 1)2 
Cl + wnltk + WI- 

Section 5 relates D(S) to chromatic numbers. Given a hypergraph 
H = (n, S), define its antimembership set to be 

V= {(x, A) : AES, xen\A}. 

When V# 0, we define the inversion graph G(H) as the pair ( V, E) where, 
for all (x, A), (y, B) E V, 

{<x9 4 (YY WI E E if XEB and YEA. 

We also define a hypergraph X(H) with ground set V whose two-element 
edges are the edges in E. With x(G) the usual chromatic number of a 
graph, and x(X) the minimum number of colors that can be assigned to 
vertices in V so that no edge of X is monochromatic, results in Cogis [4] 
and DDF are used to verify D(S) = &%?(H)) along with D(S) = 
2 * x( G( H)) = 2 e> x(X(H)) = 2. We note also that x( G( H)) < D(S) some- 
times holds for larger values of D (Trotter [26]). 

Dushnik and Miller [9] and Baker, Fishburn, and Roberts [ 1 ] 
established several equivalent characterizations of posets for which d = 2: 
see also Fishburn [ 111. Section 6 does the same thing for hypergraphs for 
which D = 2. Our equivalences include results of preceding sections along 
with interval representability for S as defined in Trotter and Moore [28]. 

Section 7 concludes the paper with a brief summary and interesting open 
problems. 

2. BASIC FACTS 

Throughout this section, S and Tdenote nonempty families of subsets of 
n. This is needed for parts of our first lemma. 

LEMMA 1. For all S and T, and all B E n: 

a. 1 <D(S)<n. 

b. min{lSI : D(S)=m) =mfor l<m<n. 
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c. SC T=D(S)<D(T). 

d. S=(AUB:AET}~D(S)~D(T). 

e. S={A\B:AeT}*D(S)<D(T). 

f. max(D(S),D(T)}<D(SuT)dD(S)+D(T). 

ProoJ Part (a) was noted in the Introduction. For (b), D(S) = m when 
S is the family of (m - 1 )-element subsets of m, and if ISI < m then 
D(S) < m. Part (c) follows from the definition of D. For (d), shift elements 
in B to the left ends of permutations that realize T. For (e), shift elements 
in B to the right ends of permutations that realize T. Part (c) implies the 
first inequality in (f), and the second follows from the fact that Su 7’ is 
realized by the union of a set of permutations that realizes S and a set of 
permutations that realizes T. 1 

We know of no simple strengthening of the upper bound in Lemma l(f). 
For example, it is not always true that D(S u T) 6 D(S) + D(T) - 
D(Sn T). 

LEMMA 2. D(S) = 1 e> S is linearly ordered by c. D(S) = n e> S 
contains every (n - 1 )-element subset of n. 

Proof: If c linearly orders S, n can be arranged so that every A E S is 
an initial segment of the arrangement, so B(S) = 1. If c does not linearly 
order S, sets A, B E S for which A \B and B\ A are nonempty force 
D(S) > 2. 

As already noted, D(S) = n if all (n - 1 )-sets are in S. Suppose one of 
these, say (2, . . . . n}, is missing from S. Then any set of n - 1 permutations 
that end in 12, 13, . . . . In realizes S. 1 

In the rest of this section we consider how many k-sets S can contain 
when D(S) is fixed at m < n. Let 

a,(k,n)=max{ISI : D(S)=m, [A( =kforallAES} 

for 16kdn and 1 <m<n. Clearly al(k, n)= 1. The next step is 

Lemma 3. a2 (k, n) = n - k + 1, and these values are realized for any 
I< k < n - 1 by a permutation of n and its reverse. 

ProoJ For the final assertion, observe that (pi = 12... n, (r2 = n-s. 211 
realizes S= ([i, j] : i<j), where [i, j] = (kEh : i<k<j). Therefore 
a,(2k, n)>n-k+ 1. 

To show that a,(k, n) <n-k + 1, fix k, 2 <k < n, and let c~i and o2 be 
any two permutations of n. When IAl = k and A is the intersection of initial 
segments of g1 and c2, let p(A) and q(A) be the maximum positions of an 
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A element in CT~ and g2 respectively. When thus defined, the union of the 
elements in g1 that follow position p(A) and the elements in c2 that follow 
position q(A) is n\ A. It follows that if A and B are distinct k-sets that are 
intersections of initial segments, then 

Therefore, if A 1, AZ, . . . . A, are distinct k-sets that are intersections of initial 
segments, we have say (k<p(A,) <p(A,) < a.* <p(A,) <n; k<q(A,) < 
. . . <q(A,)<q(A,)<n}. Hence r<n-k+l. 1 

The general determination of a,(k, n) appears very difficult. We prove 
one further result which shows that a graph (k = 2) for which D = 3 can 
have 3(n - 2) edges, but no more. 

THEOREM 1. a3(2,n)=3(n-2)for n>,3. 

Remark. We know of two proofs of Theorem 1. The first, given below, 
proceeds from basic facts about the inner structures of three permutations 
without appealing to other results. The second, which illustrates further 
connections between our definition of hypergraph dimension and related 
concepts, uses a (diffkult) theorem in Schnyder [20] which says that a 
graph G = (n, S), with ) Al = 2 for all A E S, is planar if and only if 
d(P(G)) < 3. With P(G) as described for Fig. 2, it follows from our defini- 
tions that a set of three permutations of n realizes S if and only if 
d(P(G)) < 3. By Schnyder’s theorem, this happens if and only if G is planar. 
Then, by Euler’s theorem which says that the maximum number of edges 
in a planar graph is 3n - 6, we conclude that a,(2, n) = 3n - 6. 

ProoJ: The set of permutations (cl, (TV, ~7~ > with 

0,=123...n-1 n 

a2=1 n n-l...3 2 

a3=2 n n-l...3 1 

realizes S={ij:i<j, and iE{1,2) or j=i+l), so a,(2,n)>(n-l)+ 
(n - 2) + (n - 3) = 3(n - 2). 

To prove that a,(2, n) f 3(n - 2), let cl, g2, and o3 denote any three 
permutations of n. For three such permutations, we say that a 2-set (i, j } 
is good if {i, j} is the intersection of initial segments, and is bad otherwise. 
Note that (i, j } is bad if and only if there is an x E n\ {i, j > such that x 
precedes the rightmost of i and j in all three permutations. We manipulate 
permutations so as to maximize the number of good pairs or, equivalently, 
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minimize the number of bad pairs. Using induction on n, it will be shown 
that the number of good pairs never exceeds 3(n - 2) or, equivalently, the 
number of bad pairs is never less than (‘; 3, = (2) - 3(n - 2). 

Given n 2 3, suppose o1 ends with 1. Then if cr2 and c3 are modified by 
moving 1 into their first positions with the orders on the other elements 
unchanged, it is easily seen that every good pair stays good. Consequently, 
we assume henceforth with no loss of generality that 

o1 = (23) s-s 1 

02= (13)..*2 

63 = (12) * - * 3, 

where parentheses indicate that the order of the two enclosed elements is 
immaterial so far as good and bad pairs are concerned. Such a triple of 
permutations on n is a special triple. For any special triple with n < 4, every 
pair is good, so that a3 (2, n) = (i) = 3n - 6 if n < 4, as desired. 

When U is a set of permutations on n, we use Ui to denote the set of 
permutations with n - 1 elements obtained by deleting i from each 
permutation in U. Note that bad pairs in Ui are also bad pairs in U. Also, 
given permutations U, we say that (i, j) is a dominant pair or that j 
dominates i if i precedes j in each permutation of U. In a special triple, note 
that a dominant pair (i, j) must have i, jE n\ { 1,2,3}. For a set of 
permutations U, the property of having no dominant pair is called non- 
dominance. Finally, {i, j > is bad if and only if some element k precedes the 
rightmost of i and j in all permutations, in which case we call k a spoiler 
of (i, j]. 

For n b 5, we proceed by induction, assuming that triples on n’ <n 
elements have at least ( “‘F~) bad pairs. We restrict the structure of an 
optimal triple, meaning one with the minimum number of bad pairs. We 
already know that it must be special. If j dominates i in a triple U, then all 
pairs that contain j and not i are bad. There are n - 2 such pairs. Since Uj 
also contributes at least ( ’ ;4) bad pairs to U, there are at least (‘1 3, + 2 
bad pairs in U. Hence we may assume non-dominance for an optimal 
triple. 

Let U be a special triple with no dominant pair. If the penultimate 
elements are not all distinct, then we may assume that 4 is penultimate in 
ol and 02. By non-dominance, 4 must be third in g3. Now the final n - 4 
elements in g3 form bad pairs with element 4, all having the fourth element 
of ~7~ as a spoiler. Adding these to the bad pairs in U, yields at least (“1 3, 
bad pairs, as desired. 

Hence we may assume that the penultimate elements in the three 
permutations are distinct, which means we have completed the proof unless 
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n > 6. For ease of reference, let these elements be 4, $6 for cri, cr2, g3, 
respectively. If U123 is also a special triple, then U looks like 

Q, = (23)[56] es.41 

a2=(13)[64] ee.52 

a,=(12)[45]--63 

with a choice of ordering within each pair of brackets. No matter how 
these choices are made, there must be at least three bad pairs with 
i E ( 1,2, 3) and j E (4, $6). For example, for the choices as written above, 
4 spoils ( 1, 5 }, 5 spoils (2, 6 ), and 6 spoils ( 3,4}. Also, if x > 6, then 
4 spoils (1, x}, 5 spoils (2, x}, and 6 spoils (3, x). Adding these to the bad 
pairs guaranteed from U 123 yields at least 3+3(n-6)+(“,6)=(“;3) bad 
pairs in U. 

Hence it suffices to show that the number of bad pairs is in fact mini- 
mized when U123 is special. We prove this by making transpositions of 
adjacent elements to push non-penultimate occurrences of 4, 5, 6 toward 
the left without increasing the number of bad pairs. If U123 is not special, 
then we may assume by symmetry that 5,6 do not occupy positions three 
and four in ol. One of these, which we may assume is 5, must be 
immediately preceded in cri by some x > 6. Since x also precedes 5 in 02, 
non-dominance implies that x follows 5 in ~7~. 

We claim that replacing x5 by 5x in cl to obtain a new triple U' does 
not increase the number of bad pairs. If this is false, then some good pair 
must become bad, which can only be (x, j } for some j and has 5 as a 
unique spoiler in U'. In view of c2, we must have j = 2. It now suffices to 
show that there is some bad pair in U that is good in U’. Let y be the first 
element following x in o3 that precedes x in g1 ; this is well-defined, since 
the element 3 has these properties. The element x spoils { 5, JJ> in U, but 
in U' it does not. Hence (5, v> is the desired pair unless some other 
element z spoils { 5, u) in both U and U'. This implies that z precedes x 
in pi and y in c3. However, the fact that 5 is the unique spoiler of (x, 2) 
in U implies that z follows x in c3. Together, these statements contradict 
the choice of y, so there is no such z, and (5, JJ} turns from bad to good 
to prevent an increase in the number of bad pairs. 1 

3. AWCIATED POSETS 

Let S(~)={AES:~EA) and <.={(~,A):~EAES} with P(H)= 
(n u S, < s). We now define P*(H) for H = (n, S) to accompany the 
inclusion poset (S, c ) and the membership poset P(H). 
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First, let Q(H) = ( nuS, 5) where, for i,jEn and A, BES, 

s= <su{(i,j):S(j)~S(i))u((A,B):Aa?} 

u((A,i):AxS(i)c -+>. 

This follows DDF [ 7, pp. N-81], which notes that Q(H) is the maximaI 
quasi-order (reflexive, transitive) on n u S for which 5 n (n x S) = < s. 
Because Q(H) is a quasi-order, its symmetric part -J, defined by x-y if 
x 5 y and y 5 x, is an equivalence relation on n u S. Using a reduction 
procedure in Roberts [19, p. 453, we define the poset 

P*(H) = ((n u W-, < 1 ), 

where (n u S), - is the set of equivalence classes of n u S under -, and for 
all such classes X and Y, 

x<, Y if a 5 b and not (b 5 a) for some 
(hence for all) a E X and b E Y. 

See Fig. 3 for examples. 
This brings us to a fundamental result. 

H=(2, ((1)s (1.2))) 

(S,C) P (HI O(H) P*(H) 

d =I d=2 

I=1 

H = (3.{{1,2}~{f.3}~{2.3}}) 

d=l 

P*(H) P (HI 0 (H) 

d=2 d-3 

I-3 

d=3 

FIGURE 3 
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THEOREM 2. For all hypergraphs H = (n, S), 

d(S, c ) < Z(P(H)) = d(P*(H)) = D(S) < d(P(H)) < D(S) + 1. 

Proof The relations D(S) = Z(P(H)) < d(P(H)) d Z(P(H)) + 1 are 
proved in Trotter [25], and the relations d(P*(H)) =Z(P(H)) < 
d( P( H)) < Z( P(H)) + 1 are contained in Cogis [ 31 and DDF. For DDF, 
Propositions 2.9 and 4.1 plus remarks on pages 90 and 99 verify 
d(P*(H)) = Z(P(H)). 

This leaves only d(S, c ) G D(S). Suppose D(S) = m > 1 and (gl, . . . . o,} 
realizes S. For each i E m define fi: S + { 1, . . . . n} when bi = a1a2.. . a, by 

(If 0 E S, we ignore it with no loss in generality.) Suppose A c B for 
A, BE S. Then h(A) <J;(B) f or all i and, since each b E B\A follows the 
final element of A in some pi, h(A) <f;:(B) for some i. On the other hand, 
if A, BE S, A d B and B d A, then B\ A and A \B are nonempty and we 
have fi(A)<h(B) andfi(Z?)<fi(A) for some i,jEm. Hence d(S, c)<m 
by the Hiraguchi-Ore characterization of d. 1 

Figure 3 illustrates one case with d(P(H)) = D(S) and another with 
d( P( H)) = D(S) + 1. DDF [ 7, p. 1011 remark (as interpreted through 
Theorem 2) that no simple criterion is known to differentiate these two 
cases, and as far as we are aware the question remains open. In their 
terminology, what we refer to as D(S), or as the interval dimension of the 
membership poset P(H), is the “bidimension” of the membership poset. 

4. COMPLETE UNIFORM HYPERGRAPHS 

Section 2 asked how small (Lemma 1 (b)) or large (Lemma 3, 
Theorem 1) S or a uniform part of S can be when D is fixed. We now 
reverse this to ask about D when the hypergraph is specified. A simple 
example is S = (2, . . . . n, 12, 13, . . . . In }. This has D = 2 if n = 3 and D = 3 if 
n > 4 (cf. proof of Theorem 1). 

We summarize here what is known about the dimensions of complete 
uniform hypergraphs, using the equivalence between D(S,,) and Dushnik 
suitability explained earlier. To avoid awkward notation we write D(k, n) 
for D(S,.) or, in Dushnik’s notation, for N(n, k + 1 ), 1 < k < n - 1. Clearly, 
D(k, n) is nondecreasing in n. Exact values are noted first. 

THEOREM 3. D(l,n)=2 for all nb2. Zf n>4, 2<j<& and 
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then D(k - 1, n) = n -j + 1. In addition, for all m 2 2, 

D(2m-2,m2+m-l)=D(2m-2,m2+m)=m2 

D(2m-3,m2+t)=m2-m for q-2, -l,O, 11. 

All results of Theorem 3 were proved in Dushnik [8] except for 
t E { 0, 1 } in the last line, which is proved in Trotter [24]. 

The second sentence of the theorem specifies D for all k between about 
2& and n - 1. Trotter [24] has a table of all D values for n < 14, 
including D(2, 12) = 4, D(2, 13) = D(2, 14) = 5, D(3,6) = D(3, 10) = 6, 
D(3, ll)= D(3, 14)=7, D(4, 10)=8, and D(4, ll)= D(4, 14)=9. 

THEOREM 4. D(k - 1, n) < min{k2k log, log, n, k2( 1 + log(n/k))} for 16 
k < n - 1. In addition, for all n 2 3, 

1 + log, log, n d D(2, n) < log, log, n s 

+ $ log, log, log, n + 3.16. 

The first term of the min expression appears in Spencer [22] and the 
second appears in F;iredi and Kahn [ 121. The inequalities for D(2, n) 
appear in Trotter [24], based partly on Spencer [22]. The fact that 
D(2, n) + co was first noted in Dushnik [S]. In the terminology of our 
paper it says that graphs can have arbitrarily large dimensions. 

5. CHROMATICS IN D 

We have been assuming that S# 0. This section assumes also that 
S # (n> so that the anticontainment set V is not empty. 

The inversion graph G(H) on V is a specialization of the hypergraph 
Z(H) = (V, 9) whose edges & E 9 are subsets we propose to call strong 
cycles in V. A strong r-cycle in V is a subset & of r 2 2 vertices in V that 
can be arranged as (xi, A,), (x2, A2), . . . . (x,, A,) so that 

XiEAi+l 

\ 

U Aj9 

j#i+l 

i= 1, . . . . r - 1 

&EAl \u Aj. 
\j#l 

Let q be the set of strong r-cycles in V, and let 9 = Y2 u Y3 u . . . . The 
edge set of G(H) is Y2. 

It is easily seen that 9 is empty if and only if c linearly orders S, and 
in this case x(Z) = 1. Otherwise, x(X) 2 2, with x independent of vertices 
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in 2 that are in no strong cycle. Because of this we write ~(9) for the 
chromatic number of X(H) with the understanding that ~(0) = 1. The 
chromatic number of G(H) is ~(9~). 

By our Theorem 2, the basic theorem for D in terms of x is proved as 
Proposition 3.2 in DDF. 

THEOREM 5. For all hypergraphs H = (n, S), 

For the hypergraph H in the lower half of Fig. 3, we have 

ff= w, 23), (2,13), (3,12)1 

9 = g = ({t1,23), (2,13)), {t1,23), (3,12)1, {(2,13), (3,12)) 1 

so X = G forms a triangle with ~(9) = 3. Note that the vertices do not 
form a strong 3-cycle since, for example, 1 is in both { 1, 3 } and ( 1,2 ). On 
the other hand, V is a weak 3-cycle, which is any triple of vertices that can 
be arranged as (x, A), ( y, B), (z, C) with x E B, y E C, z E A. Proposition 3.4 
in DDF implies that D(S) = x(Y;) if there is no weak 3-cycle in V. Here, 
as elsewhere, we use the fact by Theorem 2, and Proposition 2.9 in DDF, 
that our D(S) us tantamount to the DDF bidimension of the membership 
poset. 

Another important result, from Cogis [3] and proved also as Proposi- 
tion 5.2 in DDF, is 

THEOREM 6. D(S)=2ex(YZ)=2. 

The DDF proof is based on a characterization in Dushnik and Miller 
[9] of posets with d= 2 in terms of their incomparability graphs and on 
the characerization of comparability graphs in Ghouila-Houri [ 131 and 
Gilmore and Hoffman [14]. 

Although I < x( 9) = D(S), with equality if D = 2, it was first 
observed in Trotter [26] that ~(9~) < D(S) is possible when ~(9~) 2 4. His 
example appears also in DDF and in the next proof. 

THEOREM 7. For each k > 4 there is an H = (n, S) with ~(9~) = k and 
D(S) 2 3(k - 1)/2. 

Prooj Fix m 2 3, take n = 3m, and let A = (1, . . . . m>, B = 
(m + 1, . . . . 2m), and C= (2m + 1, . . . . 3m }. For each i E n define edge Ei for 
H bY 

Ej= (Au B)\(i) if iEA 

Ej= (Bu C)\{i} if ieB 

Ei=(Cu A)\(i) if iEC. 
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Let S = { Ej}. It is easily seen that a permutation of n has at most two i for 
which i follows all elements in Ei. Therefore D(S) 2 1 S1/2 = 2m/2. (It is not 
hard to verify that D(S) = r3m/2].) 

We specify the vertex set V of G in six disjoint pieces, 

VA = {(i, Ei) : ie A), VI= ((j, Ej) :jEC, ieA), 

VB= {(i, Ei) : iElI), V2 = ((j, El) :jeA, iel?}, 

V,= {(i, Ei) : ie C], 1/3= ((j, Ei) :~EB, ie C], 

so I VA1 = I &I = I Kzl =m and IV11 = lVZl = IV,] =m2. Recall that G has an 
edge between (x, Ei ) and ( y, Ej ) if and only if x E Ej and y E Ej. It is easily 
checked that 

(1) there are no G edges in Vi, i= 1,2, 3; 

(2) XE VA [resp. VB, V,] is joined to every other point in VA [resp. 
VB, V,] and to every point in V3 [resp. V,, V2], and x belongs to no 
other edges. 

Because of (2), G has an abundance of complete subgraphs on m + 1 
vertices, so m + 1 colors are needed to color G. And m + 1 colors suffice. 
Denote them by cl, c2, . . . . c,, i. Assign ci to each vertex in Vi, i= 1, 2, 3. 
Then assign a different one of cl, c2, cd, . . . . c, + 1 to each of the m 
vertices in VA, assign c2, c3, . . . . c, + 1 to the vertices in VB, and assign 
Cl, c3, ***, cm+1 to the vertices in V,. It follows from (1) and (2) that 
for every edge in G the two vertices have different colors. Therefore 
x(9,)=,+ 1. 

Theorem 7 follows with k = m + 1. 1 

We do not know at present whether it is possible to have x(s) 7 3 and 
D(S) 2 4. Another apparently open question is whether for fixed ~(9~) it is 
possible to have arbitrarily large D(S). The proof of Theorem 7 shows only 
that D(S) - ~(9~) can become large as x increases. 

6. CHARACTERIZATIONS OF D=2 

We make one further definition before listing characterizations of D = 2. 
A family S of sets is interval representable if there is a mapping F from 
us A into closed real intervals such that, for all x E us A and all A E S, 

x E A e> F(X) c inf U F(y), sup U F(y) . 
YEA YEA 1 

This definition and the next theorem are taken from Trotter and Moore 
WI. 
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THEOREM 8. D(S)<2 * S is interval representable. 

Theorems 2, 6, and 8 together yield 

THEOREM 9. Suppose H = (n, S) and c does not linearly order S. Then 
the following are mutually equivalent: 

a. D(S) = 2. 

b. I(P(H)) = 2. 

c. d(P*(H)) = 2. 

d. ~(9~) = 2. 

e. S is interval representable. 

Part (c) yields further characterizations by way of the d = 2 characteriza- 
tions in Dushnik and Miller [9] or in Theorem 5.9 in Fishburn [ 111. And, 
by a well-known result, (d) holds if and only if the inversion graph G(H) 
has no odd cycle. 

Although (d) may provide the easiest route for testing D(S) < 2, one can 
also characterize D(S) < 2 by families of minimal forbidden configurations. 
For part (c) the relevant family is the set of 3-irreducible posets described 
in Trotter and Moore [28] and Kelly [ 161, with d(P) < 2 if and only if no 
induced subposet of P is order isomorphic to a 3-irreducible poset. For (b) 
the relevant family is the set of 3-interval irreducible posets of height 1 in 
Trotter and Moore [28] or Trotter [25]. For (a) it is the family of forbid- 
den hypergraphs that correspond to the 3-interval irreducible posets of 
height 1 by the H and P(H) association. These are identified in Trotter 
[25] and Trotter and Moore [28]. Table 3 in the latter paper lists the 
forbidden hypergraphs up to editing and duals (see next paragraph). 

To illustrate, we have determined that there are precisely eight minimal 
hypergraphs for n = 4 that violate D < 2. Up to permutations of elements, 
they are 

{ 12,13,23), (12,13,234}, (12,134,234}, { 124,134,234}, 

(12, 23, 34, 141, (2, 13, 14, 123, 124}, (2, 3,4, 12, 13, 141, 

(2, 3, 12, 13, 14, 123). 

When n = 4, D(S) < 2 if and only if no T E S is isomorphic (by permuta- 
tion) to one of these eight. By editing we mean the removal of elements 
from one or more edges in a way that does not change whether T is 
forbidden. For example, when 4 is removed from the second, third, or 
fourth listed set, we obtain the forbidden (12, 13, 23). Sets that edit down 
to smallest forbidden sets are not listed in Table 3 of Trotter and Moore 
[28]. The fifth and sixth of our eight sets appear in Table 3 as ‘%?d and “w;, 
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but the final two do not. They are the duals of g1 and $, respectively. To 
obtain the dual of H, we take the diagram of P(H), remove the labels, 
relabel the top points 1, . . . . ISI, and then label each bottom point by the set 
of top points that cover it. For example, ?Ji in Table 3 is (135, 12, 34, 56). 
Its dual is (2, 3,4, 12, 13, 14}, which is the seventh set in the preceding list 
for n = 4. 

It may also be of interest to identify maximal S for a given n that have 
D = 2. Omitting @ and n for convenience, the maximal S for n = 3,4, 5 are: 

n=3: (1,2, 3, 12, 133 

n = 4: (1, 2, 4, 12, 13, 14, 123, 134) 

(1, 2, 3,4, 12, 23, 34, 123, 234) 

n = 5: { 1, 2, 3, 4, 5, 12, 23, 34, 45, 123, 234, 345, 1234, 2345 } 

{ 1, 2, 3,4, 12, 23, 34, 123, 234,235, 1235,2345) 

(1, 2, 3, 12, 13, 14, 15, 123, 124, 145, 1234, 1245) 

(1, 2, 3, 12, 13, 14, 15, 124, 135, 145, 1245, 1345) 

(1, 2, 3, 12, 13, 14, 124, 125, 134, 1234, 1245). 

Thus, for n = 5, D(S) 6 2 if and only if S is a subset of one of the preceding 
five sets under a permutation on { 1, 2, 3,4, 5). 

Let A& denote the set of maximal S with ground set n for which 
D(S) = 2, with the understanding that no two sets in A$ are isomorphic 
under relabeling of elements. With 0 and n included, it follows from 
Lemma 2 that max ISI for M, is (n t ’ ) + 1. Other aspects of A$, remain to 
be studied. These include the number of sets in 4” (1,2, and 5 for n = 3, 
4, and 5, respectively), the smallest I SI for Jle,, and the distribution of ISI 
over An. 

7. DISCUSSION 

Our aim has been to introduce an intuitively straightforward definition 
of the dimension D of a finite hypergraph and to explore its connections to 
other concepts of graphs and ordered sets. We have identified equivalents 
of D in terms of interval dimension, order dimension, and the chromatic 
number of an associated hypergraph. When D = 2, the last of these reduces 
to the chromatic number of the inversion graph, and an interval represen- 
tability equivalent also holds. The correspondence between D and the study 
of suitable arrangements was discussed. 

It is apparent that our central idea is not new in a technical sense, but 
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we hope that its conception as dimension will be appealing and useful. 
Previous works to which we are heavily indebted include Dushnik [S], 
Trotter and Moore [28 J, Cogis [3], Trotter [25], and DDF, i.e. Doignon, 
Ducamp, and Falmagne [ 73. 

We conclude with a summary of open problems suggested by our study. 

1. Determine a,(2, n), the maximum number of edges in a graph on n 
elements that has D = m, for 4 <m < n, or obtain good bounds on this 
maximum. Do likewise for a,(k, n) when k 2 3. 

2. Determine exact values of D(k, n) for relevant (k, n) pairs that are 
not covered by Theorem 3 or the paragraph preceding Theorem 4. 
Augment or improve the bounds in Theorem 4. 

3. Describe aspects of J&,, the set of maximal S with D(S) = 2 on 
ground set n, as discussed at the end of the preceding section. Is it always 
true that ISI -c ITI for SEJ& and TEJ&+~? 

4. In reference to Theorem 2 specify conditions, the simpler the better, 
that distinguish d(P(H)) = D(S) from d(P(H)) = D(S) + 1. 

5. Is it possible to have x(G(H)) = 3 and D(S) > 3? 

6. Is there a constant c such that D( S)/x(G(H)) < c is always true? If 
so, what is the smallest such c? If not, is it true that D(S)/x(G(H)) can be 
arbitrarily large when x(G(H)) is bounded above? 
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